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Abstract

This thesis develops an optimisation framework within which the principle of least com-
mitment can be applied to the solution of ambiguous consistent labelling problems. The
natural optimisation method for such an approach is a hybrid genetic algorithm. The start-
ing point is the refinement of an existing Bayesian approach to inexact labelling problems.
Two criteria are presented which measure consistency in terms of the edit distance be-
tween labelled configurations and a dictionary of legal labellings. The new criteria have

significantly lower time and space requirements than the original in the worst case.

The genetic algorithm is applied to labelling problems, and its feasibility for ambiguous
labelling is demonstrated. The behaviour of the algorithm when labelling ambiguous
and impossible line drawings is studied. Adapting the algorithm for ambiguous graph
matching problems necessitates a reformulation of the posterior measurement probability
to take measurement ambiguity into account. The hybrid genetic algorithm with a gradient
ascent step is found to offer the best combination of optimisation performance and solution
yield. The hybrid algorithm is a significantly better optimiser than gradient ascent or the
standard genetic algorithm alone. The hybrid offers higher solution yields than other

evolutionary algorithms.

The setting of the several parameters which control the genetic algorithm is studied using
sets of factorial experiments. Empirical models for both labelling problems are derived.
These models are used to find optimal conditions for the algorithm, and are found to be
stable under extrapolation to problems up to three times as large as those in the original
test set. The smaller than expected population size required for successful optimisation
suggests that the gradient ascent step is responsible for the optimisation performance
of the algorithm, and that the genetic algorithm operators work to furnish good initial

guesses for gradient ascent.

Three measures of the algorithm’s population diversity are presented. They are the Shan-
non entropy, the total inter-cluster Hamming distance and the size of the gene pool. These
measures indicate that population diversity decreases rapidly over the first few iterations,
and inexorably thereafter. It is shown that solution yield can be improved without the in-
troduction of any new parameters to the algorithm. Since the gradient ascent step appears
to be mainly responsible for the optimisation performance, selecting the next generation

at random without replacement increases diversity without compromising search.
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Chapter 1

Introduction

David Marr proposed a simple experiment to distinguish between perception and cognition
(Marr 1982). Consider the richness of the visual world around you in terms of light, form,
colour and texture. Close your eyes and the richness disappears, open them again and
it returns. Marr suggested that this phenomenon occurs because the internal representa-
tion of the world is an abstraction which contains much less information than is actually
available from the scene. The task of mid-level vision is to bridge the gap between the
perceptually rich world of the scene and the cognitively rich world of high-level internal
representations. The behaviour of the real world is stereotyped to quite a large extent.
Solid matter tends to be collected into distinct objects, which occupy space and tend to
have differing surface properties. There may be a limited number of ways in which these
objects can be juxtaposed. For example, it is usual for houses to be on the ground, and for
the sky to be above the grass, and for the grass to be green, and so-on. The importance of
such syntactic constraints is that they allow parts of a scene to be labelled without the need
for detailed knowledge of their physical properties. A labelling of a scene is effectively an

interpretation, and is thus one way of linking low-level percepts with high-level concepts.

Historically, a major problem with syntactic labelling schemes has been the large number
of possible interpretations of a given scene. This can be addressed by augmenting the
labelling process with evidence from the scene, or with a priori knowledge of the likely
interpretation. When appropriate, early disambiguation can greatly simplify the labelling
problem. However, inappropriate disambiguation at too early a stage risks making an
expensive wrong decision. Marr’s principle of least commitment states that such decisions

should be postponed as long as possible (Marr 1982). This thesis argues that the labelling



algorithm should perform as little disambiguation as possible, serving up a variety of

plausible interpretations to higher level processes.

This thesis studies the use of genetic algorithms to extract multiple solutions to ambigu-
ous labelling problems. The genetic algorithm is a global optimisation method inspired by
Darwinian evolution (Holland 1975). The idea is that better solutions to a problem are
likely to evolve and survive when a population of potential solutions is subjected to natural
selection. This thesis takes the view that using a genetic algorithm as a framework for
labelling would allow a vision system to follow the principle of least commitment. High-
level processes could select the best solutions from the genetic algorithm’s population. To
realise this goal it will be necessary not only to establish the capability of the algorithm as
a labelling technique, but also to demonstrate that it can produce sufficiently many good
quality labellings. Two important labelling problems are considered. Line labelling ap-
plies geometric constraints to interpret line drawings as three-dimensional objects. Graph

matching applies structural constraints to compare triangulations of point sets.

Chapter 2 surveys the literature on consistent labelling, ambiguity and genetic algorithms.
A method due to Hancock and Kittler (Hancock and Kittler 1990a) for solving the con-
sistent labelling problem by optimisation is given in chapter 3, which further develops the
method and considers efficient implementations. Chapter 4 uses this method in a genetic
algorithm framework to solve ambiguous line labelling and graph matching problems. The
graph matching framework is augmented with a consideration of the ambiguous measure-
ments on extracted features, and by the introduction of metric based crossovers. Chapter
5 presents a large scale factorial study of genetic algorithm control parameters. Empirical
models which can be used to set parameters for a given problem size are obtained. Chap-
ter 6 considers ways in which the number of good solutions recovered by the algorithm
can be increased. Finally, chapter 7 presents some conclusions and suggests some future
directions for research. A short paper on the application of the genetic algorithm to a

more difficult interpretation problem appears as appendix A.



Chapter 2

Literature Review

This chapter surveys the literature on consistent labelling, ambiguity, and genetic algo-
rithms. Consistent labelling is a constraint satisfaction problem which has been studied
extensively in the computer vision literature (Mackworth 1977; Haralick and Shapiro 1979;
Haralick and Shapiro 1980; Haralick et al. 1978). Effective methods of solving this problem
have been developed over the last 25 years. The prototypical consistent labelling problem
is line labelling, which has been of interest to machine vision researchers for about 30
years (Huffman 1971; Clowes 1971; Waltz 1975). A more significant consistent labelling
problem is graph matching, which occurs frequently in computer vision applications (Bar-
row and Popplestone 1971; Ballard and Brown 1982; Koenderink and van Doorn 1979;
Dickinson et al. 1992; Wilson 1995; Cross 1998). It is usual to solve consistent labelling
by optimising some global measure of consistency (Hummel and Zucker 1983; Faugeras
and Berthod 1981; Hancock and Kittler 1990a). Gradient ascent is the method of choice
where appropriate, but relies on an initial guess being close to the global optimum. More
robust, global optimisation techniques must be used when no such initial guess can be

made.

The fact that there are many optimal solutions to typical line labelling problems has
been recognised since the mid 1970s (Waltz 1975). However, the difficulty of using global
contextual information in scenes to resolve them has led researchers away from this topic.
The focus has been on disambiguating early and arriving at a single solution to the problem
(Hummel and Zucker 1983; Faugeras and Berthod 1981). It is unclear how such methods
would cope if the interpretation were genuinely ambiguous. There has been some interest

recently in applying the principle of least commitment in these situations (Callari and



Ferrie 1996; Ezquerra et al. 1998), but no general framework for this has been proposed.

Genetic algorithms (Holland 1975; Goldberg 1989) have been found to be good global
optimisers. However, the algorithm is very complex, and despite a massive literature,
there has been relatively little theoretical or empirical work of significant practical value
which is generally applicable. The algorithm is potentially useful for problems with many
solutions because it maintains a population, as opposed to considering a single solution
(Goldberg and Richardson 1987). Genetic algorithms have been used for such “multimodal
optimisation” with some success. There have been a few applications of the algorithm to
labelling problems (Fleurent and Ferland 1996; Cross 1998), but none have exploited the

potential for multimodal optimisation of ambiguous labelling problems.

The next section considers consistent labelling, and gives line labelling and graph matching
as examples. Section 2.2 considers ambiguity in vision. The final section reviews some of

the vast literature on genetic algorithms.

2.1 Consistent Labelling

Constraint satisfaction problems are among the most widely studied in computer science.
The problem is to make an assignment from some domain to a set of variables, subject
to constraints between subsets of the variables. If the domain of assignment is discrete,
the problem is equivalently one of “labelling” each of the variables in the set. If there are
only two labels, the consistent labelling problem is equivalent to the general satisfiability
problem (Nudel 1983; Garey and Johnson 1979). It is possible to transform any consistent
labelling problem so that the constraints only apply to pairs of variables (Nudel 1983).
Consistent labelling problems in which the constraints are binary were studied intensively
in the computer vision literature of the mid to late 1970s (Mackworth 1977; Haralick and
Shapiro 1979; Haralick and Shapiro 1980). Examples of binary consistent labelling prob-
lems include graph colouring, subgraph isomorphism, the Boolean satisfiability problem
and scene labelling. The problem is known to be NP-complete in its general form (Cook
1971; Haralick et al. 1978), but a number of special cases exist. Indeed, finding tractable
subproblems of satisfiability is an active area of research in complexity theory, for example

see (Jeavons 1998).

In the context of computer vision, both Mackworth, and Haralick and Shapiro indepen-



dently formulated consistent labelling in terms of network consistency (Mackworth 1977;
Haralick and Shapiro 1979; Haralick and Shapiro 1980). The variables to be labelled
formed the nodes in a graph, and the edges of the graph represented binary constraints.
Suppose that such a graph has n nodes, e edges and a labels. Mackworth and Freuder
pointed out in (Mackworth 1977) and (Mackworth and Freuder 1985) that depth first
search with backtracking, which was the standard method for such problems, has a worst
case complexity of O(ea™). However, they showed that it is possible to effectively reduce
the number of labels, a, by a preprocessing step in which inconsistent assignments are
screened out. For binary consistent labelling problems, it is possible to achieve “arc con-
sistency”, i.e. to remove from the search space all labels which would violate the binary
constraints, in O(a®n) time, as long as the problem can be represented by a planar graph.
Mackworth and Freuder showed that Waltz’s seminal contribution to line labelling, made

several years earlier in (Waltz 1975), is just such a case.

Given time, search will enumerate the entire solution space for exact problems, but is of
little use when no globally consistent solution exists. This is the case with inexact match-
ing, and analysis of “impossible” scenes, situations which can arise when input is corrupted
or incomplete. Furthermore, neither search nor arc consistency use evidence derived from
the input, relying merely on pre-defined constraint relations. To overcome these prob-
lems, Rosenfeld, Hummel and Zucker formulated probabilistic relaxation in (Rosenfeld
et al. 1976). However the convergence properties of their algorithm are not easily charac-
terised (Kittler and Ilingworth 1985). In (Hummel and Zucker 1983), Hummel and Zucker
adopted a more information-theoretic approach in their reformulation of relaxation as an
optimisation problem. Faugeras and Berthod developed a framework for labelling in which
a measure of local ambiguity was minimised as consistency was maximised (Faugeras and

Berthod 1981).

Much of the work involving consistent labelling has adopted Hummel and Zucker’s optimi-
sation paradigm (Faugeras and Berthod 1981; Lloyd 1983; Mohammed et al. 1983; Wilson
and Hancock 1997). The problem is to find a set of label assignments which optimises
some global consistency measure (Hummel and Zucker 1983). This is typically done by
iteratively applying a local operator to the solution until no further improvement can be
made. The most straightforward optimisation technique is gradient ascent, in which the
update operator is required to monotonically increase the quality of the solution: this

was the approach used by Hummel and Zucker in their original work (Hummel and Zucker



1983), and by many others (Hancock and Kittler 1990a; Faugeras and Berthod 1981; Lloyd
1983; Mohammed et al. 1983; Wilson and Hancock 1997). Gradient ascent is appropriate
when an initial guess can be made, which is close to the final solution in the sense that
there are no intervening local optima. This is not usually the case, so it is often prefer-
able to use global optimisation techniques such as simulated annealing (Kirkpatrick et al.
1983; Geman and Geman 1984), mean field annealing (Geiger and Girosi 1991; Yuille and
Kosowsky 1994) or genetic search (Holland 1975).

Hancock and Kittler have built on the work of Faugeras and Berthod (Faugeras and
Berthod 1981) and Hummel and Zucker (Hummel and Zucker 1983) by developing a
Bayesian framework for measuring consistency (Hancock and Kittler 1990a). This frame-
work can be applied to many image analysis tasks, including pixel labelling, edge detection,
line labelling and graph matching. The input is assumed to have been the result of the
action of noise on an initially perfectly labelled scene, and the problem is to recover the
original labelling. The framework uses an explicit dictionary representation of constraints,
as adopted by Waltz, in conjunction with a Bayesian model of the label corruption process.
Hancock and Kittler took the dictionary to be a quite general constraint representation: it
is an exhaustive compilation of the consistent labellings of conveniently sized subunits of a
scene. The scene corruption model is based on the premise that consistent dictionary items
are subject to the action of a memoryless label corruption process, which yields the current
label configuration. Modelling this corruption mechanism results in an expression for the
probability of a particular labelling, which gauges consistency by an exponential function
of the Hamming distances between configurations and dictionary items. This probability
can be combined naturally with measurements made on the scene to allow both statisti-
cal and structural considerations to influence the labelling process. Scene interpretation
is achieved by finding the label configuration which optimises the combined probability
criterion. This was originally done in (Hancock and Kittler 1990a) by gradient ascent, but
global optimisation techniques have also been successfully applied (Wilson 1995; Cross
1998). This approach has been applied to scene labelling (Hancock and Kittler 1990a),
edge detection (Hancock and Kittler 1990b), graph matching (Wilson and Hancock 1997),
and line labelling (Hancock 1994).



2.1.1 Line Labelling

Line drawing interpretation has been an active area of investigation in machine vision for
over twenty-five years. Historically, one of its roles has been to stimulate work in the area of
consistent labelling via the development of relaxation techniques. In fact, it was the work
of Huffman and Clowes on the consistent labelling of line drawings of polyhedral scenes
that led Waltz to his seminal discrete relaxation algorithm (Huffman 1971; Clowes 1971;
Waltz 1975). Waltz’s contribution was to show how a dictionary of consistent junction
labellings could be used in an efficient search for consistent interpretations of polyhedral

objects.

Polyhedral scenes are composed of a variety of junction types. The junctions can be clas-
sified according to their topologies. Each line in a scene must be labelled according to
whether it is the concave intersection of two planes, the convex intersection of two planes,
or an occluding boundary. Waltz associated with each junction type a dictionary listing
the consistent label configurations that can be assigned to junctions of that type (Waltz
1975). These dictionaries are derived from the geometric constraints on the projection of
3D scenes onto 2D planes (Huffman 1971; Clowes 1971; Sugihara 1978). Following the
work of Huffman, Clowes and Waltz, Sugihara developed a grammar for skeletal polyhedra
(Sugihara 1978). Malik has extended the theory to include curved surfaces (Malik 1987),
and Williams has used labelled line drawings to reconstruct smooth objects (Williams
1992). Kirousis has developed several efficient algorithms for determining “labellability”
and labelling (Kirousis 1990). Parodi and Piccioli have developed a method for recon-
structing 3D scenes from labelled line drawings given known vanishing points (Parodi and
Piccioli 1996). Hancock has applied the dictionary based Bayesian framework to labelling
polyhedral scenes in (Hancock 1994).

The interpretation of line drawings has applications in, among other areas, document anal-
ysis, processing architects’ sketches, and automatic interpretation of engineering drawings.
For example, Lipson and Shpitalni generated three dimensional object descriptions from

freehand line drawings in (Lipson and Shpitalni 1996).



2.1.2 Graph Matching

Like line labelling, graph matching has a long history in computer vision. Graphs have
been used as representations since the early 1970s, when Barrow and Popplestone used
them in (Barrow and Popplestone 1971) to represent spatial relationships between scene
components. Much of the early work on graphs in computer vision focused on the use
of semantic networks, since they could simultaneously model the scene and be used to
make inferences (Ballard and Brown 1982). The idea of making associations between
objects explicit in the representation was also psychologically plausible (Bartlett 1932;
Sowa 1984). Minsky suggested a hierarchical representation with image features at the
bottom level and scene knowledge at the top, which he called “frames” (Minsky 1975).
However, trying to cram too much knowledge into such representations had its disadvan-
tages (Minsky 1975; Ballard and Brown 1982), and the trend since the early 1980s has
been to use more “lightweight” representations such as the aspect graphs of Koenderink
and van Doorn (Koenderink and van Doorn 1979), or part-primitive hierarchies. An in-
teresting combination of these two representations was used by Dickinson and co-workers
in (Dickinson et al. 1992). As the goals of computer vision research have become less
lofty, the relational representations used for scene objects have become more syntactic
than semantic. A modern graphical representation of a scene might be constructed purely
from geometric properties of extracted features, for example the Delaunay triangulations
used by Wilson in (Wilson 1995). A variety of other triangulations were considered by
Tuceryan and Chorzempa in (Tuceryan and Chorzempa 1991).

Graph matching problems arise whenever relational descriptions need to be compared.
Indeed, Barrow and Popplestone’s original work involved matching the relational descrip-
tions of scenes to semantic models (Barrow and Popplestone 1971). In (Shaprio and
Haralick 1981), Shapiro and Haralick give the taxonomy of matching problems shown in

figure 2.1.

The homomorphism problem arises when the graphs are similar but not identical. This
is common in real world matching problems, and is also known as inexact matching.
Relational monomorphism occurs when a copy one graph is embedded in the other: this
is the same as subgraph isomorphism, which is known to be NP-complete. Isomorphism,
or exact matching, is not known to be NP-complete, but no polynomial time algorithm

has yet been found.



(a) Homomorphism (b) Monomorphism

(c) Isomorphism

Figure 2.1: Graph Matching Problems. This figure is a copy of that given in (Shaprio and Haralick
1981).

Ambler et al. proposed that inexact matching be accomplished by searching for maximal
cliques in the association graph, which is a classical problem in graph theory (Ambler
et al. 1975). The association graph contains nodes representing every possible mapping
between each node of the two original graphs. Association graph nodes are linked if the
mappings which they represent are consistent. The largest clique in the association graph
thus represents the best match possible between the two original graphs. In (Ullman 1976),
Ullman treated subgraph isomorphism as a constraint satisfaction problem, and applied a

filtering operation similar to arc consistency.

Throughout the 1980s and 1990s, the emphasis has been on optimising measures of sim-
ilarity between graphs. The proposed mappings effectively transform one of the graphs;
the closer this “relational image” is to the other graph, the better the match. Various
similarity measures have been proposed, based either on editing processes (Fischler and
Elschlager 1973; Sanfeliu and Fu 1983) or on corruption models (Shaprio and Haralick
1985; Wilson 1995). In (Wilson 1995), Wilson adapted Hancock and Kittler’s Bayesian
framework (Hancock and Kittler 1990a) to derive a probabilistic measure of the quality
of a match, which was optimised by gradient ascent. Cross has investigated several global
optimisation approaches to this problem in (Cross 1998), including simulated annealing

and genetic search.



The practical applications of graph matching are myriad, but include object recognition
(Dickinson et al. 1992), feature-based stereo correspondence (Horaud and Skordas 1989),

image registration (Wilson 1995), and medical imaging (Dumay et al. 1992).

2.2 Ambiguity

Ambiguities exist at all levels of visual perception. Of particular interest in this thesis are
ambiguities which arise in the syntactic processing of scene elements. These ambiguities
manifest themselves in two ways. First, there may be several alternative and equally good
interpretations of scenes such as those shown in figure 2.2. Second, there may be no totally
consistent interpretation, but several which are quite “close”, as can be the case in inexact

matching.

(a) Necker Cube (b) Shrioder Staircase

Figure 2.2: Two Ambiguous Drawings.

Connectionist models have been used to model perceptual alternation of ambiguous visual
stimuli, in which the interpretation of a drawing such as the Necker cube or Shroder
staircase, shown in figure 2.2, periodically switches between several alternatives (Feldman
and Ballard 1982; Masulli et al. 1990; Riani and Simonotto 1994; Bialek and Deweese
1995). Kawamoto, Masulli and coworkers, and Riani and Simonotto have all suggested
that noise drives the perceptual alternation process (Kawamoto 1993; Masulli et al. 1990;
Riani and Simonotto 1994). Presumably the noise allows the network to escape from
local energy minima in a manner analogous to annealing. However, Bialek and Deweese
have shown that the alternation rate is independent of noise, but rather depends on a

priori hypotheses. The alternation itself is a random event and therefore accounts for the
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requirement that the network be noisy (Bialek and Deweese 1995).

In (Kawabata 1978), Kawabata observed that the visual fixation point, i.e. the point to
which one’s gaze is directed, determines the perception of depth and alternation rates in
ambiguous figures such as the Necker cube and the Shroder staircase, shown in figure 2.3.
Kawabata suggested that the local interpretation at the fixation point tends to propagate
to generate a stable global interpretation. This observation chimes with the selective
attention hypothesis (Kawabata and Mori 1992; Horlitz and O’Leary 1993), in which a
priori expectations combined with focussed attention lead to relatively stable unambiguous

interpretations of ambiguous figures.

(a) Necker Cube (b) Shrioder Staircase

Figure 2.3: Locally Unambiguous Drawings. Fixating on points a and b yields relatively stable

percepts.

Calliari and Ferrie have recently described a model-based vision system which can cope
with ambiguity (Callari and Ferrie 1996). The system makes a set of initial guesses which
are refined by subsequent data gathering. This approach has produced promising results,

and would seem to complement an active vision strategy.

Many consistent labelling problems which arise in computer vision have more than one
possible solution. This was recognised in Waltz’s original paper (Waltz 1975), but no
strategy for handling ambiguity was developed. Ambiguity has historically been seen as a
“bad thing”, to be resolved as quickly as possible, rather than as a necessary part of scene
interpretation. Waltz used search to extract an arbitrary solution from the set of possible
solutions to his labelling problem (Waltz 1975). Faugeras and Berthod developed a di-
rect measure of ambiguity which was minimised in their relaxation scheme (Faugeras and

Berthod 1981). Hummel and Zucker used a simple definition of “unambiguous labelling”
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as a sine qua non for their convergence proof (Hummel and Zucker 1983). Almost all of
the work on consistent labelling has focussed on the robust extraction of a unique solu-
tion. The classical approach in vision has been to resolve local ambiguities at a relatively
early stage to force a single interpretation and then backtrack if necessary (Faugeras and
Berthod 1981). A more recent example can be found in (Qin and Luh 1994). This may be
appropriate if there is compelling local evidence for a particular interpretation such as is
ideally the case in probabilistic relaxation. However, backtracking is generally inefficient
(Mackworth 1977; Haralick and Elliott 1979), and is only possible in search. It is not at
all clear how backtracking should be implemented for deterministic labelling schemes such

as gradient ascent.

Although the use of global contextual information to resolve ambiguity is a major un-
solved problem in machine vision, the early commitment to a particular interpretation
which occurs in most techniques does not help. In cases where there is no clear single
interpretation, a vision system should have an efficient method of entertaining various op-
tions. The initial stage of interpretation should yield several possible solutions from which
the system can choose without having to backtrack. This is Marr’s principle of least
commitment (Marr 1982). One of the few examples of a labelling application in which
disambiguation is delayed is furnished by Ezquerra et al.’s system for labelling coronary

angiograms in (Ezquerra et al. 1998).

2.3 Genetic Algorithms

Genetic algorithms belong to a family of stochastic global optimisation methods based
on the concept of Darwinian evolution in populations. They have been proposed inde-
pendently by several authors (Fraser 1957; Bremermann 1958; Reed et al. 1967; Holland
1975), but it is Holland’s formulation in (Holland 1975) which is regarded as the standard.
The population is composed of individuals which interact with the environment and each
other over a number of algorithm iterations or “generations”. Interaction with the envi-
ronment takes two forms: first, mutation in which parts of the individual are changed at
random, and second, selection in which individuals are selected for future reproduction
based on their quality. Individuals may also interact with each other via crossover, which
is analogous to genetic recombination, and in which information is exchanged between

(two) “parent” individuals to form (two) “offspring” individuals. The idea is that over
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time, individuals better suited to the environment will emerge, and come to dominate the
population. The quality measure used is usually called the “fitness”: high values of fitness
correspond to better individuals. Most implementations terminate when either a specified
number of iterations or fitness evaluations has taken place, or a maximally fit individual
has emerged. The algorithm is controlled by the population size, terminating criterion,
and mutation and crossover probabilities, in addition to crossover type (q.v.) and selec-
tion mechanism. Most of the early work on genetic algorithms was based on numerical

optimisation problems (DeJong 1975; Whitley et al. 1995).

In principle, solving a particular problem with a genetic algorithm is straightforward.
Evolutionary algorithms usually operate at two levels. The lower “genotypic” level is
the level of encodings or “chromosomes”; the smallest semantically meaningful part of a
chromosome is a “gene”. At this level, crossover and mutation operate on the individuals
regardless of their interpretation, and may thus be regarded as syntactic operators. The
higher “phenotypic” level is the level of observed characteristics. The selection operator
operates on the phenotype since it is this which determines the fitness of the individual;
selection is thus a semantic operator. The only stage in the algorithm at which specific
knowledge of the problem is required is the translation from genotype to phenotype, which

is abstracted via the fitness function.!

To solve a problem with a genetic algorithm, it
is necessary to define a suitable encoding and fitness function for the problem, choose or
define a crossover operator, decide on a selection strategy, choose an algorithm variant,
and finally choose suitable values for population size, crossover rate, mutation rate, and a

terminating criterion.

It is conventional to use a binary encoding for the problem (Holland 1975; Goldberg 1989;
Mitchell 1996), so that the chromosomes are in fact bit strings. However, in (Michalewicz
1996), Michalewicz criticises this approach, and suggests that more natural, “real value”

encodings be used.

Crossover is the recombination step: parts of two chromosomes are exchanged. There are

two ways in which this occurs. First, genes may be swapped on an individual basis or

'In biology, genotype and phenotype are very different. The phenotype arises from complex interactions
between the individual’s genetic makeup and the environment, and the relationship between genotypes and
phenotypes is typically many to many. In a genetic algorithm, however, this relationship is usually one
to one, so the distinction between genotype and phenotype may appear arbitrary. It is common for the
same entity to be referred to as an “individual” at the phenotypic level, and as a “chromosome” at the

genotypic level.
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in contiguous runs. The most popular example of the first method is Syswerda’s uniform
crossover in which bits are exchanged on a random basis (Syswerda 1989). The other
kind of crossover is multipoint, where homologous points on the chromosomes are chosen
and the substrings between them exchanged. The classical example is two point crossover
(DeJong and Spears 1990). Uniform crossover tends to be more disruptive and therefore
more exploratory than multipoint. Multipoint crossover is appropriate when there are
large “areas of optimality” on the chromosomes: in this case, the offspring ought to

resemble the parents.

Mutation is a background operator, which introduces new information to the population.
It can be seen as a noise source: the mutation rate should be significantly lower than the

crossover rate in order not to disrupt the progress of the algorithm.

2.3.1 Modelling Genetic Algorithms

The genetic algorithm is clearly a very complex system. There are many different param-
eters to set and operators to choose. There has been considerable research interest in es-
tablishing theoretical models to describe and predict algorithm behaviour. The first model
was based on Holland’s “schema theorem” (Holland 1975; Goldberg 1989). A schema is
a partially specified chromosome: several different schemata are instantiated in any given
chromosome, and a given schema can be instantiated in many different ways. Holland
suggested that the main function of crossover is schema processing, and demonstrated
that 2" schemata per individual are processed at every generation for binary encodings of
length n (Holland 1975). He derived the schema theorem, which predicts that the numbers
of small schemata with few fixed loci which have greater than average performance should
increase exponentially. This effectively predicts the convergence of the algorithm. There
are a number of weaknesses in the schema theorem, the main one being the strength of
its underlying assumption, that there is a schema which always has above average per-
formance by some constant factor. The schema theorem was criticised by Miihlenbein in

(Miihlenbein 1994).

Several authors have attempted rigorous mathematical analysis of simple genetic algo-
rithms, for example Vose in (Vose 1995) and Qi and Palmieri in (Qi and Palmieri 1994a;
Qi and Palmieri 1994b). These models usually require simplifying assumptions such as

infinite population sizes, or involve very large calculations (Mitchell 1996). Priigel-Bennett
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and Shapiro adopted a physical analogy in (Priigel-Bennett and Shapiro 1994), in which
the evolving population is seen as a thermodynamic system, the states of which could be
described by statistical mechanics equations. This allowed Prugel-Bennett and Shapiro
to predict the behaviour of the algorithm, but the approach is highly problem-specific.
There has also been some interest in applying mathematical models used in the study of
biological genetics to evolutionary optimisation, for example, Miihlenbein in (Miihlenbein
1994; Miihlenbein and Schlierkamp-Voosen 1995) and Bedau in (Bedau 1995). Recently,
Cross has given an accurate theoretical account of the search properties of the genetic

algorithm for inexact matching (Cross 1998).

While general theoretical models are beneficial in understanding the processes at play
in genetic algorithms, their use in practical settings is limited. Any deviation from the
assumptions made in the model could invalidate it, and the model may not be particularly
informative as to what the best algorithm configuration might be for a given problem. By
taking advantage of specific features of the problem to be solved, both Cross and Priigel-
Bennett and Shapiro were able to make accurate predictions about the behaviour of the

algorithm.

The alternative to theoretical modelling is empirical modelling. Possibly because of the
computational expense, very few substantial experimental studies of genetic algorithms
have been undertaken. The earliest was (DeJong 1975), in which DeJong considered a suite
of five numerical optimisation problems. Problems from DeJong’s test suite are still used to
test and compare genetic algorithms, an approach strongly criticised by Whitley and others
in (Whitley et al. 1995). In (Schaffer et al. 1989), Schaffer et al. presented what appears
to be the only significant large scale experimental study of genetic algorithms to date.
However, their experiments were mostly based on numerical test problems and have been
shown by Mithlenbein in (Miihlenbein 1994) to be very sensitive to extrapolation. Indeed,
regression equations are just as vulnerable as theoretical models to misinterpretation and
overuse. Extrapolation of a regression model within the same problem domain should
be undertaken with caution, but extrapolation outside the problem domain is totally

meaningless.
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2.3.2 Practical Issues

There are several practical problems with genetic algorithms. “Premature convergence”
is the tendency of the population to converge to a set of very similar individuals between
which the fitness function finds it hard to distinguish (DeJong 1975). “Epistasis” in biology
is the interaction between genes. The contribution of a gene to the phenotype (fitness)
depends on other genes. A special case of epistasis is “deception” (Goldberg 1987), where
optimal points in the fitness landscape are sharp and isolated so that adjacent points lead

the algorithm away from the optimum.

Many variations on the canonical algorithm have been tried, mainly in attempts to allevi-
ate one or other of these problems. To avoid premature convergence, Shraudolf and Belew
suggested a dynamic windowing approach (Schraudolf and Belew 1992). Fogel reported
that this technique, which is essentially a coarse-to-fine strategy, works for unimodal ob-
jective functions but not for multimodal ones (the most common case) (Fogel 1994). Other
methods for avoiding premature convergence, such as rank selection and “sigma scaling”,
are reviewed in (Srinivas and Patnaik 1994b): they are mainly concerned with constraining

the standard deviation of the fitness over the population.

As well as variations in one or more of the operators, there are several distinct algorithmic
variants including Syswerda’s Steady State GA, in which only one offspring at a time is
produced and replaces the worst member of the population (Syswerda 1989); Whitley’s
GENITOR, which combines rank based selection with the steady state algorithm (Whitley
1989); Ackley’s Iterated Genetic Search (Ackley 1987); and Eshelman’s CHC algorithm,
in which recombination can only occur between chromosomes when the Hamming distance

between them is above a certain threshold (Eshelman 1991).

An important class of genetic algorithm is the hybrid genetic algorithm, sometimes called
“memetic algorithm”, in which evolutionary optimisation is coupled with a local search
step (Davis 1991; Cross et al. 1997; Whitley et al. 1995), or even simulated annealing
(Yip and Pao 1995). It is believed that the benefit of this approach is that the population
is pushed into its best possible state at each iteration, so that the algorithm is more likely

to find the global optimum by the time the population has converged.

Genetic algorithms have been applied over a wide range of disciplines. The most famous

applications are possibly “artificial life”, in which evolution and competition between
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organisms is simulated (Jefferson et al. 1991), and Koza’s “genetic programming”, where
the individuals are actual computer programs, which are evaluated on the quality of their
output (Koza 1992). In vision, genetic algorithms have been used for image segmentation
(Andrey and Tarroux 1994), object recognition (Tsang 1997), stereo matching (Saito and
Mori 1995), edge extraction (Bhandarkar et al. 1994), and graph matching (Cross 1998).

2.3.3 Multimodal Optimisation

The idea that genetic algorithms can be used to simultaneously find more than one solution
to a problem was first mooted by Goldberg and Richardson in (Goldberg and Richardson
1987). They attempted to prevent the formation of large clusters of identical individuals

in the population by de-rating the fitness function.

In (Cedenio et al. 1995), Cedefio and coworkers presented a “multiniche crowding” algo-
rithm, which successfully finds several optimal solutions after about twenty generations.
However, since the optima do not share the same fitness, it is not clear whether the

different “niches” are stable over long periods.

An alternative method inspired by Glover’s tabu search (Glover 1989) was used by Beasley
and coworkers in (Beasley et al. 1993). The algorithm is restarted with the fitness function
modified to suppress solutions found in previous program runs. This method has the
disadvantages that, first, it is inherently sequential (an optimum must be found before it
can be suppressed), and, second, that it is difficult to determine an appropriate radius of
suppression. Recently, Jelasity and Dombi claim to have solved this problem, but their

solution involves the introduction of several extra parameters (Jelasity and Dombi 1998).

A more radical approach is the distributed genetic algorithm, in which the population is ex-
plicitly subdivided, with restricted communication between the sub-populations (Gorges-
Schleuter 1991; Whitley and Starkweather 1990; Davidor 1991). It is not entirely clear
that this approach is very different from parallel multiple restarts, and it has been argued

that the sub-populations are not stable in the long run (Davidor 1991).

A common feature of these approaches has been the necessity for extra parameters. Nich-
ing and crowding strategies typically require two or three extra parameters to be controlled.
These parameters are needed, for example, to determine when to de-rate the fitness of an

individual, by how much, and the distance scale of the de-rating function. In distributed
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algorithms, it is necessary to decide how to arrange the sub-populations, their sizes, and
under what conditions migration between them may occur. In (Smith et al. 1993), Smith
and co-workers demonstrated a situation in which niching could occur in a standard genetic

algorithm, without the need for any extra parameters.

2.4 Summary

Consistent labelling problems have been an active area of research in computer vision
for the last 30 years. If the problem is small enough and the constraints sufficiently
strong, heuristic search can be used to enumerate arbitrary solutions. However, where the
constraints are weak, it is preferable to solve the problem in an optimisation framework,
and use evidence from the scene to guide the labelling process. This can be achieved in a
very natural way by applying Hancock and Kittler’'s Bayesian framework to the problem
(Hancock and Kittler 1990a). Considerable success has been reported for this approach
in the unambiguous case (Wilson 1995; Cross 1998).

Unfortunately, many consistent labelling problems are ambiguous in the sense that there
may not be sufficient information in the scene to identify a unique solution. Current
approaches to consistent labelling tend to disambiguate at a very early stage, although
there has been interest in least commitment techniques from some quarters (Callari and

Ferrie 1996; Ezquerra et al. 1998).

The genetic algorithm is a global optimiser which develops a population of solutions, rather
than a single solution. It is a very complex algorithm with many parameters and operators.
It has proved difficult to provide an adequate theoretical account of the algorithm which is
useful in practice. Recent experience suggests that theories which consider specific aspects
of the problem are more useful (Priigel-Bennett and Shapiro 1994; Cross 1998). Similarly,
the few attempts at developing empirical models of the algorithm have tended to be rather

too general (DeJong 1975; Grefenstette 1986; Schaffer et al. 1989).

Because it maintains a population of solutions, the genetic algorithm has been proposed as
a method of simultaneously obtaining several different solutions to ambiguous problems.
However, adaptation of the algorithm for this specific goal involves the introduction of
more parameters to an already complex method (Goldberg and Richardson 1987; Beasley

et al. 1993; Davidor 1991).
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It would seem that the genetic algorithm is a natural way of solving ambiguous consistent
labelling problems, since it has the required global optimisation properties, and also the
potential to be used as a “least commitment optimiser”. Genetic algorithms have been ap-
plied to labelling problems before. Recently, Fleurent and Ferland used genetic algorithms
for graph colouring in (Fleurent and Ferland 1996).2 In the field of computer vision, Cross
applied the genetic algorithm to inexact matching in (Cross 1998), but the emphasis there

was on finding one optimal solution to an unambiguous labelling problem.

The main novel contribution in this thesis will be to apply genetic algorithms to ambiguous
consistent labelling problems, with a view to extracting as many solutions as possible
without having to restart the algorithm. Cross’s theoretical model for graph matching will
be complemented by specific empirical models for both line labelling and graph matching.
Methods of increasing solution yield which do not require many additional algorithm

parameters will be considered.

*Davis applied the genetic algorithm to graph colouring earlier in (Davis 1991), but the treatment
there was of graph colouring as a combinatoric optimisation problem, rather than explicitly as a labelling

problem.
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Chapter 3

The Consistent Labelling Problem

This chapter considers the dictionary-based approach to the consistent labelling problem.
It will build on the work of Wilson in (Wilson 1995) to develop a general framework for
solving inexact consistent labelling problems by optimisation. The main novel contribution
in this chapter is the use of the edit distance in inexact labelling criteria. A new linear
formulation of the consistency criterion is given. Attention is also paid to reducing the

worst and average case complexities of consistency criterion evaluation.

The next section introduces the consistent labelling problem. Section 3.2 formulates line
labelling and graph matching, the two labelling problems considered in the thesis. The
Bayesian formulation of consistent labelling given by Hancock and Kittler in (Hancock and
Kittler 1990a) is reviewed in section 3.3. Section 3.4 gives the linear labelling criterion and
considers some of its direct applications in optimisation frameworks. Section 3.5 considers
the problem of inexact consistent labelling, and criticises Wilson’s original approach in
(Wilson 1995). Section 3.6 gives an account of the string edit distance, and applies it to
the labelling problem. Section 3.7 considers algorithm complexity. Finally, section 3.8
describes experiments which evaluate the sensitivity and efficiency of the new labelling

criteria.

3.1 Introduction

The consistent labelling problem can be formulated as follows. Given a set of objects,

V, and a set of labels, A, a set of neighbourhoods, C, can be defined, each element C;
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of which is defined as C; =< i | i € V A Conn(j,7) >, where Conn is the connectivity
relation which is reflexive but not necessarily symmetric or transitive. A labelling, I';, of
the ;' neighbourhood is a list of labels applied to its constituent objects, I;:Cj xA.
Each neighbourhood has a dictionary, ©;, of legal labellings; the dictionaries capture the
structure of the problem.! Waltz filtering (Waltz 1975) in this context would remove
globally inconsistent labellings from the dictionaries, ©;. The consistency of a labelling
of all the objects, I', can be determined by considering separately the consistency of the
labellings of the neighbourhoods, I';. This leads naturally to parallel-iterative algorithms
for assessing the consistency of a labelling in terms of comparisons between the local
configurations, I';, and the dictionary items, S; € ©;. There are at least four different

types of consistent labelling problem.

The first is the most trivial type in which the neighbourhoods are just the objects them-
selves - i.e. C; =< j > and the dictionary is global. A good example is Ackley’s ONEMAX
problem (Ackley 1987), which has appeared frequently in the genetic algorithm literature
(Syswerda 1989; Louis and Rawlins 1993; Miihlenbein and Schlierkamp-Voosen 1995; Srini-
vas and Patnaik 1996; Miller and Goldberg 1997; Miihlenbein 1994). The idea is to fill a
bit-string with 1s. In this case, the objects are the bit-positions, the label set is {0, 1}, the
neighbourhoods are {< 1 >,< 2 >,...}, and all the dictionaries consist of the single item
< 1 >. In other words, the labellings of the bit-positions are independent, and the only

permitted label for each bit-position is 1.

The second type of consistent labelling problem is where only certain classes of neighbour-
hood are permitted. The classic example of this is Huffman-Clowes labelling of trihedral
polyhedra (Huffman 1971; Clowes 1971), in which the objects to be labelled are the lines
in a drawing, the labels reflect edge geometry, and the neighbourhoods are the junctions
which are of four types. The dictionaries for each junction type and hence for each neigh-
bourhood are global: they depend on the geometry of the junction not its constituent

lines. Line labelling is described in section 3.2.1.

The third type is exact graph matching, in which the objects to be labelled are the nodes

in one graph, and the labels are the nodes in another graph. The neighbourhoods and

'If all the neighbourhoods are the same size, this is equivalent to Haralick and Shapiro’s original
formulation of the consistent labelling problem as a network constraint satisfaction problem in (Haralick
and Shapiro 1979; Haralick and Shapiro 1980). The neighbourhoods are the “unit-constraint relation” and

the dictionaries are the “unit-label constraint relation”.
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dictionaries are typically defined over the edge sets of the graphs. Graph matching is harder
than line labelling because first the label set is larger, second the dictionaries change from
problem instance to problem instance, and third the neighbourhoods and dictionaries are
larger and more complex: each line in a drawing only belongs to two junctions, but each

node in a graph typically belongs to many neighbourhoods.

The fourth problem is inexact graph matching, which is a superset of exact graph matching.
The crucial difference between this and “classical” consistent labelling problems such as
the previous three is that the dictionary items, S;, need not be the same size as the label
configurations, I';. This problem is very much harder than exact matching or line labelling
because there may not actually be a consistent labelling. The goal here is to establish a
maximally consistent labelling, a goal more conveniently sought via optimisation than by

search. Graph matching is discussed in more detail in section 3.2.2.

3.2 Two Labelling Problems

This thesis considers two labelling problems: Huffman-Clowes line labelling, which is by
now a classical problem in machine vision and artificial intelligence; and inexact attributed

relational graph matching, which has greater contemporary relevance.

3.2.1 Line Labelling

Line labelling was independently formulated by Huffman and Clowes in the mid 1970s
(Huffman 1971; Clowes 1971). Drawings representing scenes composed of trihedral poly-
hedra only contain four types of junction. The junctions can be classified according to
whether they have ELL, TEE, FORK or ARROW shaped topologies. Each line in the
drawing must be labelled according to whether it represents the concave intersection of
two surfaces, —, the convex intersection of two surfaces, 4+, or an occluding boundary,
— (the occluded surfaces are always to the right as one follows the arrow). An example
is given in figure 3.1. In (Waltz 1975), Waltz associated a dictionary of consistent label
configurations with each junction type. These dictionaries are derived from the geomet-
ric constraints on the projection of three-dimensional scenes onto two-dimensional planes.
Thus, the problem of finding a plausible three-dimensional interpretation of a line drawing

can often be solved by finding a consistent labelling of the lines in the drawing.
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i. ELL ii. TEE

PN

iii. FORK iv. ARROW

/(n)m\

(a) Junction Types (b) Example (c) Obvious Labelling

Figure 3.1: The Four Junction Types Defined by Huffman in (Huffman 1971).

3.2.2 Graph Matching

Like line labelling, graph matching is a classical consistent labelling problem. The variant
of concern here is inexact attributed relational matching. Attributed relational graphs

were first described by Fu in (Fu 1983).

An attributed relational graph (ARG) is a triple, G = (V,E,A), where V is the set
of vertices or nodes, E C V x V is the set of edges, and A C V x RF is the set of
measurement vectors relating to the original scene. Graph matching is the problem of
establishing a correspondence between a data graph, Gp = (Vp,Ep,Ap), and a model
graph, Gpr = (Var, Ear, Apr). This correspondence, f : Vp — Vi U {¢}, is a labelling
of the nodes in Vp with nodes from Vj; or a special null label, ¢, for unmatchable
nodes. This can be seen as a consistent labelling problem since the structure of the model
graph provides constraints on the labels applicable to data graph nodes. Indeed, graph
matching was one of Haralick and Shapiro’s original example problems in (Haralick and
Shapiro 1979; Haralick and Shapiro 1980). When the data graph is identical to the model

graph, the problem is said to be exact; otherwise it is inexact.

In (Wilson 1995), Wilson showed that considering the nodes alone was insufficient to
solve the inexact version of the problem. Consideration of both the node attributes and
neighbourhoods is necessary. Wilson defined the neighbourhoods as “supercliques”. A
superclique is the neighbourhood formed by a node together with all the nodes connected
to it by an edge taken in cyclic order - i.e. C; =< j,u|(j,u) € Ep >. Panel (a) of figure

3.2 gives examples of supercliques. The dictionaries are formed by considering the possible
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mappings between supercliques in Vp and supercliques in Vj,. For planar graphs, it is
necessary to consider all cyclic permutations of the model graph supercliques as shown in

panel (b) of figure 3.2.

<1,2,3,4,5,6>—> <a,b,c,d, e, f>
<a,c,d,e, f,b>
<a,d, e, f,b,c>
<a,e,f,b,c,d>
<a,f,b,c,d, e>

(a) Supercliques (b) Mappings

Figure 3.2: Supercliques as defined by Wilson in (Wilson 1995).

To summarise, attributed relational matching can be seen as a consistent labelling problem
if the objects are the nodes of the data graph, Vp, the labels are the drawn from the set
formed by the union of the model graph nodes and a null label (ie. A = VU {¢}),
and the neighbourhoods are the supercliques in the data graph. The dictionaries are
cyclic permutations of the supercliques in the model graph, S; =< v,i|(i,v) € Ep >, and

0; ={Si | |5 =1C;l}.

3.3 Bayesian Formulation

This section follows and generalises the formulations of Hancock and Kittler, Wilson, and
Hancock in (Hancock and Kittler 1990a; Wilson 1995; Hancock 1994). Imagine that a con-
sistent labelling of the ' neighbourhood has become corrupted through some imaginary
error process to give the “observed” configuration, I';. The initial consistent configuration
could have been any of the dictionary items, S; € ©;. The Bayes rule can now be applied,
leading to an expression for the probability that configuration I'; arose by chance from

the action of corruption on one of the dictionary items S;:

P(T;) = Y P(Ty|S:)P(S) (3.1)
5:€0;
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Since there is no evidence that any particular dictionary item was the “source” of the

configuration, P(S;) must be taken to be uniformly distributed with value ]e%[, giving

P(T;) = @ > pwis) (3.2)

Consider now the probability of the configuration given a dictionary item, P(T';|S;). Fol-
lowing Hancock and Kittler (Hancock and Kittler 1990a), by assuming that the corruption
process is memoryless and independent of the neighbourhood structure, and has a uniform

probability, P,, P(I';|S;) can be factorised over the neighbourhood of j to give

Pyis) = TI Plul) (33)
0<k<|T|

where u and v are the k'® items in ['; and S; respectively. According to Hancock and
Kittler’s corruption model (Hancock and Kittler 1990a), if the configuration label u is not
the same as the dictionary label v, it is as a result of a corruption event which happens
with probability P,. Therefore, the unit labelling probability, P(ul|v), is determined solely

by whether or not the labelling was corrupted at that position, hence

Pluf) = P, ifu#v (3.4)
1 — P, otherwise

This allows P(I';|.S;) to be written in terms of the number of corruption events, or distance,

from I'; to S, D(F],SZ)

P(T;18:) = P50 (1 — P Tl =205 (3.5)

In the exact case, the distance, D(I';, S;), is the Hamming distance; the inexact case is

discussed later. A little rearrangement of equation 3.5 gives

P(T;|S:) = Ko, exp [~k D(T;, )] (3.6)

where K¢, = (1 — P)I"il and k, = In (1;{6). This leads to
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Ke,
1©;] ¢

P(Fj) = Z €Xp [_keD(Fj’Si)] (3.7)

iE@j

This last expression has a number of interesting properties. First, every dictionary item
contributes to the probability of the configuration. This gives a finely graded criterion
in which well matched dictionary items carry greater weight than poorly matched items.
Second, the differential weighting is controlled by the label error probability, P.. As
P, — 0, ke — 00, so only exact matches will have non-zero probabilities. Conversely,
when P, = 0.5, k. = 0 and any match will have probability K¢;. In (Hancock 1994),
Hancock observed that when P, is small, the sum in equation 3.7 is dominated by the

minimum distance configuration, so the equation can be rewritten as follows:

K.
P ~ o)

_ke SIlIélélj D(P], SZ) (38)

In (Hancock 1994), Hancock drew an analogy between the minimum distance,

ming;ce, D(T';, S;), and the Gibbs potential, in which k. plays the role of inverse tempera-
ture. This means that reducing P, at every iteration of a labelling algorithm would harden
the constraints and impart a deterministic annealing-like behaviour to the algorithm. The
analogy is not so simple when the approximation breaks down and the minimum distance
no longer dominates the sum of exponentials. This case has been studied rigorously by

Finch, Wilson and Hancock in (Finch et al. 1998).

To obtain the global probability of the entire labelling, I', Hancock and Kittler, Wilson,

and Hancock take the arithmetic mean of equation 3.7 over all neighbourhoods to give

K¢,

IV\ Z > exp[—keD(T, S;)] (3.9)

]EV ‘ S;€0;

This criterion can be optimised by gradient ascent, in which the label, v, for each object,
u, is iteratively chosen to maximise consistency, according to the following maximum a

posteriori probability (MAP) update rule:

f(u) = arg max P(T) (3.10)
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3.4 Linear Formulation

Suppose the global criterion in equation 3.9 were defined as a geometric rather than an

arithmetic mean,

L

V]
_ (H P(rj)> (3.11)
JEV

This can be expanded according to equation 3.7 to give

L

V]
Pg(T) = (H Z eXp [_keD(Pj’ Sz)]) (3.12)

JEV | -7| Sie@j

Ko,

Applying Hancock’s approximation for small P, from equation 3.8 allows the inner sum of
exponentials to be rewritten in terms of the minimum distance, ming,ce, D(T;, Si). The

product terms can then be separated to give:

1
V]

Pe(l) =~ (H [ kes?éiéljD(FjaSi)])

]EV

~ kyexp Z min D(T';, S;)

|V| Si€0; ]

L

where k, = <Hjev %ﬂ) wl. Recalling Hancock’s thermodynamic analogy in equation
3.8, it is tempting to regard the sum of minimum distances as a Gibbs potential, with
‘kve‘ playing the role of inverse temperature. As before, this relies on the approximation
from equation 3.8 that either k. is large or the distances, D(I';, S;), are large. Given this
approximation, it is now possible to express the consistency of a labelling in terms of a

cost function,
ET) = E min D(T';, S; 3.13
( ) e S; 61@] ( Js ) ( )

This function is appealing since it depends only on the closest dictionary item to the

current configuration: E(T') is the number of local inconsistencies in the labelling T" and
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therefore provides a more direct measure of consistency than the Bayesian formulation in
equation 3.9. In contrast to the deterministic annealing implied by equation 3.8, this cost
function can be optimised using stochastic simulated annealing (Kirkpatrick et al. 1983).
Simulated annealing makes an analogy between minimising a cost function and finding
low energy states of a system of particles with discrete energy levels. At thermal equilib-
rium, the probability of such a system being in a particular state would have a Boltzmann
distribution. In simulated annealing, the labelling, I, is subject to random changes, which
are accepted or rejected according to a decision rule based on the Metropolis algorithm
(Metropolis et al. 1953). Provided certain conditions are satisfied, after many iterations
the labelling will reach an “equilibrium” in which the probability of a particular configu-

ration is governed by the Boltzmann distribution,

Py(T) = L BB (3.14)

where Z = ) 1cq e BEI) is the partition function over all labellings in the configuration
space, @ = AVl and S is the inverse temperature. Priigel-Bennett and Shapiro extend
this idea to the genetic algorithm’s selection scheme in (Priigel-Bennett and Shapiro 1994).
Following their example, it is possible to select a particular labelling from a population

with probability pr, defined in terms of its “Boltzmann potential”, e #EI).

1

— — o—BE(D)

pr = ~e (3.15)
Q

where @) is the sum of the potentials of all the labellings in the population. In this case,

[ behaves more like a scale parameter than a temperature. As long as (3 is set to "{,—ﬂ

and the approximation in equation 3.8 is good, Boltzmann selection based on the cost

function of equation 3.13 should be analogous to fitness proportionate selection based on

the geometric mean in equation 3.12.

The approximation of equation 3.8 will be poor when both k. and D(T;,S;) are small.
Fortunately, this is unlikely to be the case: at the start of the labelling process, k. may
be small but D(T';,S;) will probably be large since the initial labelling will probably
have many inconsistencies. By the end of the process, when D(I';, S;) becomes small, k.
will be large. These observations are important because annealing schedules previously

established for P, by Wilson and Cross in (Wilson 1995) and (Cross 1998) can now be
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used to control the inverse temperature for simulated annealing (equation 3.14) or for

Boltzmann selection (equation 3.15) in a genetic algorithm.

3.5 Inexact Labelling Problems

Up to now, the formulation in terms of corrupted dictionary items has been relatively
straightforward since it has been assumed tacitly that the dictionary items are the same
size as the neighbourhoods, hence the simple definitions of P(T';|S;) in equation 3.3, P(u|v)
by the distribution rule 3.4, and of D(I';,S;) as the Hamming distance. This section

considers the inexact case, in which this assumption is generally incorrect.

In (Wilson 1995), Wilson addressed this problem by padding the dictionary items with
dummy labels so that it was the same size as the local configuration. For example, consider
the configuration, I' =< uy, u9,u3 >, and the dictionary item, S; =< v1,v9 >. In order to
compare the configuration to the dictionary item, padding must be added to the dictionary
item to give S, =< v1,v9, ¢ >. If the dictionary item is larger than the configuration, the
configuration must be padded. This approach to the problem entails several important
drawbacks. First an additional parameter is required: the probability of extra or missing
labels in a configuration. Second the number of such padded dictionary entries will be

large. Third summing over very many dictionaries in equation 3.9 will distort the criterion.

To see the need for an extra parameter, consider the distribution rule in equation 3.4 in the
case when dummy labels are present. Suppose that the consistent labelling, < w1, uo,us >,
has been corrupted by the addition of u4 at the end. When comparing to the dictionary
< v1, V9, ¢, v3 >, one might conclude that the Hamming distance should be 2 whereas in
fact only a single error has occurred. On the other hand, simply ignoring dummy labels
would lead to considering < wq,us,us,us > a perfect match for < vy, v9,v3,¢ > even
though there is an error in the labelling. To avoid these difficulties, Wilson used the

following distribution rule:

Py ifu=¢orv=2¢
P(ulv) =¢ (1-P.)1—Py) ifu=0 (3.16)
P.(1 - Py) otherwise

The effect of this on the global criterion of equation 3.9 is to introduce as an additional
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control variable the probability of a label being added to or deleted from a configuration,
P;. Applying the thermodynamic analogy would necessitate a two-dimensional “temper-
ature”. Indeed, Wilson found that explicitly controlling P, did not give particularly good
results (Wilson 1995): whereas the introduction of P, allowed the labelling process to
be controlled in a principled manner, the introduction of Py only caused problems. A
major part of Wilson’s work was the control of the process by which data graph nodes are
assigned the null label. In (Wilson 1995) and (Wilson and Hancock 1997), it was found
that the best method for null labelling was graph editing, closely followed by a constraint
filtering post-processing step, both of which considerably outperformed explicit control of
P4. However, Wilson did not address the consequences of dictionary padding for the space

and time requirements of criterion evaluation.

3.5.1 Dictionary Size

Wilson’s use of constraint filtering or graph editing in (Wilson 1995) and (Wilson and
Hancock 1997) allowed P, to be held constant at some low value related to the average size
difference between configurations and dictionary items. In other words, it can be treated
as a prior probability rather than as a control variable. However, Wilson’s approach still
requires the addition of padding to dictionary items or label configurations. This section

assumes without loss of generality that only dictionary items are being padded.

Consider the addition of k labels to a configuration by random corruption: the “original”

size of the configuration was |C}|, so the new size is |Cj| + k. These k labels can be added

Ci|+k
anywhere, so the dictionary must be augmented by adding =l new items.? Now
k

consider labellings which might have had up to K labels added in the corruption process.

The size of the dictionary is now

|C;| + K
o;l = Y ’

0<k<K k

2This actually depends on whether or not the neighbourhoods are cyclic, as they are for line labelling
and graph matching. In cyclic neighbourhoods, < a,b,¢ >=< b,c¢,a >, so there are only |C;| + k — 1
places where a dummy label could be inserted. Without loss of generality, non-cyclic neighbourhoods are

considered here, in which there are |C;| + k such places.
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|ICj| + K +1

= (3.17)
K
The worst case occurs when k = |C}|, and both are large, in which case:
2C4| + 1
19jlmax =
le
= ln|®j|MAX = In (2|C]| + 1)' - ln\CJ|' - lIl(|C]| + 1)'
~ In(2|Cj|)! —2In|Cj|!
~ 2|Cj]n2|Cy] - 2[C5] —2(1C;| n |Cy| — |Cy1)
= 2|Cj| In2 + 2|Cj| In |C]| - 2|Cj| — 2|Cj| ln|Cj| + 2|Cj|
~ 2|C;|In2
= 0|lmax ~ 41Cj! (3.18)

by Stirling’s approximation for large |C;|. Such a bad worst case might be expected to
occur infrequently. However, the dictionary size can become large very quickly when even

a moderate amount of padding is needed.

In (Wilson et al. 1998), Wilson, Cross and Hancock found that the Delaunay triangulation
gave the best results for matching noisy point sets. For the two 70-node Delaunay graphs
encountered in section 3.8, the mean superclique size of the model graph is 5.7 (s.d. =1.2)
with a maximum of 9, and the mean size difference between superclique pairs from the
two graphs is 1.3 (s.d. = 1.2) but has a maximum of 6. These values are not remarkable
according to Wilson (Wilson 1995). Taking the view that no matches should be excluded
a priori, it would be necessary to add 6 dummy labels to every dictionary item. In this

case, |Cj| = 6 and K = 6. It follows from equation 3.17 that the size of the largest

dictionary is = 1716. A separate dictionary is needed for each of the 70 nodes,
6

so the grand total could be as high as 70 x 1716 = 120120, which is considerable. The
dictionary sizes become even larger when the cyclic permutations of each superclique are

taken into account.

In general for matching Delaunay triangulations, about 80% of the superclique-pairs have

size differences of 2 or less. Given the underlying assumption of equation 3.4, that only one

31



error occurs per mapping, the probability of significant superclique corruption is small. It
is therefore reasonable to follow Wilson in (Wilson 1995), and suppose that supercliques
with size differences greater than 2 are not matchable anyway. In other words, limiting
the maximum amount of padding to 2 gives manageable dictionaries and screens out some
20% of probably unmatchable superclique-pairs, even though it violates the assumption

of statistical independence that underpins equation 3.3.

However, it will not necessarily be possible to appeal to geometric properties of the problem
to reduce the amount of padding in every case, and the worst case of equation 3.18 will
always be lurking. Furthermore, there is a more elegant way of handling size-differences
which yields performance benefits even when the size-differences are small, which is the

topic of the next section.

3.6 Edit Distance

There are two important weaknesses of the dictionary-based approach to inexact labelling
problems just outlined. The first is that it entails potentially exponential complexity: this
can be remedied heuristically. The second is that it relies on a rather artificial model
in which dictionaries have to be padded so that they are the same size as the constraint
neighbourhoods. A measure of the distance between lists of differing lengths has existed
for many years: the Levenshtein or string edit distance (Levenshtein 1966; Wagner and
Fischer 1974). This avoids the use of padding altogether, by considering insertions and
deletions in addition to changes. The main novel contribution in this chapter is in basing
the dictionary comparison on the edit distance. The rest of this section gives a brief

overview of the edit distance, before applying it to the inexact labelling problem.

3.6.1 Overview

Let X and Y be two strings of symbols drawn from an alphabet, 3. X is to be converted to
Y via an ordered sequence of operations such that the cost associated with the sequence
is minimal. The original string to string correction algorithm defined “elementary edit
operations”, § = (a,b), where a and b are symbols from the two strings or the null symbol,
€ (the operation (¢, €) is illegal). Changing symbol z to symbol y is denoted (z, y), inserting
y is denoted (¢,y), and deleting z is denoted (z,€). Any operation (z,z) is an identity. A
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sequence of elementary edit operations which transforms X into Y is known as an “edit
transformation”, and is denoted A =< 4y, ...,d)a| >. Elementary costs are assigned by an
elementary weighting function, v : (X Ue€) x (X Ue) — R; the cost of an edit transformation,
W(A), is the sum of its elementary costs. The edit distance between X and Y is defined

as

d(X,Y) = min{W(A)|A transforms X to Y} (3.19)

An interesting property of this quantity is that it is a metric if v > 0 for all non-identity

operations and +y is self-inverse (Marzal and Vidal 1993).

The raw edit distance, d, may not always be useful, since correcting 2 errors in a neigh-
bourhood of size 3 should be more expensive than correcting 5 errors in a neighbourhood
of size 10. Furthermore, for the present purpose, it is not entirely clear that an ordered
sequence of operations can be the result of a memoryless random error process. Marzal
and Vidal’s “normalised edit distance”, presented in (Marzal and Vidal 1993), possesses
the desired normalisation properties, and is consistent with statistical independence of la-
belling errors. They introduce the notion of an “edit path” which is a sequence of ordered
pairs of positions in X and Y such that the path monotonically traverses the edit matrix

of X and Y from (0,0) to (|X|,|Y]), as shown in figure 3.3.

The transition from one point in the path to the next is equivalent to an elementary edit
operation: (i,7) — (i + 1,7) corresponds to deletion of the symbol in X at position 4.
Similarly, (é,7) — (i,7 + 1) corresponds to insertion of the symbol at position j in Y.
(1,7) = (1 + 1,7 + 1) corresponds to changing X (i) to Y (j). Applying the elementary
weighting function to each elementary edit operation implied by these transitions yields a

weighted path such that

d(X,Y) = min{W (P)|P is an edit path from X to Y} (3.20)

This quantity can be normalised by dividing by the length of the path, L(P). Thus, the

normalised edit distance is
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A = (w,w),(o,a),(r,r),(le),(d,d)

d = ~v(o,a)+7(le) =2

Y wlo|r |l |d P = <(0,0),(1,1),(2,2),
0 W‘\ (3,3), (4,3), (5,4) >
' a \ W(P) = d=2

2y \ \ L(P) =

w
o
(J/
Y
Q.
I
W= O

(a) Edit Matrix (b) Edit Distances

Figure 3.3: Example Edit Matrix from X to Y. The thick black line is the editing path. The

relationship between the classical and normalised edit distances is shown in panel (b).

@|P is an edit path from X to Y} (3.21)

X, Y (P

Q.

E.

=
—N

As Marzal and Vidal point out, it is clear from the form of d that it cannot be determined
by simply minimising W (P) and then dividing by L(arg minp W (P)). The complexity of
computing d is O(|X[.|Y|?), |X| > |Y].

3.6.2 Inexact Labelling

If X and Y in figure 3.3 are replaced by a dictionary item, S;, and a labelled configu-
ration, I';, it can be seen that I'; could indeed have arisen from S; through the action
of a memoryless error process, statistically independent of position (since the errors that
“transformed” S; into I'; could have occurred in any order). This means that equation
3.3 can still be applied, except that it is now necessary factorise over the elementary edit

operations implied by the transitions in the optimal edit path, P*, to give
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Pryis)= [ »0) (3.22)

0<=P}
= Fjsi

where § is an insertion, a deletion, a change or an identity. It remains to define the
elementary edit probabilities, p(d), and to consider the weighting function, 7. Although =y

does not appear in equation 3.22, it influences the choice of optimal edit path.

In (Bunke and Csirik 1995), Bunke and Csirik suggest parameterising the edit distance
by fixing the weights of insertion and deletion, leaving the cost of a change as the only

parameter. They give the following definition of +:

1 ifa=eVb=c¢
Y(a,b) =9 r ifa#b (3.23)

0 otherwise

where r is the remaining parameter, the cost of a change. Bunke and Csirik point out
that r must be less than 2, if one observes the general restriction that 0 < 7(a,b) <
(v(a,€)+(e, b)) for a single change to be preferable to a deletion followed by an insertion.
Whether or not it is desirable to distinguish between changes and insertions or deletions, it
is convenient here to set r to 1, so that all non-identity edit operations contribute equally
to the edit distance. Any distinction to be made can be deferred to the distribution rule;

this thesis makes no such distinction so the distribution rule is

(1 —P.) if ¢ is an identity
p(6) = (3.24)
P, otherwise

Equation 3.5 can now be rewritten in terms of the number of non-identity transformations
in the optimal edit path from I'; to S;. Given our weighting function, this number is

simply W(Pli‘j Si)’ so the exponential of equation 3.7 becomes

1
PT) = i > exp |- (kwW(Ps,) + ki L(Ps,) ) | (3.25)
J S;€0;
where ky = In % ,and k, = 1n ﬁ. If all edit operations have equal weights, the

length of the optimal path will be equal to the length of the larger of |T';| and |.S;|.

35



The normalised edit distance is not used directly: the criterion merely counts the elemen-
tary operations that make up the optimal path. The items in ©; no longer need to be
padded, so using the edit distance instead of dictionary padding reduces the worst case

space requirements of the dictionaries from O(4 %) to O(|C;|).

3.7 Algorithm Complexity

The arguments in this and subsequent sections apply specifically to inexact relational

matching, rather than to the consistent labelling problem in general.

Equations 3.9 and 3.13 can be rewritten in terms of a framework component over the
matchable supercliques of both graphs and a kernel component over individual dictionary
comparisons. This section explicitly considers equation 3.9, but the argument can be
applied equally well to equation 3.13. For configuration, I';, the dictionary, ©;, can be
partitioned according to the model graph supercliques: ©; = U,;cvy,, ©;,i, where ©;; =

{Si|S; € ©; A S;(0) = i}. P(T') can now be written as:

P = % XV: e— ; (T1©,,) (3.26)

Thus, it can be seen that the time-complexity of the evaluation of P(T') is the quadratic
framework component, O(|Vp||V|), multiplied by the kernel component, T[P(I';|©;;)],

where T[z] is the time taken to evaluate z. The evaluation of P(I';|©;;) is simply

P(T;10;:) = > P(T]S) (3.27)

S;€0;,
So the kernel component, P(I';|0;;), can be computed in O(|0;;|) x T[P(T;]S;)] time.
For the sake of simplicity, observe that the sizes of supercliques, labelling configurations

and dictionary items only differ by small constant factors, and denote them all by C, such

that Vjevp,s:co,,ievy C = O(T]) = O(|S:]) = O(|Cil)-

For exact matching, ©;; consists of the cyclic permutations of those model graph super-
cliques which could match the j*' data graph superclique, and the Hamming distance is

computed in linear time, so the time taken to evaluate the kernel component is cubic in

36



the configuration size and is O(C?). For inexact matching with padded dictionaries, the
dictionary item comparison is still linear, but the worst case dictionary size is as in equa-
tion 3.18, so evaluation of the kernel component requires time exponential in the average
superclique size and is O(C.4%). If the normalised edit distance is used, instead of the
Hamming distance, as the distance measure, the distance evaluation is cubic but the dic-
tionary size is now only quadratic, giving a quintic kernel, O(C%). Worst case complexities
for these three cases are summarised in table 3.1. The worst case for exact matching is a
quintic algorithm which is feasible. The worst case for inexact matching with dictionary
padding is infeasible. The worst case for inexact matching with edit distance may or may

not be feasible depending on how powerful the hardware is, and how large C is.

Complexity
Matching Dictionary Size T[D(T;,S;)] T[P(T;|0;.)] Overall
Exact 0(C?) 0(0) 0(C?) O([Vpl|[Vum|C?)
Inexact (padding) 0(4%) 0(0) 0(C4%) O([Vpl||[Vi|C4©)
Inexact (edit) 0(C?) 0(C?) 0(C%) O([Vp|[Vi|C?)

Table 3.1: Worst Case Complexities.

It should be stressed that for exact matching and inexact matching with edit distance,
these worst cases are also average cases. The average case for inexact matching with

dictionary padding depends on the amount of padding.

3.7.1 Accelerating the Kernel Component

Using the edit distance trades large dictionaries for slow comparisons between configura-
tions and dictionary items. The most important part of the dictionary padding approach
used by Wilson was the screening out of mappings between supercliques with size differ-
ences greater than 1 or 2. This drastically reduces the size of the dictionaries and renders
the whole calculation feasible. The heuristic is equally applicable to the edit distance based
criterion because it is effectively a form of Waltz filtering: (probably) globally inconsistent
labellings are removed from the dictionary at the outset. If the superclique size differences
are small enough with respect to the superclique sizes, then in equation 3.25, the lengths
of the editing paths will be roughly the same. This means that the accuracy lost by post-
normalisation of the raw edit distance may not be very great, and it may be reasonable

to use Wagner and Fischer’s original algorithm, which is O(C?), instead of Marzal and
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Vidal’s.® This still leaves an algorithm which has time complexity O(|Vp||V u|C?).

3.7.2 Accelerating the Framework Component

Neither the nature of the problem nor the choice of distance measure are really imple-
mentation choices. Graph matching problems are either exact or inexact, and for inexact
matching problems the edit distance is the only generally appropriate distance measure.
For exact problems, the edit distance is the same as the Hamming distance given our
weighting function, so the kernel component of equation 3.26 can be evaluated in linear
time. In other words, the kernel component of the labelling criterion is determined by the
nature of the problem. Since one cannot change the dictionary comparison, P(I';|©;;), it
must be regarded as the characteristic operation of the evaluation of the labelling criterion.

The framework component requires O(|Vp||Vs|) dictionary comparisons.

Although the consistency criterion in equation 3.9 is defined in terms of labellings of
supercliques in the data graph, it is the labelling of the nodes themselves rather than
the supercliques that is meaningful in the context of graph matching. The central idea
behind Wilson’s use of supercliques is that if two nodes match, their neighbours should
also match (Wilson 1995). However, the summation in equation 3.26 is over all feasible
mappings between supercliques, not just those with matching centre nodes. That is, all
model graph supercliques are considered potential matches for each data graph superclique.
It is possible, however, to take the view that only mappings between supercliques with
matching centre nodes are feasible. This is shown in figure 3.4. Although there only
appears to be one mismatch in panel (b), the labellings of the supercliques of nodes 2, 3,
4, 5 and 6 are also affected. Nevertheless, the criterion in equation 3.26 would possibly

consider such a mislabelling tolerable in this particular context.

If only those mappings between supercliques with matching centre nodes were considered,
it would suffice to compare the configuration, I';, with the dictionary, ©; ;) € ©;, where
f(7) is the label applied to j. Equation 3.26 can now be written without the sum over the

model graph supercliques as

3Ukkonen describes an even faster edit distance algorithm in (Ukkonen 1985) which is O(dC). However
this improvement is offset by more expensive initialisation. In practice, it has been found that Wagner

and Fischer’s algorithm is acceptably fast.
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(a) Matched Centre Nodes (b) Mismatched Centre Nodes

Figure 3.4: Superclique Mappings. The relational image of data graph superclique <
1,2,3,4,5,6 > is to be compared to model graph superclique < a,b,c,d, e, f >. The framework of
equation 3.26 would consider both (a) and (b) feasible. This may permit the mislabelling of the

centre node in (b) (dashed line). The alternative is to consider (a) feasible but (b) infeasible.

1 1
P(D) = <= > 5 7PTil0550 52
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which only requires O(|Vp|) dictionary comparisons.

3.8 Experiments

Three relational matching criteria were evaluated. The first was the criterion in equation
3.9 with padded dictionaries. This is the one originally used by Wilson in (Wilson 1995).
The second was the criterion in equation 3.28, dubbed the “neighbourhood approxima-
tion”, and the third was the neighbourhood approximation with edit distance instead of
dictionary padding. The aims of these experiments were (1) to establish the sensitivity of
the criteria to relational corruption and initialisation errors, (2) to compare the times re-
quired to evaluate the criteria, and (3) to demonstrate the new criteria on an uncalibrated

stereo matching task. These are discussed in sections 3.8.1, 3.8.2 and 3.8.3.

3.8.1 Sensitivity

Synthetic 50-node nearest-neighbour graphs with node attributes drawn from a uniform

distribution were used. To simulate the effects of errors in feature detection, nodes were
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randomly added and deleted, and the graphs re-triangulated. Gaussian noise was added
to the node attributes until approximately 50% of the nodes would be misclassified by a
simple Gaussian classifier. The results are shown in figure 3.5, from which it is clear that
the neighbourhood approximation of equation 3.28 performs at least as well as Wilson’s
original criterion of equation 3.9. The slight improvement in matching accuracy is proba-
bly because the neighbourhood approximation is more directly concerned with matching
individual nodes than whole supercliques. More importantly, the figure shows that the

edit distance method comfortably outperforms the padded dictionary approach.

Sensitivity to initialisation error was examined by adding varying amounts of Gaussian
noise to the node attributes of uncorrupted graphs, so that the proportion of correct
mappings in an initial guess furnished by the Gaussian classifier ranged from 10% to
90%. The results are given in figure 3.6. The edit distance method is more sensitive to
initialisation error than either of the padded dictionary approaches. This may be because
when the graphs have the same numbers of nodes, the estimate of P, for the padded
dictionary approach will be zero. Thus, null mappings will not be tolerated. However, the
edit distance approach ignores P and will treat a null mapping the same as an ordinary
mismatch, insertion or deletion. In other words, the distribution rule in equation 3.24 is a
little naive in that it fails to distinguish null mappings. When a similarly naive distribution
rule is used for the padded dictionary criteria in place of equation 3.16, they are unable

to handle either initialisation error or relational corruption.

3.8.2 Timing

To demonstrate the efficiency of the new matching criteria, random matches between
graphs of differing sizes were evaluated. The theoretical complexities of the criteria have
already been established in section 3.7. Panel (a) of figure 3.7 shows the advantage of
removing a linear factor from the framework component. Panel (b) of the same figure
shows that even when the permitted size difference between matching supercliques is
as little as 2, the padded dictionary approach becomes more expensive than using edit

distance.
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Figure 3.5: Sensitivity to Corruption. The neighbourhood approximation is no worse than the

original criterion. The edit distance criterion has the best performance.
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Figure 3.6: Sensitivity to Initialisation Error. The edit distance criterion is more sensitive to
initialisation errors than the other two. It is nevertheless still capable of repairing significant

initialisation error. Criteria were tested on equal-sized graphs.
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Figure 3.7: Time Required for Evaluation of the Criteria. (a) Superclique size differences must be

no greater than 1. The neighbourhood approximation is clearly worthwhile. (b) Size differences up

to 2 are tolerated, and the edit distance criterion becomes more efficient than the padded dictionary

approach.
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3.8.3 Real Images

The practical applicability of these graph matching criteria was demonstrated on a wide
baseline uncalibrated stereo matching problem. The lack of camera calibration makes
this much more difficult than the standard stereo correspondence problem. Corners were
extracted from a greyscale image pair (an office scene taken with an IndyCam) using
the SUSAN corner detector (Smith and Brady 1995). Each image produced about 70
corners. The corner sets were Delaunay triangulated using Triangle (Shewchuk 1996).
The grey level at each corner was used for the attribute information. This is hardly the
most robust choice but the illumination is fairly constant between the two scenes. A
better choice of feature is considered in the next chapter. The match was initialised using
a naive winner-take-all method. The only difference between the criteria was the time
taken to reach the solution. The neighbourhood approximation took about 17 seconds
on an SGI Indy workstation (133MHz MIPS R4600/4610 processor); equation 3.9 took
around 19 minutes. Results are given in figure 3.8 which shows the two images with
detected corners, the initial guess based on the attributes, and the results of applying the
edit distance criterion. There are 70 corners in the left image of which 67 have feasible
correspondences in the right image. The initial guess assigns 33 (47%) correctly. The edit

distance criterion increases the number of correct assignments to 66 (99%).

3.9 Summary

This chapter cast line labelling and attributed relational matching as consistent labelling
problems which can be solved by optimisation of measures of labelling consistency. Two
such measures were presented: first, Hancock and Kittler’s original consistency criterion,
which compares a labelling configuration against all dictionary items, and second, a lin-
ear sum of minimum distances, which considers only the dictionary item closest to the
configuration. It was shown that where the Bayesian criterion is an arithmetic mean, ap-
proximating the corresponding geometric mean leads to the linear criterion. This enables
control schedules established for the Bayesian criterion to be applied to the linear one.
The linear criterion lends itself directly to stochastic optimisation, whereas the Bayesian

one would better suit deterministic schemes.

Wilson’s dictionary based approach to inexact relational matching was reformulated in
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(a) Uncalibrated Stereo Pair (b) Initial Guess

(c) Final Match

Figure 3.8: Performance on Uncalibrated Stereo Matching. The number of correct mappings is

increased from an initial guess of 33/67 to 66/67.

terms of the edit distances between label configurations and dictionary items. This reduced
the worst case time and space complexities of criterion evaluation by avoiding dictionary
padding, and obviated the need for an extra parameter. Additionally, the neighbourhood
approximation to the matching criterion was shown to be more efficient by a linear factor.
Although primarily aimed at graph matching, this approach can in principle be applied

to any inexact labelling problem.

It was shown experimentally that the edit distance based dictionary comparisons are more
accurate with respect to relational corruption, and more efficient, than those involving
padded dictionaries. The edit distance based method is, however, slightly more sensitive to
initialisation error. The neighbourhood approximation was found to significantly improve

algorithm running times without sacrificing accuracy.
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Chapter 4

Genetic Algorithms and
Ambiguous Labelling

This chapter explores the issue of ambiguity in labelling problems. Consistent labelling
problems as posed in the previous chapter may have more than one solution. The novel
aspect of the work reported here lies primarily in the use of genetic algorithms to provide
a least commitment framework for labelling problems. Additionally, a new approach is
taken to the use of measurement information in graph matching. Two novel, metric based

crossover operators are also considered.

According to Marr’s principle of least commitment (Marr 1982), the best way to handle
ambiguous labelling problems is to simultaneously entertain several hypotheses until there
is sufficient evidence to drop all but one. As a population based global optimiser, the
genetic algorithm would seem to be the ideal framework for solving ambiguous labelling
problems. When faced with an ambiguous problem, the algorithm must not only perform
well as an optimiser, which is a sine qua non, but must also produce adequate solution
yields. These two goals are different, and may even be in conflict. The main aim of
this chapter (and the next) is to achieve good optimisation performance, consistent with

reasonable solution yield.

The genetic algorithm will be applied to ambiguous line labelling and inexact relational
matching problems. Line labelling is the easier of the two, and the genetic algorithm
can be used directly to optimise the labelling consistency criterion. Graph matching

is more realistic and more difficult than line labelling. The labelling criterion must be

45



augmented by incorporating measurement information, and the genetic algorithm requires

the addition of a local search step.

Genetic algorithms are complicated, and there are many algorithm variations, operators
and parameters to choose from. The focus of this chapter is primarily on which operators
are most useful for labelling problems. The main emphasis is on the local search step and
the crossover operator. Consideration of algorithm parameters is limited to refuting the
notion that “standard” parameter sets drawn from the literature (DeJong 1975; Grefen-
stette 1986) are suitable for the problems studied here. More detailed investigations of

algorithm parameters and control strategies are made in later chapters.

The next section considers the ambiguities which may arise in practice with labelling
problems. The use of the genetic algorithm for solving these problems is discussed in
section 4.2 with emphasis on the crossover operator. Section 4.3 presents a preliminary
study of the application of the algorithm to line labelling. Ambiguous relational matching
is addressed in section 4.4, which adapts Wilson’s original graph matching framework
(Wilson 1995) to handle the ambiguous case. Non-standard crossover operators, including
Cross’s geometric crossover (Cross 1998) and several metric based (“optimal”) crossovers,

are compared with standard crossovers for graph matching.

4.1 Ambiguity

Ambiguities arise in labelling problems because the dictionaries specify constraints on local
neighbourhoods without considering the global structure of the problem. Even Waltz’s
seminal algorithm, presented in (Waltz 1975), only takes local structure into account.
Waltz recognised the issue of ambiguity but did not provide a strategy for handling it,
relying on search to enumerate the possible solutions. Figure 4.1 gives an example of an
ambiguous line drawing, in which the object could be a pyramid viewed from above or a
cavity in a flat surface. The only way to resolve such ambiguities is to consider additional
evidence, which could come either from the scene itself or from the global context. Such
information may be present if the line drawing arose from a real image or scene. If the

drawing is a sketch, however, no such information may be available.

Early disambiguation may be appropriate if there is compelling local evidence for a par-

ticular interpretation; but if not, the system will have to backtrack, which is generally
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(a) Pyramid (b) Cavity

Figure 4.1: Ambiguous Line Drawing. Interpretations (a) and (b) are equally valid.

inefficient (Haralick and Elliott 1979). The use of global contextual information in scene
interpretation is a major unsolved problem in machine vision but premature commitment
to a particular interpretation may not be helpful. For hand-drawn sketches where there is
no ¢ priori evidence for a particular interpretation, or where the evidence is unconvincing,
the situation could easily be worsened. Suppose that it is known that for the example
of figure 4.1 the probability of interpretation (a) is 0.51. A labelling process that used
such information to minimise the Bayes risk would always choose interpretation (a), and
thus be wrong nearly half the time. In such cases, the initial stage of scene interpreta-
tion should follow the principle of least commitment by suggesting several plausible, and
perhaps related, solutions from which some higher level process can choose without hav-
ing to backtrack. In other words, where there is no convincing evidence in favour of any
particular interpretation, a labelling process should not discriminate between competing

consistent labellings, but should present as many as possible to higher level processes.

4.1.1 Inexact Problems

The principle of least commitment can also be applied to inexact problems in which
there is no globally consistent interpretation. These problems are ambiguous in the sense
that it is not always possible to identify a unique best labelling. In line labelling, such
problems correspond to an interesting class of drawings of “impossible objects”, which
partly motivated Huffman’s original investigation in (Huffman 1971). Figure 4.2 gives

two examples of impossible line drawings. In such cases, any labelling is guaranteed to
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be inconsistent. Even if the consistency criterion has a unique global optimum, this may
not correspond to the best interpretation, since the syntactic constraints on which the
dictionaries are based have been violated. It is therefore more important in this case
than before, that the labelling process produce several alternative interpretations. Waltz
filtering cannot be brought to bear on these problems because it would result in empty
dictionaries for certain neighbourhoods, so one is left having to consider the entire search

space.

{ I\\

(a) From (Hancock 1994) (b) “Devil’s Pitchfork”

Figure 4.2: Impossible Objects. Such drawings are often disturbing to the eye.

Impossible objects are interesting curiosities, but it is difficult to see how drawings such
as those in figure 4.2 could arise in practice. Segmentation errors in line-finders are more
likely to fail to join lines to junctions, or join too many lines, than to construct objects
such as those shown in the figure. Nevertheless, drawings of impossible objects could be

input to a system designed to interpret sketches.

A more realistic inexact problem is matching point sets derived from image features. This
problem was cast as attributed relational matching by Wilson in (Wilson 1995). Wilson’s
graphs were Delaunay triangulations of the point sets. The attributes were measurements
made on the features. Wilson showed that combining the measurement information with
the structural matching criterion from chapter 3 enables such point sets to be matched with
considerable accuracy. Wilson used the orientation of extracted features as node attributes,
and assumed that these measurements were sufficiently diverse to allow unambiguous
assignments. One example concerned T-junctions, which were extracted from aerial infra-
red images of road networks: it is unlikely that any two such T-junctions will share the

same orientation.

The problems considered in this thesis do not generally produce unambiguous measure-

ments. Take for example the case of the stereogram in panels (a) and (b) of figure 4.3,
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in which the images are to be matched by comparing the Delaunay triangulations of the
centroids of regions segmented from the images. The surfaces in this example are suffi-
ciently far from the camera for texture to be unimportant. Assuming that the light source
is diffuse, it is reasonable to expect that the intensities of different parts of the image are
insensitive to small changes in camera position. This is confirmed in figure 4.4. Panel (c)
shows the average grey levels of each region. The overlap between left and right image
measurements indicates that the images are matchable. However, the overlap between left
and left, and right and right, image attributes suggests that unambiguous assignments

will not be possible. This topic is considered in more detail in section 4.4.

(a) Left Image (b) Right Image

Figure 4.3: Uncalibrated Stereogram. The camera positions are not known.

4.2 Genetic Algorithms

The genetic algorithm appears to be an attractive way of solving ambiguous labelling
problems, since it maintains a population of candidate solutions, which are free to develop
in any way as long as they satisfy the labelling constraints. It is hoped that the algorithm
will produce several solutions to the same problem in a single program run, i.e. given
the same starting point. Before considering the algorithm’s ability to produce multiple
optima, however, it is necessary to apply the algorithm to the problem, and then to verify

that it gives adequate optimisation performance.

This section considers appropriate encodings and genetic operators for labelling problems.
An attractive feature of genetic algorithms is that only the chromosome encoding and

fitness evaluation are necessarily problem-specific: the crossover and mutation operators
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Figure 4.4: Results of Region Segmentation. A simple segmentation technique was used.

are syntactic, and the phenotype required by selection is abstracted in the fitness function.
In practice, however, it may be better to use crossover and mutation operators that take
problem knowledge into account, such as the optimal crossover operators considered at

the end of section 4.4.

4.2.1 Encoding

Recall from the introduction to chapter 3 that a labelling is a list of labels drawn from
the label set, A, applied to each of the objects in 'V, i.e., I' =< Ay, Ag,...; Ajy| >. The

standard encoding used in genetic algorithms is binary (Holland 1975; Goldberg 1989;
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Mitchell 1996), in which each label, A, would correspond to a sequence of [log, |A|| bits
in the chromosome. There are two problems with this standard scheme. The first is that,
if |A| is not a multiple of 2, there will be certain bit patterns which do not correspond to
labels. For example, suppose that there are five labels, and thus three bits per label in
the encoding. Bit patterns 000, 001, 010, 011, and 100 will be meaningful, but patterns
101, 110, and 111 will not be. This creates significant difficulties in the implementation
of the mutation and particularly the crossover operators. These operators should be
unbiased, and yet must be constrained to produce only legal bit combinations. The second
difficulty is that labels are usually semantically indivisible: it makes no sense to consider
crossover between label pairs (e.g. what is the result of combining the labels “4” and
“—” in line labelling? or nodes 10 and 5 in graph matching?). Thus, crossover should
be constrained only to operate at the boundaries between labels, which is tantamount to
using a non-binary encoding in the first place. The implementation is much more natural
if the requirement for binary encoding is dropped, as Michalewicz among others suggests
in (Michalewicz 1996). Each chromosome will be a labelling - i.e. it will consist of a string
of labels. Unless otherwise stated, the ordering of the genes will be arbitrary. Mutation
and crossover now act at a genic level and cannot produce illegal labellings, although they

may still produce inconsistent ones.

4.2.2 Crossover and Local Search

The standard crossover operators are uniform and multi-point crossovers. Uniform crossover
swaps parental genes with probability 0.5 at each locus; multi-point crossover exchanges
sequences of genes between crossover points. These operators can be thought of as be-
longing to two classes, contiguous and non-contiguous. Contiguous crossovers preserve
substantial sections of the parent chromosomes whereas non-contiguous crossovers do not.
Figure 4.5 shows this for two point (contiguous) and uniform (non-contiguous) crossovers.
It should be noted that for two-dimensional problems, there is good reason to assume that
the chromosomes are circular rather than linear, because the “first” gene on the chromo-
some might be just as close to the “last” as it is to the “second” in the original data.
These very different operators reflect differing views in the genetic algorithm literature as
to whether it is better to proceed by slowly assembling partial solutions of high quality, in
which case the more conservative contiguous crossover would be preferred, or whether it is

better to aggressively disrupt chromosomes in a broader exploration of the search space.
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n (Eshelman 1991), Eshelman defined “half-uniform” (HUX) crossover, in which exactly
half of the differing parental genes are exchanged. This can be seen as a limit which
uniform crossover approaches as the chromosomes get longer. Similarly, as the number of

crossover points increases, multi-point crossover becomes more like uniform.

0...0..0
O O O

Figure 4.5: Standard Crossovers. Two point is contiguous, uniform is not.

n (Cross 1998), Cross addressed an important shortcoming in the standard crossover
operators when applied to two-dimensional problems. Adjacent genes are strongly linked
under two point crossover in the sense that they are highly likely to appear in the same
offspring. Distant genes are weakly linked in this sense. However, in a problem with two-
dimensional structure such as graph matching, there is no guarantee that nodes connected
by an edge will be strongly linked in the chromosome. This means that the supposedly
conservative two point crossover may well disrupt the labellings of supercliques, which is
inconvenient. Cross proposed “geometric crossover”, in which the labels of nodes lying on
either side of a random line drawn through the centroid of the graph are exchanged. This
crossover is easily generalised to line drawings by exchanging labels of lines whose centres
fall on either side of the crossover line. Figure 4.6 gives an example of geometric crossover
for line drawings and graphs. Thus, for two-dimensional problems, geometric crossover
should be considered as an alternative to two point crossover in cases where a conservative

operator is required.

Several authors have suggested the addition of a local search step to the algorithm (Gold-
berg 1989; Davis 1991; Whitley et al. 1995; Cross et al. 1997). Such an augmented
algorithm is called a “hybrid genetic algorithm”. The local search step improves indi-
viduals deterministically prior to selection and is seen as a more efficient alternative to
stochastic exploration of the search space by crossover and mutation. Such a step would
seem ideal for labelling problems since gradient ascent is a standard technique for solv-
ing them in an optimisation framework (Hummel and Zucker 1983; Faugeras and Berthod

1981; Hancock and Kittler 1990a; Wilson and Hancock 1997). The major drawback of gra-
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(a) Line Drawing

(b) Graph

Figure 4.6: Geometric Crossover. Two-dimensional structure is preserved by this operator.

dient ascent, that it gets trapped in local optima, is no great disadvantage in the context

of a global optimiser such as the genetic algorithm.

Because the constraints in labelling problems are local, gradient ascent should be ex-
pected to establish regions of local consistency. Cross took the view in (Cross 1998) that
crossover should be conservative to avoid disrupting these regions, which motivated the
development of geometric crossover. In this paradigm, the genetic algorithm is seen as as-
sembling globally optimal solutions from the results of the gradient ascent step. In other
words, gradient ascent provides “initial guesses” for the genetic algorithm, which serve
as “building blocks” for future solutions. Holland originally proposed the building block
hypothesis for the plain genetic algorithm in (Holland 1975). Although this hypothesis

is plausible for the plain genetic algorithm, it may not be valid for the hybrid genetic
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algorithm. In the population of a hybrid genetic algorithm, individuals with regions of
local consistency are by definition in local optima. Therefore, it could be argued that
they should be disrupted as much as possible in order to allow the algorithm to proceed
to the global optimum. Crossover only affects regions of disagreement between parent
chromosomes. If it is assumed that the number of local optima greatly exceeds the num-
ber of global optima, it is arguable that these regions of disagreement are more likely to
represent local than global optima. This argument suggests a second paradigm, in which
the gradient ascent step can be seen as improving on the “guesses” made by the genetic
algorithm. These two paradigms represent opposing views of the relative importance of
the genetic algorithm and the gradient ascent step. The first holds that the hybrid algo-
rithm is really a genetic algorithm with modifications to improve efficiency; the second
holds that the hybrid algorithm is gradient ascent in a framework that enables it to escape
local optima. If the second view is more accurate, it may not be the case that contiguous
crossovers should be preferred in hybrid algorithms. This consideration is explored further

in sections 4.3 and 4.4, and in chapter 5.

4.2.3 Selection

The most common selection mechanism is fitness-proportionate selection, introduced by
Goldberg in (Goldberg 1989), in which individuals are selected with replacement from the
population with probabilities proportional to their fitness - i.e., in a population, ¥, the

probability of selecting a labelling, I', is proportional to its fitness, fr,

fr

_ 4.1
Z’yE\I’ f’Y ( )

pr =

For labelling problems, the criterion in equation 3.9 from chapter 3,

|V| Z Z exp [—k.D(T;, S;)] (4.2)

]EV | S;€0;
can be used directly for the fitness. Alternatively, the criterion from equation 3.13,
=Y min D(T;,5)) (4.3)
JjeV 5i€0;
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could be used to measure the cost of the labelling, E(T'). This cost can be converted to
a fitness in several ways, but the most appealing is to define fr = exp[—SE(T')], as in
Boltzmann selection (Goldberg 1990; Priigel-Bennett and Shapiro 1994). The parameter,
B, is regarded as inverse temperature by Priigel-Bennett and Shapiro in (Priigel-Bennett
and Shapiro 1994), but can equally well be considered a scale parameter which determines
the strength with which labelling constraints are enforced. In the work reported in this

chapter, 3 is fixed at 1.0.

In (Rudolph 1994), Rudolph showed that the genetic algorithm could only be guaranteed
to converge if Grefenstette’s “elitist” selection heuristic was used. Elitist selection simply

guarantees that the best individual in the population is selected for future reproduction.

4.3 Line Labelling

The primary aim of the preliminary study reported in this section was to investigate the
suitability of the genetic algorithm as a framework for simultaneously obtaining multiple
solutions to ambiguous labelling problems. A secondary aim was to consider suitable

population sizes, crossover rates and mutation rates.

The algorithm was tested on two labelling problems with and without gradient ascent.
Several different parameter sets were tried. The number of iterations required to find a
solution and the solution yields were recorded. The algorithm was compared to multiple

restarts of gradient ascent.

No timing data for the algorithm are given because first, such data are generally highly
implementation-dependent, and second, the main concern here is not algorithm efficiency.
Suffice to say that G generations of a genetic algorithm with population size P running on
a single processor will require O(PG) crossovers and mutations, both of which operations
scale linearly with problem size. However, the characteristic operation of the algorithm
will probably be fitness evaluation in this case, which is polynomial in problem size as
shown in section 3.7 of chapter 3. In the case of the hybrid algorithm, the characteristic
operation is the combined gradient ascent and evaluation step, which makes a number of

fitness evaluations quadratic in the problem size.
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4.3.1 Method

The algorithm used was a slight variation on the standard genetic algorithm. At every
iteration, all individuals take part in recombination with probability equal to the crossover
rate. This models the panmitic populations often observed in nature. Individuals taking
part in recombination may also undergo mutation. This algorithm allows the population
to expand transiently to up to three times its original size before the selection step, which
reduces the population size to its base value. The initial population is created at ran-
dom. The algorithm terminates after a set number of iterations regardless of whether any

solutions have been found.

S

(a) “Wedding Cake” (b) “Groove 27

Figure 4.7: Test Drawings.

The algorithm was tested using the problems shown in figure 4.7. These problems can
be made arbitrarily larger by adding disconnected copies; this is reasonable because the
algorithm does not “know” that the two drawings are identical: it just sees more lines.
The local nature of the constraints means that disconnected copies are almost as difficult
as connected copies. In the work reported here, two copies of each drawing had to be

labelled.

This study uses multi-point crossover instead of geometric crossover, which raises the issue
of how to maintain strong linkage between loci on the chromosomes which correspond to
lines which occupy the same region of the drawing. This is not a problem with synthetic
data, since humans have a natural tendency to segment line drawings and number junc-
tions and arcs accordingly. Thus, synthetic data can be primed subconsciously to yield
solutions. However, the same is not true of real world data, such as edge-detector output.
This study uses the following heuristic to number the arcs. In general, TEE junctions
represent occlusions of part of the scene by an overlying plane (Huffman 1971). A crude

segmentation can be achieved by numbering the arcs depth-first, backtracking at TEE
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junctions. For our drawings, this makes strongly linked loci in the chromosome map to
broadly similar regions in the drawing. However, the inverse relation does not necessarily

hold.

Set L1 (DeJong 1975) Set L2 (Grefenstette 1986)
Population size | 100 30
Crossover type | 2 point Uniform
Crossover rate | 0.6 0.9
Mutation rate | 0.001 0.01

Table 4.1: Parameter Sets from the Literature.

Set A Set B Set C SetD  Set E
Population size | 100 100 100 100 100
Crossover type | Uniform Weighted HUX 1 point 2 point
Crossover rate | 0.9 0.9 0.9 0.9 0.9
Mutation rate | 0.03 0.03 0.03  0.03 0.03

Table 4.2: Additional Parameter Sets.

Five different crossover operators were considered: uniform, half-uniform, one point and
two point crossovers have already been mentioned. “Weighted” crossover is uniform
crossover in which the exchange probability depends on the fitness of the parents. Thus,
one offspring receives a preponderance of genes from the better parent, and vice-versa.
As mentioned in section 4.2.2, HUX crossover deterministically exchanges exactly half the
differing parental genes (Eshelman 1991). Population size, and crossover and mutation
rates for the genetic algorithm are notoriously difficult to set (Schaffer et al. 1989). The
literature recommends two alternative parameter sets as shown in table 4.1. These param-
eters are based on the standard suite of test problems for the genetic algorithm developed
by DeJong in (DeJong 1975). Several other sets were also tried, as shown in table 4.2.
The number of iterations was fixed at 1000 for the non-hybrid algorithm and 10 for the

hybrid. Results were obtained over 1000 trials.

4.3.2 Performance

The results are summarised in tables 4.3 and 4.4. The most striking feature of these

results is the superiority of the hybrid algorithm. The figures for average solution yield
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suggest that about 20% of the population will consist of distinct optimal solutions, given
a decent set of parameters. The plain genetic algorithm does not seem to be suitable
for handling ambiguous problems. Two point crossover performed better than one point,
which is as expected given circular chromosomes, because in this case one point is just a
special case of two point, with one crossover point fixed at the start of the chromosome.
Another interesting finding is that the parameter sets taken from the literature (L1 and
L2) performed poorly. This is perhaps not surprising since these parameter sets were
derived for numerical optimisation rather than labelling problems. There is clearly scope

for optimising these parameter sets further.

Set L1 SetL2 Set A SetB SetC SetD SetE
2.30%  17.8% 29.3% 30.2% 30.4% 35.5% 38.8%
Plain i | 0.06 0.54 2.10 2.27 1.87 3.17 3.45

o

g | 995 528 281 269 305 237 245
c|992% 76.1% 99.4% 97.8% 99.2% 100% 100%
Hybrid 7 | 17.0 3.34 17.3 13.5 17.6 25.2 33.0

g | 2.47 3.45 2.37 2.54 2.34 2.29 2.22

Table 4.3: Results for the Wedding Cake problem. c is the proportion of trials yielding consistent
labellings, y is the average solution yield over all trials, and g is the average generation at which

the first solutions are found.

Set L1 SetL2 Set A SetB SetC SetD SetE
3.80% 23.3% 38.3% 37.4% 33.3% 42.6% 42.9%
Plain i | 0.04 0.34 1.02 0.99 0.80 1.11 1.10

]

g | 687 508 230 270 250 244 224
c[98.6% 75.9% 99.2% 99.4% 98.4% 99.9% 99.9%
Hybrid gy | 9.78 3.23 15.1 13.4 15.3 17.8 19.8

g | 2.96 4.23 2.76 2.77 2.77 2.47 2.61

Table 4.4: Results for the Groove 2 problem. c¢ is the proportion of trials yielding consistent
labellings, 7 is the average solution yield over all trials, and g is the average generation at which

the first solutions are found.

The fact that the most convincing results were produced when the algorithm was aug-
mented by gradient ascent might suggest that the réle of the genetic algorithm is not

significant, since solutions were found on average within five iterations. However 100000
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restarts of gradient ascent from the same (random) initial conditions only resulted in 84
(8%) and 59 (5%) consistent labellings for each problem. It is quite clear from this that
gradient ascent is getting stuck in local optima, an escape route from which is provided
by the genetic algorithm. The number of iterations required to find an optimal solution
(about five) compares favourably with the 20 or so needed by the “multi-niche crowding”

algorithm used by Cedeno et al. in (Cedeno et al. 1995).

4.3.3 Propagation of Interpretation

To investigate the evolution of solutions by the algorithm, the problem shown in figure
4.8 was used, together with an enhanced dictionary to permit “origami world” labellings

(Kanade 1978) of the central object (thick lines) as a pyramid or a cavity.

+

Figure 4.8: Additional Test Drawing. The thick lines could represent a pyramid or a cavity.

The solutions found tended to be invariant with respect to interpretation as pyramid or
cavity. The results of a typical trial which found 11 distinct labellings are given in figure
4.9. The convex interpretation of the FORK predominates. This cannot be explained
simply by the linkage of the arcs in the chromosome, since the arcs belonging to the
FORK junction, (0,5,9), are less strongly linked than other groups of arcs, e.g. (2,3,4) and
(13,14,15), which have variable interpretations. These observations can be understood
by considering how many label changes accompany the transitions between consistent

configurations for the different junction types.

It is likely that a random change in the labelling of a consistently labelled junction will
yield a less good labelling. Consider an ELL junction: there are 16 combinatorial labelling
possibilities, six have Hamming distances of zero from the Huffman dictionary (i.e. they
are consistent), and ten have Hamming distances of one; none have Hamming distances
of two. This means that a random replacement of a consistent labelling has a probability
of % = 0.3 of yielding another consistent labelling and a probability of % = 0.6 of

yielding a labelling with a single error. By contrast, a FORK junction has 64 combinatorial
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Figure 4.9: Related Labellings. Labellings of line-triples found in 11 distinct solutions.

possibilities of which five are consistent; the outcomes of a replacement of a consistent
labelling are: another consistent labelling with probability % = 0.06, a labelling with
Hamming distance one with probability % = 0.62, or a labelling with Hamming distance
two with probability % = 0.32. Thus, the expectation of the Hamming distance from a
consistent labelling following a labelling change is 0.6 for an ELL junction and 1.25 for a
FORK junction, so FORKs can be said to be more strongly constrained than ELLs. We
would therefore expect the labellings of FORK junctions to be relatively immune to the
effects of gradient ascent, crossover and selection; and the final population will probably

only contain individuals with one labelling for any particular FORK.

Figure 4.10 shows the evolution of the best labelling in the population over several algo-
rithm iterations. Initially, all but one of the junctions are inconsistently labelled. Although
consistent labellings for weakly constrained junctions such as ELLs are established early,
they are subject to change in later iterations. However, once the central FORK junction

is consistently labelled, its labelling never changes.

This observation is in general agreement with the findings of Trueswell and others (Trueswell
et al. 1994; Kawabata 1978) with respect to the propagation of interpretations. Trueswell
and coworkers have suggested that in language processing, rapid syntactic disambigua-
tion occurs in regions of strong semantic constraint (Trueswell et al. 1994). Kawabata
has suggested that a local interpretation tends to propagate when humans are faced with
ambiguous scenes (Kawabata 1978). With this in mind, FORK junctions can be seen as
models for strongly constrained localities which tend to dictate the interpretation of their
immediate surroundings. This chimes with the notion that the alternative interpretations
of a drawing should all be considered plausible a priori, and suggests that where evidence

as to the labelling of strongly constrained regions of the scene is available, the initial
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A

Figure 4.10: Evolution of a Labelling. Inconsistent junctions are marked with a circle.
population can be seeded accordingly.

4.3.4 Impossible Objects

To round off this study, the algorithm’s behaviour for the three impossible objects in
figure 4.11 was investigated. Although these objects cannot be consistently labelled, the

algorithm often found maximally consistent labellings. Sample output is shown in figure

7y & &Y

(a) From (Clowes 1971) (b) From (Hancock 1994) (c) Based on figure 4.7a

4.12.

Figure 4.11: Impossible Test Drawings.

Usually, the algorithm correctly labelled all junctions, except those which prevent the

drawings being realised in three dimensions. For example, panel (b) of figure 4.12 shows

61



that the interpretation of the drawing as some object lying in front of and partially occlud-
ing a cuboid is almost reasonable, and is only wrong in that the leftmost face of the cuboid
must be simultaneously visible and occluded. Similarly in panel (¢), the TEE junction
must be inconsistent because no part of a scene can be occluded by a convex edge. In
panel (a) the right hand pair of inconsistent junctions correspond to one’s intuition about
the problem with this object, but the one in the top left region of the drawing appears
counter-intuitive. However, a little thought reveals that the inconsistency could indeed lie

here, if one rejects the tempting hypothesis that the region in question is a pit.

7

(a) 3 inconsistencies (b) 1 inconsistency (c) 2 inconsistencies

Figure 4.12: Best Labellings. Inconsistent junctions are marked with a circle.

The algorithm often found more than one possible labelling for these objects. These
labellings were not generally found to disagree as to where the inconsistency lay. The
members of the final population of a particular run almost always agreed as to which
junctions could not be labelled consistently. There was also a very high degree of agreement
between program runs. In almost all cases, the differences between the distinct members
of the final population were due to differing interpretations of the consistent part of the
drawing; for example, whether the drawing was floating in space or anchored by one or
more edges. Thus, it appears that the algorithm is capable of localising the problems in

drawings of impossible objects.

4.4 Graph Matching

This section describes the application of genetic algorithms to ambiguous graph matching
problems. It commences with a brief review of the unambiguous case. Section 4.4.2 gives
a formulation of measurement based graph matching more suitable to ambiguous graphs.
A preliminary experimental study is described in section 4.4.4, and some novel crossover

operators are introduced in section 4.4.5.
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4.4.1 Unambiguous Matching

Inexact matching with genetic algorithms in the unambiguous case was considered by Cross
in (Cross 1998), following Wilson’s work on the matching problem itself (Wilson 1995). For
attributed relational matching, Wilson combined the labelling consistency criterion with
measurement information to give a maximum a posteriori probability (MAP) update rule.

The goal is to optimise the a posteriori probability of the labelling given the measurements:

P(f|Ap, Anr) = p(Ap, Anl|f)

2(Ap, Au) P(f) (4.4)

where f is the match between the two graphs corresponding to the labelling of Vp, and
P(f) is the labelling consistency criterion from equation 3.9 in chapter 3. The joint mea-
surement density, p(Ap, Ays), only depends on the measurements and is thus a static
property of the problem which can be ignored when comparing labellings. The condi-
tional measurement density, p(A p, Axs|f), depends on both the current labelling and the
measurements. Wilson showed that, assuming conditional independence of these measure-
ments given the current labelling, the conditional measurement density can be factorised

over the tuples in f to give

p(Ap, Anlf) = (ulgefpm,mwu,xv)% (45)

where the posterior matching probability, P(u,v|z,, z,), is the probability of node u from
the data graph matching node v in the model graph given their measurements, z, and
xy. Like p(Ap, Ajy), the unconditional density, p(zy,z,), is independent of the current
match, f. Assuming that the matching priors, P(u,v), are uniformly distributed, equation

4.4 can be written

P(f|AD,AM)O<[ II P(uvlzu, )| P(f) (4.6)

(u)ef

Recalling the relationship between the linear and Bayesian criteria from equation 3.13 in

chapter 3, we could also write
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|AD,AM oﬁ P(u v|:z:u,a:,,ﬂ-|e*3E(f) (4.7

Wilson used the relationship in equation 4.6 to formulate the MAP update rule given in
(Wilson 1995) for iteratively improving the labelling, f. The mapping of data graph node
u, was chosen from the union of the model graph node set, V,,, with the null label, {¢},

according to:

= P P 4.8
f) = arg_max | P(uolzs,a)P() (4.9
n (Cross 1998), Cross used a genetic algorithm for graph matching, in which equation
4.6 became the fitness of the ! labelling in the population, ¥, so that the selection

probability under fitness-proportionate selection was:

(Mwwes, Plu, vl z.)] P(£)
jew { [Muwer, P vlzu,50)] P(f;)}

(4.9)

In (Cross 1998), Cross also used the MAP update rule, equation 4.8, as the gradient ascent

step in the hybrid genetic algorithm.

4.4.2 Measurement Ambiguity

The measurement information contributes to the matching criterion via the posterior

matching probability, P(u, v|z,, Z,), which has yet to be defined. In (Wilson and Hancock

1997), Wilson and Hancock defined it in terms of the Euclidean distance between attribute

pairs for non-null mappings:

P, ifv =

26

P(u,v|zy,zy) = exp[(z“i;”)] (4.10)

(1—Pp)

(Eu—fﬁw)2

otherwise
wevy, XP [ 252, }

where P, is the prior probability of a null match, which may be taken as 2 H

Vp|=Vum|
Vol+ V]|

|

and 62 is the estimated variance of z,. This effectively regards the model graph node

measurement, z,, as a mean about which the data graph node measurement, x,,, varies
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with estimated variance 62, under the null hypothesis that the two measurements are
the same (because the nodes match). This approach requires the assumption that a data
measurement is only likely to be statistically close to one of the model measurements.
This is ideal when there is little overlap between classes, e.g. for possible angles of line-
fragments segmented from a radar image. However, if there is significant overlap, e.g. in
the average intensities of regions, such a scheme will not reflect these ambiguities in its

classification of features.

The alternative is to compare the data measurements to the model measurements using
an artificial scale. This can be done by considering the number of standard deviations
separating the data measurement from its class mean under the null hypothesis that the
nodes match. Table 4.5 gives an example of such a scale for the arbitrary classes “similar”,

“comparable”, and “different”.

Class Range of standard deviations from z,,
Similar [0,1.0]
Comparable (1.0,2.0]
Different (2.0,00]

Table 4.5: Example Scale for Measurement Comparisons.

Consider the standardised distance, Ay, = ||z, — Zy||/6». The probability that z, lies
within [a, b] standard deviations on either side of z,, is twice the standard Normal integral

from a to b:

Pl@a<Ay<b) = \/g ab e 27 dz (4.11)
- () -(3)

Each of the classes in table 4.5 corresponds to a separate interval which must be considered.
Rather than introduce so many extra parameters, it is better to simplify the classification
to “similar” if Ay, € [0,a] and “dissimilar” otherwise. Thus, P(u,v|zy,z,) for can be

defined as follows
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(P, if v =g
— (2 —2y)?
exp | —t—="—
(1—Py) [ o _] S ifa=0
Plu,vlz, 5) = | R (4.12)
(1 — Py)P[Ayy < a if Ay <a
| (1= P)(1 — P[Ayy < al) otherwise

For convenience, the original unambiguous definition is used when a = 0. At the cost
of an extra parameter, a, ambiguous measurements can now be handled. The important
property of equation 4.12 is that when a > 0, it assigns the exact same probability to sets

of mappings, thus enabling different alternatives to be considered.

The ambiguity parameter, a, has a direct interpretation as the number of standard units
beyond which data measurements are considered dissimilar from the model. However, it
has a more useful indirect interpretation in terms of “matching tolerance”. The matching
tolerance, T, is defined as the average proportion of model measurements similar to each
data measurement, and is a function of a for any particular graph pair as shown in equation
4.13. The feasibility of mappings, feasible(u,v), is determined according to the superclique

size difference constraint mentioned in section 3.7.1 of chapter 3.

1

T(a) = WH(U,U)

€ Vp x Vy|feasible(u, v) A Ayy < a}| (4.13)
Figure 4.13 shows T as a function of a for several synthetic graphs. The tolerance reaches
a plateau of between 0.4 and 0.7 at values of a higher than about 2. This plateau is the
limit imposed by the feasibility constraint, feasible(u,v). These graphs suggest that it
should be possible to determine an appropriate value of a by estimating the proportion of
“similar” features in the data set. For example, if this proportion is estimated to be 10%,

a should be about 0.5.

4.4.3 Variance Estimation

The origin of the estimated variance, 62, of the measurement distribution for model graph
node v has not yet been considered. The data graph measurements, z,, are generally
drawn directly from features extracted from the image - e.g. orientation, size, or intensity.

The model will either be an abstract one such as a map, or another set of features as is the
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Figure 4.13: Matching Tolerance as a Function of the Ambiguity Parameter.

case with stereograms. For certain feature types, the measurement distributions will have
very similar variances: for example, the angles of line segments recovered from a radar
image are all subject to the same distortion process. Thus estimating o2 for each node is
the same as estimating the overall variance of the noise which is the same for every node,
as in (Wilson and Hancock 1997). Note that this noise variance is not the same as the

measurement variance within the feature set.

When matching pairs of extracted feature sets, both sets of measurements are subject to
error, and there may be no identifiable ground truth. The classification should properly
be made by comparing the measurement distributions at each node - the correct method
is the t-test (see pages 321-323 of (Hays 1994)). However, it is possible to follow Cross in
(Cross 1998) and regard one of the stereo pair as a model, estimating o2 from the extracted
features. An important caveat of this approach is that the results will be different when
each image in turn is regarded as the model. In the graph editing framework of Wilson
and Hancock, it is natural to regard the smaller graph as the model (Wilson and Hancock

1997; Cross et al. 1997).

Matching regions segmented from a pair of images poses an additional problem, which is
that the intensity of each region has its own distribution. For matching to work at all,
it should first be verified that all the measurement distributions are unimodal. It is by
no means certain that the variances will be sufficiently similar to justify using t-tests (see

page 617 of (Press et al. 1992)). Again, this difficulty can be avoided by treating one
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image as the model. A key assumption of the experimental work presented here, then, is

that the error incurred by treating the distributions as if they were the same is negligible.

4.4.4 Initial Experiments

Like section 4.3, this preliminary study establishes the suitability of the genetic algorithm
for ambiguous graph matching, and considers some control parameter sets. The algorithm
was tested on four 30-node synthetic graphs like the one in figure 4.14. The point sets were
generated at random, and then triangulated by connecting each point to six of its nearest
neighbours. Data graphs were generated by randomly perturbing the node attributes, and
then duplicating 10% of the nodes and perturbing their attributes. The intention was to
simulate segmentation errors expected of region extraction, such as the splitting of one
region into two similar ones. The triangulations used are generally rather more dense
than Delaunay triangulations, and the addition of even 10% clutter causes more relational

disruption than in the Delaunay graphs used by Cross in (Cross 1998).

(a) Original Graph (b) 10% Additional Clutter

Figure 4.14: Synthetic Graph with Corruption. Clutter is indicated by dark edges.

The same genetic algorithm as in section 4.3 was used. Since Cross found in (Cross
1998) that graph matching was not feasible with non-hybrid algorithms, this study only
considers hybrid algorithms. The algorithms used were the hybrid genetic algorithm with
and without mutation, crossover or both (hGA, hGA-m, hGA-x and hGA-xm),' a hybrid

!These should be regarded as different algorithms, not merely different parameter sets for a genetic
algorithm, because a genetic algorithm with no crossover or mutation is fundamentally different from one
which has these operators. For example, the hGA-xm algorithm is really just multiple restarts of gradient

ascent with a selection step.
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version of Eshelman’s CHC algorithm (Eshelman 1991) (hCHC), and plain gradient ascent
(HC). The experimental conditions are summarised in table 4.6. Simulated annealing was
not considered: Cross found that the hybrid genetic algorithm outperformed simulated

annealing; and the technique is very slow compared to the genetic algorithm.

hGA hGA-m hGA-x hGA-xm hCHC HC

Population size | 50 50 120 120 100 1
Iteration limit | 5 5 5 5 5 10
Crossover type | Uniform Uniform Uniform Uniform HUX n/a

Crossover rate | 0.9 0.9 0.0 0.0 1.0 n/a

Mutation rate | 0.3 0.0 0.3 0.0 0.35 n/a

Table 4.6: Algorithms for Graph Matching. Each algorithm, apart from HC, made approximately
700,000 fitness evaluations. Abbreviations: hGA = hybrid genetic algorithm, hGA-m = hGA
without mutation, hGA-x = hGA without crossover, hGA-xm = hGA with neither mutation nor
crossover, hCHC = hybrid CHC, and HC = gradient ascent (hillclimbing).

Each of the algorithms listed in table 4.6, except HC, was run 100 times on the four
graphs. Since HC is deterministic, it was only run once per graph. The results for the four
graphs were pooled to give 400 observations per algorithm. Algorithm performance was
assessed according to two criteria. The first was the average fraction of correct mappings
in the final population. The second was the proportion of distinct individuals in the final

population with more than 95% correct mappings. The results are reported in table 4.7.

Algorithm | Average Fraction Correct Average Fraction Distinct
hGA 0.90 (0.0044) 0.078 (0.0019)

hGA-m 0.88 (0.0051) 0.040 (0.0012)

hGA-x 0.84 (0.0052) 0.044 (0.00094)

hGA-xm | 0.76 (0.0068) 0.013 (0.00036)

hCHC 0.92 (0.0042) 0.012 (0.00033)

HC 0.97 (n/a) n/a

Table 4.7: Graph Matching Results. Standard Errors are given in parentheses. Abbreviations:
hGA = hybrid genetic algorithm, hGA-m = hGA without mutation, hGA-x = hGA without
crossover, hGA-xm = hGA with neither mutation nor crossover, hCHC = hybrid CHC, and HC
= gradient ascent (hillclimbing).

Pure gradient ascent appears to outperform all the other algorithms. The reason for
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this is that the gradient ascent algorithm starts from an initial guess in which about
50% of the mappings are correct, whereas the other algorithms start with random initial
guesses. In addition, the final population of a genetic algorithm typically contains solutions
much better and worse than the average. Thus, this comparison is not really fair: a
fairer comparison of optimisation performance comes from considering hGA-xm, which is
multiple random restarts of gradient ascent. Furthermore, gradient ascent is deterministic,
and therefore always gives the same result, but the genetic algorithm is stochastic and
may do significantly better or worse than gradient ascent. Indeed, the genetic algorithm
occasionally found matches with 100% correct mappings. However, the performance of
gradient ascent alone suggests that for unambiguous problems, genetic algorithms may not
necessarily be the method of choice. Apart from pure gradient ascent, the best optimiser
was hCHC, which is only slightly better than hGA. The results for hGA-m and hGA-
x indicate that crossover and mutation are playing an active part in the optimisation
process. Turning to the fraction of distinct individuals with over 95% correct mappings,
it is clear that pure gradient ascent is incapable of finding more than one solution. The
hCHC algorithm appears to converge to fewer solutions than the hGA algorithm. In all,
the hybrid genetic algorithm (hGA) combines strong optimisation performance with the
highest solution yield, and it is this algorithm which will be the subject of the remainder
of this study.

Table 4.8 shows the parameter sets for the preliminary study of the hybrid genetic algo-
rithm. Sets L1 and L2 are drawn from the genetic algorithm literature (DeJong 1975;
Grefenstette 1986); sets A to D were chosen to investigate the relative importance of pop-
ulation size and iteration limit. All sets required about 700000 fitness evaluations. The

results are given in table 4.9.

Set L1 Set 1.2 Set A Set B Set C Set D
(DeJong 1975)  (Grefenstette 1986)
Population size | 100 30 12 24 50 80
Iteration limit | 3 8 20 10 5 3
Crossover type | Two point  Uniform Uniform Uniform Uniform Uniform
Crossover rate | 0.6 0.9 0.9 0.9 0.9 0.9
Mutation rate | 0.001 0.01 0.3 0.3 0.3 0.3

Table 4.8: Parameter Sets for Graph Matching. Each set required approximately 700,000 fitness

evaluations.
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Parameter Set Average Fraction Correct Average Fraction Distinct
L1 (DeJong 1975) 0.73 (0.0049) 0.030 (0.00082)
L2 (Grefenstette 1986) | 0.91 (0.0047) 0.045 (0.0014)
A 0.93 (0.0041) 0.160 (0.0045)
B 0.92 (0.0043) 0.110 (0.0030)
C 0.90 (0.0044) 0.078 (0.0019)
D 0.80 (0.0046) 0.059 (0.0015)

Table 4.9: Effect of Parameter Sets on Algorithm Performance. Standard Errors are given in

parentheses.

The differences in algorithm performance between sets L2, A, B and C are small. For these
sets, optimisation is as well served by a large populations as it is by a large number of
iterations. The poor performance of set D, and to some extent set L1, can be attributed
to the small number of iterations. Presumably, the algorithm needs more than three
iterations regardless of population size. For solution yield, the best sets appear to be
sets A, B and C. However, the solution yield is only a proportion, and although set A
produced an average yield of 16%, this corresponds to only 1.92 solutions on average. By
contrast, sets B and C yielded 2.64 and 3.9 solutions on average. It would require at least
two restarts of set A to achieve the same yield as set C, and yet both sets make the same
number of fitness evaluations, and so have approximately equal running times. So it would
appear that the small improvement in optimisation performance with more iterations is

offset by a larger efficiency gain in solution yield with a larger population.

One possible additional reason for the poor performance of set L1 is that it used two
point crossover, where all the other experiments so far used uniform or HUX crossovers.
Table 4.10 gives the results of a study of different crossover types for the hybrid genetic

algorithm using parameter set C from table 4.8.

It seems that the contiguous crossovers, one point, two point and geometric, all give
roughly the same optimisation performance. The non-contiguous crossovers, uniform and
HUX, appear almost identical, which is not surprising since for chromosomes containing
33 genes (one for each node in the data graph), the effect of uniform crossover on the
chromosomes should be statistically indistinguishable from that of HUX. Although, the
differences are small, there is a case to be made that uniform and HUX are the better

operators. Nevertheless, this is a surprising result. Geometric crossover was designed
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Crossover Average Fraction Correct Average Fraction Distinct
Uniform 0.90 (0.0044) 0.078 (0.0019)
HUX 0.90 (0.0042) 0.077 (0.0019)
One point 0.87 (0.0050) 0.073 (0.0016)
Two point 0.88 (0.0048) 0.069 (0.0017)
Geometric (Cross 1998) | 0.87 (0.0055) 0.068 (0.0017)

Table 4.10: Effect of Crossover Type on Algorithm Performance. Standard Errors are given in

parentheses.

specifically for two-dimensional problems (Cross 1998), and yet it performs no better
than two point and worse than uniform. The most likely explanation of this is that
the hybrid algorithm requires disruptive crossover. Indeed, the results obtained with
uniform crossover are very good. However, the crossovers considered in this section have
all been strictly syntactic operators. The next section considers whether the performance

of crossover can be improved by incorporating problem knowledge.

4.4.5 Optimal Crossover

The purely syntactic crossover operators studied in the previous section are weak in the
sense that they do not exploit the knowledge gained by evaluating the fitness of each
individual, viz. which regions are consistently labelled and which are not. This section
considers some “optimal” crossover operators, which attempt to use the information im-

plicit in the consistency criterion to give better optimisation performance.

In (Williams and Hancock 1999), Williams and Hancock proposed “metric based crossover”,
in which half of the best node labels in one parent are exchanged with the other. They
found that this operator led to faster convergence to a single solution; but that the quality
of the final solution was no better than that obtained with uniform crossover. As Williams
and Hancock pointed out, the drawback of this strategy is that it does not preserve struc-
tural consistency because the nodes with the best labels will not necessarily be connected

in the data graph.

An additional (and probably minor) drawback of Williams and Hancock’s study was that

the consistency criterion used was equation 3.9 from chapter 3,
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|V\ Z ]| Z exp [—keD(T;, S;)] (4.14)
JEV S;€

which is expressed in terms of the supercliques, not the nodes, in the data graph. Although
the labelling of the ;' superclique might be among the best, the labelling of node j itself
might be wrong. Thus simply exchanging node labels rather than superclique configura-
tions may not exploit the full power of metric based crossover. Fortunately this problem
does not arise when the neighbourhood approximation derived in section 3.7.2 of chapter

3,

1 1
P(l)=—— P(T510; 1)) (4.15)
Vol ; 1651 G
is used. The fitness of the individual is now simply the mean of the “partial” fitnesses
of the labellings of the data graph nodes, the ;% of which is |e_1j|P(PJ'|®j,f(j))' Both the

labelling criteria considered in section 4.2.3 can be used in this way, so optimal crossover

can be applied when using either criterion.

A more subtle consideration arises from the two distinct views of the crossover operator
mentioned in section 4.2.2. If crossover is required to be conservative, then greedy schemes
such as Williams and Hancock’s may be appropriate because they maximise the consis-
tency of one of the offspring. On the other hand, if disruptive crossovers are preferred,
then a more equal division of consistency between the two offspring might be better.
Greedy operators which attempt to concentrate the best labellings in one offspring will be
termed “unbalanced”, while those which distribute consistent labels evenly between the
offspring will be termed “balanced”. Five optimal crossover operators are considered in

the remainder of this section. They are:

Balanced optimal geometric

Unbalanced optimal geometric

Balanced optimal contiguous

Unbalanced optimal contiguous

Greedy uniform
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The balanced counterpart of greedy uniform crossover is standard uniform crossover, which
is balanced because a particular label has an equal probability of being transmitted to

either offspring.

Optimal Geometric Crossover: Geometric crossover, as originally defined by Cross
in (Cross 1998), exchanges the labels of nodes on either side of a random bisector of the
point set. Consider the bisector at angle w, drawn from a set of possible bisector angles,
2, which partitions the node set of the data graph into V“l’)’1 and V%’Q. The difference

between the contributions of each partition to the overall fitness is

AW =——| S PTy- 3 Py (4.16)

AY
Vol jeve! JjeVYy?

This is shown in figure 4.15 for a very simple graph. The nodes represent the images of data
graph nodes under the current match. The nodes are labelled with hypothetical values
of P(I';). Panel (a) shows the unbalanced bisector, which maximises the cost difference
between the two partitions. Panel (b) shows the balanced bisector, which partitions the

mappings equally.

(a) Unbalanced (b) Balanced

Figure 4.15: Optimal Geometric Bisectors. Each node represents the image of a data graph node

under the match. The nodes are labelled with the contribution of each mapping, P(T;).

Equation 4.16 allows the angles, wy, and wy, that the balanced and unbalanced bisectors

make with the horizontal, to be determined:

wp = argmeisrzlAf(w) (4.17)
wy = argmeaé(Af(w) (4.18)
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The choice of possible bisectors, 2, requires a little thought. There are four options.
The first is to exhaustively enumerate €, which may be computationally expensive. The
second is to construct ) from bisectors at intervals |2|/27, which will lead to non-unique
partitions. The third is to form € at random, which would only be worthwhile if the
others were too computationally demanding. The fourth method is to construct € from
the bisectors of the angles between nodes, which should approximate the first method
reasonably well without generating redundant partitions. It is not difficult to see that
once the fitness of a labelling has been evaluated, Af(w) can be calculated in O(|Vp|)
additions, and that finding wy, and w, requires O(|2|) comparisons. Neither of these is
significant when compared to fitness evaluation, so optimal geometric crossover will not

significantly slow the algorithm.

Optimal Contiguous Crossover: Optimal contiguous crossover is a variant of two point
crossover in which the chromosome is seen as a circle, and an optimal semicircular partition
is sought. If one of the crossover points is z, the other must be (z + 0.5|Vp|) mod |V p]|,
and the data graph is partitioned into the sets V%l and V%’Q. By analogy with equations
4.16 to 4.18, A f(z) and thus balanced and unbalanced contiguous crossover points, 1, and

Ty, can be obtained. These can be determined by a linear search through the chromosome.

It is possible to define a more general operator in which the partitions need not be equal.
This would require examination of the O(|V p|?) pairs of crossover points, and would also
require a weighting function for A f(z,y) so that the partial fitnesses of unequal partitions

could be compared.

Greedy Uniform Crossover: Greedy uniform crossover is similar to Williams and
Hancock’s metric based crossover (Williams and Hancock 1999). One offspring receives
the best labels from each parent. For parents, I'4 and T'B, the “better” offspring, I'C, is

constructed by

ro () = T4(j) if P(T}) > P(TP) (119)
'B(j) otherwise

and the other offspring may be constructed by the converse rule. Metric based crossover

would assign the best half of I'4 to T'C, and draw the other half of T'C from I'B.
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Experiments

The different crossover operators were tested using a hybrid genetic algorithm with a
population size of 40, an iteration limit of 5, and crossover and mutation rates of 0.9
and 0.3. The same four graphs as in section 4.4.4 were used as test problems, and 100
program runs were performed for each graph. Table 4.11 summarises the results for each
graph and crossover type. The rows of the table give the average fraction correct in the
final population for each of the seven crossover operators considered. The operators were
tested on the four graphs, A, B, C and D, shown in the columns of the table. This
arrangement gives a total of 400 observations per crossover operator. Since only 600000
fitness evaluations were made per program run, these figures should be expected to be

lower than those reported earlier.

Graph

Crossover A B C D
Standard geometric 0.8126 0.7081 0.8724 0.7744
Balanced geometric 0.8403 0.7115 0.8758 0.7963
Unbalanced geometric | 0.7127 0.6843 0.8372 0.7130

Standard two point 0.8147 0.7300 0.8788 0.7705
Balanced contiguous 0.8600 0.7554 0.9097 0.8132
Unbalanced contiguous | 0.8639 0.7535 0.9008 0.7935

Standard uniform 0.8554 0.7519 0.9053 0.8138
Greedy uniform 0.7734 0.6902 0.8588 0.7490

Table 4.11: Comparison of Optimal Crossovers.

These results were analysed using analysis of variance (ANOVA), which showed that the
balanced operators were superior in all cases. Table 4.12 shows the ANOVA for the best
three crossovers. In this case, crossover accounts for only 3.8% of the total variation, and
interaction for less than 1%. The interaction plot is given in figure 4.16, and shows that
balanced contiguous and standard uniform crossovers consistently outperformed balanced
geometric. The ANOVA indicates that the poorer performance of balanced geometric
crossover is significant, suggesting the conclusion that either balanced contiguous or stan-

dard uniform crossovers are better than balanced geometric crossover. However, it was
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Source SS df MS F-ratio P

Crossover | 0.1978 2 0.09890 120.0 0.00
Graph 4.045 3 1.348 1636.0 0.00
Interaction | 0.03020 6 0.005034 6.108 0.00
Error 0.9792 1188 0.0008242

TOTAL 5.253 1199

Table 4.12: ANOVA for Balanced Crossovers. Abbreviations: SS=sum of squares, df=degrees of
freedom, MS=mean square (MS=SS/df).

not possible to distinguish between the standard uniform and balanced contiguous oper-
ators. Balanced contiguous gave slightly better results, but these would only have been

significant at the 10% level.

Balanced Geometric ——
Balanced Contiguous ----
Standard Uniform -----

09| N i

08

Average Fraction Correct

0.7 - 4

06 I I I I

Graph

Figure 4.16: Interaction Between Crossover Type and Graph.

These results indicate that the ideal crossovers are disruptive rather than conservative.
The explanation for this may lie with the gradient ascent step, which is guaranteed to move
an individual labelling to its “closest” local optimum. Greedy or unbalanced operators
will tend to make better partial labellings segregate together during recombination. Since
these labellings specify the optimum located by the last gradient ascent step, it is unlikely
that future gradient ascent will move the labelling to a different optimum. In other words,
unbalanced operators only make minor changes to locally optimal labellings and may thus
“stall” the algorithm. Gradient ascent itself is a greedy operator, the major drawback of

which is convergence to local optima. The global optimisation properties of the genetic
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algorithm should ameliorate this shortcoming, but the application of a greedy crossover

would tend to worsen the situation.

According to this argument, the best crossovers should be those which cause maximal
disruption. Those are standard uniform and balanced contiguous crossovers; geometric
crossover does not cause as much disruption as two point crossover, as discussed in section
4.2.2. The algorithm benefits from such operators because local optima are severely dis-
rupted - damage which can always be repaired by gradient ascent. The disruption caused
by such crossovers is qualitatively different from that caused by mutation. Where the
parents both agree as to the labelling of a node, no crossover can change that labelling:
crossover only changes the regions of disagreement between the parents. Mutation, is
not so discriminating, changing the labels of all nodes with equal probability. This may
explain why genetic algorithms tolerate high crossover rates for disruptive crossovers, but

do not tolerate high mutation rates.

4.5 Summary

This chapter has considered the problem of solving ambiguous labelling problems. Where
there is significant ambiguity, the labelling process should not make arbitrary decisions
as to the interpretation, but present as many possible interpretations as possible to some
higher level module. Genetic algorithms were suggested as a framework for simultaneously
finding alternative labellings. Two paradigms for understanding hybrid genetic algorithms
were suggested: the first, that the hybrid algorithm is fundamentally a genetic algorithm
with an extra optimisation step; and the second, that the algorithm is really gradient

ascent with a global optimisation framework.

A preliminary study for line labelling showed that the hybrid genetic algorithm with a gra-
dient ascent step could be suitable for ambiguous problems. The algorithm simultaneously
produced several interpretations of line drawings, among which the labellings of strongly
constrained junctions were much less subject to variation than the labellings of weakly
constrained junctions. It was also found that the algorithm could localise the inconsis-
tencies in drawings of impossible objects. Neither of the two sets of algorithm control

parameters drawn from the literature were found to give adequate algorithm performance.

The graph matching framework developed by Wilson in (Wilson 1995) was adapted for the
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ambiguous case by introducing a new measurement classification scheme. The estimated
degree of ambiguity in the problem can be used to control the classifier. A preliminary
experimental study showed that the hybrid genetic algorithm is a realistic method for
obtaining multiple solutions to ambiguous graph matching problems. An initial study of
the algorithm control parameters indicated that given a sufficient number of iterations,
greater solution yields were obtained with larger populations. As with line labelling, the
two sets of algorithm control parameters drawn from the literature were found to be

inadequate.

In an attempt to improve the algorithm’s optimisation performance, five different “opti-
mal” crossover operators were proposed. It was found that the more disruptive, “balanced”
operators, which distributed consistent labels equally between the offspring, outperformed
their greedy counterparts; the best crossovers were found to be uniform and balanced
contiguous crossover. These findings suggest that the paradigm in which the genetic al-
gorithm provides initial guesses for gradient ascent is more likely to lead to better models

of algorithm behaviour.

A common feature of the two experimental studies presented in this chapter has been the
inadequacy of the “standard” genetic algorithm control parameter sets drawn from the
literature. It is clear that there is much to be gained from choosing optimal algorithm

control parameters, and it is to this which we turn our attention next.
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Chapter 5

Optimal Genetic Algorithm

Control Variables

This chapter addresses the problem of choosing an optimal set of control variables® for the
genetic algorithm. Its major novel contribution is the development of empirical models of
genetic algorithm performance for line labelling and inexact matching problems based on
sets of factorial experiments. The experimental study reported is one of the most extensive
to date in terms of the amount of data gathered. Furthermore, the models developed here

are confined to a single problem domain, unlike previous attempts (Schaffer et al. 1989).

The control variables for the genetic algorithm are generally taken to be the population

2 crossover rate and mutation rate. There are also several

size, number of iterations,
other things which affect algorithm performance. These are selection strategy, crossover
type, evaluation function, problem size and structure, and any additional parameters, for
example the label error probability, P, in graph matching and line labelling. This study
will focus on criterion, crossover type and problem size in addition to the standard four

variables. It will also consider the utility of adding a gradient ascent step and the control

T use the term “control variable” in preference to the more usual “control parameter” because these
quantities are not parameters in the statistical sense.

2Tt is more usual to use number of fitness evaluations instead of iteration limit to provide fairer compar-
isons between genetic algorithms and other optimisation techniques. This is justifiable because in many
real problems, the evaluation step will be the critical operation of the optimisation algorithm. However,
this study is concerned solely with the genetic algorithm, and the number of iterations may be important

irrespective of the population size.
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of the error probability, P,.

The next section introduces and motivates the experimental study, then the experimental
design is described in section 5.2. Results for line labelling and graph matching are given
and discussed in sections 5.3 and 5.4 respectively. Finally, section 5.5 summarises the

main points of this chapter.

5.1 Introduction

There are two aspects of the genetic algorithm’s behaviour which are of interest here, the
performance (i.e. how good the final population is), and the solution yield (i.e. how many
different good solutions the algorithm finds). This study will attempt to find analytical
empirical models relating algorithm performance and solution yield to the control variables
and other factors. Unfortunately, one is generally more interested in inverting these models
to determine what control variable settings will lead to a given outcome. This is by no
means an easy problem in this case, but given an analytical model, numerical optimisation

techniques can be brought to bear. The goals of this study are:

e Practical: to establish an optimal combination of genetic algorithm control vari-

ables.

e Theoretical: to examine the relationships between algorithm performance and so-

lution yield, and the control variables.

e Technical: to establish how useful the model is in setting control variables - i.e.

how robust it is with respect to interpolation and extrapolation.

There are two criteria to choose from, three to four crossover types and any number of
problems in addition to the four standard control variables. This represents a very large

space of possibilities to explore. The literature provides four experimental alternatives.

First, treat the choice of optimal parameters as a combinatoric optimisation problem in
itself and use a genetic algorithm or other technique to determine the optimal parameter
set. This approach was adopted by Grefenstette in (Grefenstette 1986). It begs two
questions. The first is what control variables would be appropriate for such a “control

variable meta-optimiser”. The second is how can the results be generalised so that they
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apply to more than one problem instance. Grefenstette’s study suffered from the additional
weakness of comparing the outcomes of several random processes (the genetic algorithms)

on the basis of very small sample sizes (1 in most cases, 5 at best).

Second, look at the effects of the different variables one or two at a time while keeping
the others constant. For example, in (DeJong and Spears 1990), DeJong and Spears com-
pared various crossover types and population sizes, but the other control variables such
as mutation rate and crossover rate were held constant. These results will not necessarily
generalise well. For example, it is plausible that crossover type and mutation rate may
interact, since highly disruptive crossovers act like mutation in some respects: uniform
crossovers change labellings at random whereas contiguous crossovers preserve long sub-
sequences. So the crossover type may have some influence over which mutation rate is
appropriate. Ultimately, it is impossible to simultaneously examine every combination of

variable settings, but this sort of compromise is best postponed as long as possible.

Third, extrapolate from either Grefenstette’s or DeJong’s recommendations (or somebody
else’s). This may be a reasonable way to start out, but is really just an exercise in trial

and error.

Fourth, follow the example of Schaffer and co-workers in (Schaffer et al. 1989) and use a
factorial experimental design, including all variables which are likely to have an effect on
the outcome. This is the best alternative, since it allows the experiment to be analysed
with standard statistical techniques. Paradoxically, less work is required for this approach
than to follow the second approach for each variable in isolation (see pages 150 and 151 of
(Cochran and Cox 1957)), and to extrapolate based on the results of such a study can be
no worse than any other extrapolation. Schaffer et al.’s study was conducted mostly on
numerical optimisation problems, so it can not be assumed that their results will generalise
to other domains. Indeed, they found significant interactions between the test problems
and the control variables. However, a major flaw in their experimental design was to mix
problems from different domains, resulting in a model in which the problem may be treated
only as a qualitative factor. In (Miihlenbein 1994), Miihlenbein showed that Schaffer et
al.’s model does not extrapolate well. Nevertheless, their approach was fundamentally

correct, and it is this paradigm which will be adopted in this study.
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5.1.1 Terminology

In statistical terminology, one is interested in an “outcome” or “response” variable which
depends on three additive terms: systematic effects from known, independent “explanatory
variables”, systematic effects of unknown origin, and random effects or errors. Experiments
are usually randomised so that the unknown systematic effects are absorbed into the
random component. However, if one is confident that the unknown component is zero,

randomisation is not necessary.

When explanatory variables may only take certain values, they are referred to as “quan-
titative factors”, and the values as “levels” of the factor. Explanatory variables may also
be “class variables” or “qualitative factors” when they represent categories such as gen-
der or the presence or absence of some attribute. It is possible to treat any explanatory
variable as a class variable by arbitrarily dividing its domain, for example into age-groups.
Quantitative factors have a dual existence, being treatable as arithmetic quantities or

classes.

5.2 Experimental Design

This study uses factorial experiments in which all relevant explanatory variables are ex-
amined simultaneously. Factorial designs have two major advantages over other designs
(see pages 150 and 151 of (Cochran and Cox 1957)). First, they allow one to investigate
quantitatively the interactions between explanatory variables. Second, they permit the
quantification of the relationship between the outcome and the explanatory variables with

a high degree of precision in a single experiment.

To enjoy these advantages, each possible combination of variable levels must appear once.
Such a design is said to be fully crossed and balanced. If each explanatory variable has
[ levels, the number of combinations to be tested is ]_[Jj-zl [; for J explanatory variables,
which can rapidly become large, making both the conduct and analysis of the experiment
difficult. Some statistical texts recommend that the number of factors be reduced using
preliminary experiments, e.g. Cochran and Cox (Cochran and Cox 1957); others that a

factorial design can serve as a summary of the data, e.g. Hays (Hays 1994). This chapter
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takes the view that it is worth using the largest feasible design and then simplifying.3
However, the fact remains that for a large number of factors, the number of levels per
factor must be kept small for the experiment to be feasible. For example, a design with
five factors each having two levels, requires that 32 combinations be tested. If there are
four levels per factor, there will be 1024 combinations to consider. This is a problem
because the genetic algorithm control variables and problem size can take very many
different values and it would be best to look at as many of these as possible. It would also
be convenient to do some preliminary experiments to determine the interesting ranges of

these variables.

A cheaper alternative to a fully crossed balanced factorial design is a fractionally replicated
factorial or graeco-latin square design, such as that shown in figure 5.1. This design has
the property that no level of any explanatory variable appears more than once with any
level of any other explanatory variable: there are no pairwise correlations between the
explanatory variables. This allows the investigation of individual effects of explanatory
variables using fewer combinations. For example, four factors of nine levels each require
9* = 6561 combinations in a full factorial design, but only 92 = 81 combinations in a

graeco-latin square.

1 2 3
1| A, B, Cg
IT|Bs Co A,
I | C, Az Ba

Figure 5.1: A 3x3 Graeco-Latin Square.

The price to be paid for reducing the dimensionality in this way is an inability to consider
interactions since the co-occurrence of, say, 2 and A cannot be distinguished from the
co-occurrences of 2 and III, 2 and G, III and 8, or A and 3. However, the graeco-latin
square allows one to consider more levels per factor than the full factorial design for the

same computational effort.

In these experiments, the genetic algorithm control variables will be in either graeco-latin

3For example, consider a design with 7 explanatory variables. When analysing such an experiment,
very complex interactions involving more than three variables at a time could be ignored. However, at a
later date, the data could be re-examined and these interactions modelled if necessary. This option would

not be available had 5 out of the 7 variables been eliminated at the outset.
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square or fully crossed configurations, and this arrangement will in turn be embedded in
a fully crossed design for criterion, crossover type and problem size. These arrangements

are shown in figure 5.2.

Graeco-Latin Fully Crossed
123 Populationsize=1, 2, 3 123
B.IC Iteration limit =1, 11, Il
11| By Cp Crossover rate = A, B, C !
[1Bg Cu Ay Mutation rate = o, B3, y I
Y

B
111 Cy|Ag By \/ Il

a

| ;
Jlevelsof Y
problem size A B C

| levels of
criterion

Figure 5.2: Experimental Design. The genetic algorithm control variables are shown with 3 levels
each for simplicity. In practice, there were 9 levels for the graeco-latin square configuration (81

combinations) and 4 levels for the fully crossed configuration (256 combinations).

To maximise the savings, the explanatory variables with the largest numbers of levels are
placed in the graeco-latin square. It is worth emphasising that the purpose of the graeco-
latin square arrangement is to explore wider ranges of factor levels. The analysis cannot
be based on the graeco-latin square experiments because interactions between the genetic
algorithm control variables are highly likely to occur. However, this method can be used
to find suitable ranges of the control variables and check that the response is continuous

over the domain of interest.
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Since this study will be conducted on a computer, there are no unknown systematic

effects so there will be no randomisation. The only source of uncontrolled variation in the

experiments is the pseudo-random number generator.*

5.3 Line Labelling

This section compares the effects of

linear vs. Bayesian labelling criteria (equations 3.13 and 3.9 from chapter 3),
e annealing vs. no annealing of the label error probability, P,

four crossovers: uniform, one point, two point and half-uniform crossover (Eshelman

1991),

the addition of a gradient ascent step,

in addition to the four control variables on algorithm performance and solution yield for
several different line labelling problems. To render the analysis of the experiments feasible,

gradient ascent and annealing of P, are not varied within each experiment.

Since the line labelling problem is exact, it is possible to identify whether or not the
algorithm has located a global optimum. Thus, algorithm performance can be measured
by a binary variable which takes the value 1 if the algorithm has located a global optimum
(the algorithm is stopped when this happens, so the number of iterations is really an upper
limit). Analysing binary outcome variables is inconvenient when attempting to estimate
the probability that the algorithm will find a global optimum. So 20 program runs per
factor level combination will be performed, and the number of successful runs will be

treated as having a binomial distribution with denominator 20.

Similarly, in this exact case, it is also possible to count the number of distinct globally

optimal solutions located by the algorithm. This quantity may range from zero to the pop-

4The assumption of no unknown systematic effects is almost always made when using computers in
general: without it computers would not be much use. In contrast to the real world, it is the assumption of
randomness which may cause problems. The pseudo-random number generator used in these experiments
has been tested to confirm that it has a suitably long period and produces statistically uncorrelated

sequences of numbers.
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ulation size, and is therefore binomially distributed on the population size. Ten program

runs (replications) were performed for each combination.

The experiments were conducted on a SGI Origin2000 computer with 32 180MHz MIPS
R10000/R10010 processors. Timings vary, but each experiment required between four
and eight days of computer time (the graph matching experiments described later could
take up to a fortnight of computer time). The actual time taken for each experiment
was reduced to about a day by running parts of the experiment on separate processors.
Beyond this, no advantage was taken of the parallel architecture of the machine. Parallel

implementation, although an exciting possibility, is beyond the scope of this thesis.

The next section gives some preliminary results, then section 5.3.2 describes the full facto-
rial experiments and their analysis. Algorithm performance is considered in section 5.3.3,

and solution yield in section 5.3.4.

5.3.1 Preliminary Study

This preliminary study used only the linear criterion with no annealing of P, or gradient
ascent and only uniform or two point crossovers. The algorithm was tested on the nine
synthetic line drawings shown in figure 5.3. The sizes of the search spaces for these
drawings are 16384, 65536, 262144, 7.2 x 1016, 1.2 x 10?* and 1.9 x 10?5 respectively. The
control variables were arranged according to a 9x9 graeco-latin square with values shown

in table 5.1.

Variable Values

Population Size | 10, 20, 30, 40, 50, 60, 70, 80, 90

Iteration Limit | 10, 20, 100, 200, 250, 300, 350, 400, 500

Crossover Rate | 0.10, 0.20, 0.35, 0.24, 0.60, 0.65 , 0.75 , 0.85, 0.90
Mutation Rate | 0.001, 0.005, 0.010, 0.020, 0.050, 0.075, 0.100, 0.200, 0.300

Table 5.1: Factor Levels in the 9x9 Graeco-Latin Square.

Combined plots of the effect of varying the mutation and crossover rates and the population
size are given in figures 5.4 and 5.5. Six line drawings and two crossover operators were
considered. Table 5.2 gives a key to the figure legends. These plots give a broad picture of

the relationships between parameter values and success rate. The iteration limit appeared
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(a) 7 lines (b) 8 lines (c) 9 lines

(d) “House” (e) “Groove 27 (f) “Wedding Cake”

Figure 5.3: Test Drawings. Top row: 7, 8 and 9-line figures. Bottom row: 14, 20 and 21-line
figures. 28, 40 and 42-line problems can be constructed using disconnected copies of the drawings

in the bottom row.

less important in these experiments. Two point crossover was found to be better than

uniform for most problems.

Problem Crossover

7 7 line drawing (figure 5.3 (a)) 2pt  Two point
8 8 line drawing (figure 5.3 (b)) uni  Uniform
9 9 line drawing (figure 5.3 (c))

h  “House”, 28-line version (figure 5.3 (d))
“Groove 27, 40-line version (figure 5.3 (e))

“Wedding Cake”, 42-line version (figure 5.3 (f))

o

£

Table 5.2: Key to Figure Legends. For figures 5.4 and 5.5

The most striking feature of these plots is the sensitivity to mutation rate (panel (a) in
figure 5.4): almost independently of problem size, the optimal mutation rate seems to be
less than 0.1. The scalability of mutation rate effects is unsurprising since mutation is genic
(i.e. more genes, more mutations). The fact that low but non-zero values of the mutation
rate are beneficial agrees with a general view in the genetic algorithm literature that

mutation is a necessary source of background noise, allowing the exploration of new regions
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Effect of Mutation Rate on Success Rate (N = 180)
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Figure 5.4: Effect of Varying the Mutation and Crossover Rates. Note the marked improvement
in success rate at lower mutation rates, especially around 0.02. For each problem there is a peak
in success rate for some crossover rate in the range [0.6,0.9]. There is also an upswing at lower

crossover rates.

of the search space, but that it is not the primary mechanism of algorithm convergence.

The crossover rate does not appear to be as important as one might have expected (panel

(b) in figure 5.4). Higher crossover rates do seem to improve success rate up to some upper
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Effect of Population Size on Success Rate (N = 180)
T T T T

1 T

Q
kol
4
:
@
02 i
01 |
0 ! gl R S, | R S
10 20 30 50 60 70 80 90
Population Size
(a) Smaller Populations
Effect of Population Size on Success Rate (N = 100)
09 T T T T T T
Q
kol
4
:
@

O. 1 J Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Population Size

(b) Larger Populations

Figure 5.5: Effect of Varying the Population Size. There appears to be a point beyond which
relatively little is gained by increasing population size. Additional experiments (panel b) indicate

that it is hard to solve the large problems even with a population size of 2000.

limit beyond which there is a falloff. The effects appear slight and it is possible say only
that the optimal crossover rate will probably occur in the range [0.6,0.9] for each problem.
Since like mutation rate, crossover rate is defined per gene, its effects might be expected

to scale with the problem size.
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The plots in figure 5.5 suggest that a population size of at least 30 is necessary for optimal
success rates with the smaller problems, and that in these cases there is little to be gained
from increasing the population size above this threshold. However, panel (b) of the same

plot shows that the plain genetic algorithm does not scale at all well with problem size.

5.3.2 Full Factorial Experiments

In all, seven factorial experiments were done for line labelling: one without gradient ascent,
three with gradient ascent but no annealing of P, and three with both gradient ascent and
annealing of P,. Annealing P, was found to have little effect, so these experiments will not
be discussed in detail. Suffice to say that P, was originally used by Wilson and Hancock in
(Wilson 1995) and (Hancock 1994) to iteratively harden labelling constraints, and hence
avoid local optima. The genetic algorithm is a global optimiser, and so presumably has

no need for such constraint hardening.

This leaves three experiments involving gradient ascent. Two of these consider the success
probability as the outcome variable, and have a single replication of 8192 cells for a total of
8192 observations over 163840 program runs. The third considers the number of optimal
solutions found and has 2048 cells with ten replications to give 20480 observations from
20480 program runs. The explanatory variables are summarised in table 5.3: for clarity,
factor names, e.g. “LINES”, will be used in the text, and variable names, e.g. “z”, will
be used in formulae. Statistical models were fitted using NAg’s GLIM Version 4 update
8 (Francis et al. 1993). There is insufficient space to give full details of the statistical

modelling involved.

Linear Models

The analysis will consist of fitting generalised linear models (McCullagh and Nelder 1989)

to the data. These models are of the form:

y=g'(n+e (5.1)

where y is the outcome variable, g is the “link function” (q.v.), which transforms y so

that it matches the range of the “linear predictor”, n, and € is the effect of random errors.
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Factor, Variable | Description Values

COST, we Criterion type | linear, Bayesian

CROSS, wx Crossover type | uniform, two point, half-uniform, geometric

LINES, zr, Problem size 9, 21, 28, 40

POP, zp Population size | 50, 100, 150, 200 (without gradient ascent)
10, 20, 30, 40 (with gradient ascent)
fixed at 40 (for solution yield experiments)

GEN, z¢ Iteration limit | 50, 150, 250, 350 (without gradient ascent)
2, 4, 6, 8 (with gradient ascent)

P, xx Crossover rate | 0.2, 0.4, 0.6, 0.8

P, xpm Mutation rate | 0.01, 0.02, 0.03, 0.04

Table 5.3: Factors Included in Line Labelling Experiments.

Since the error term, ¢, is random, its mean is assumed to be zero and the expected value
of g(y) depends only on the linear predictor, 7, which in turn depends on the explanatory

variables as follows:

(5.2)

n= 3 Bz

0<j<J

where J is the number of explanatory variables, and ; is the coefficient of the G ex-
planatory variable, z;. It is conventional to take zo = 1 so that 3y represents a constant
offset. Such models are known as “generalised linear models” (McCullagh and Nelder
1989) because they are linear in the parameters §, but not necessarily in the variables z.
Indeed, any transformation of  may be substituted, such as its logarithm or reciprocal,

or even K polynomials of degrees K, K — 1, and so-on down to 1.

The link function, g, is used to map the domain of the response variable, y, onto the range
of the linear predictor, 1, which is taken to be (—o0,+00). In the particular case when
y is a proportion the link function transforms [0, 1] onto (—oo, +00). There are four such

link functions of interest; they are:

e The logistic or logit link, logit(y) = In (%), which has a natural interpretation as

the log-odds of the event associated with y.
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e The probit link, probit(y) = ® !(y), where ®(a) is the standard Normal integral

from —oo to a.
e The complementary log-log link, cll(y) = In[— In(1 — y)]

e The parameterised link function introduced by Aranda-Ordaz in (Aranda-Ordaz
1981) which is g(y; @) = In [(H’{%—l] for @ > 0. This has two important special
cases: when o = 1, the function is equivalent to the logistic link, g(y; 1) = logit(y);

and lim,_,0 g(y; @) = cll(y), the complementary log-log link.

The model algebra developed by Wilkinson and Rogers (Wilkinson and Rogers 1973) will

be used to describe the form of the linear predictor. The notation is shown in table 5.4.

A+B denotes the main effects BaA+ OB

A.B denotes the interaction BaBAB

AxB is equivalent to A+B+ A.B

A<k>  denotes the polynomials Bar X4+ ...+ ﬂAkX,IZ

M=x**n represents the cartesian product M"

Table 5.4: Summary of Model Algebra. A and B are individual terms and M is a set of terms.

5.3.3 Swuccess Rate

Plain Algorithm and Gradient Ascent Hybrid

In these experiments, the addition of a gradient ascent step was found to greatly improve
algorithm performance: it achieved a higher success rate with one fifth of the population
size and one twenty-fifth of the iterations when compared to the plain algorithm. This
section does not dwell on the plain algorithm, but considers some contrasts between it and
the hybrid. Perhaps the most interesting differences between the hybrid and non-hybrid

algorithms concern the criterion type and the mutation rate.

Figure 5.6 shows the average success rates for each criterion with the plain and hybrid al-
gorithms. The obvious interpretation is that gradient ascent does better with the Bayesian
criterion since it is less likely to get stuck in local optima than the linear one (Hancock

1994).

93



0.8

0.6

Success Rate

04

02

0.8

0.6

Success Rate

04

02

Linear Bayesian

(a) Plain Algorithm

Linear Bayesian

(b) Hybrid Algorithm

Figure 5.6: Effect of Criterion on Success Rate. The improvement for the Bayesian criterion very

greatly outstrips that for the linear one. The error bars in this and subsequent figures reflect the

precision of the mean, not the underlying variation in the data.

94



Another important difference is the effect of mutation rate on success rate, shown in figure
5.7, where the hybrid algorithm appears much less sensitive to changes in mutation rate
than the plain one. This is presumably because gradient ascent will tend to correct small
disturbances caused by mutation, hence the hybrid algorithm will tolerate higher mutation

rates.
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Figure 5.7: Effect of Mutation Rate on Success Rate. With gradient ascent, the algorithm appears

relatively insensitive to mutation rate.
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The histograms of success rate, shown in figure 5.8, are also very different. The histogram
for the plain algorithm is bimodal, indicating that some problems were very hard for
this algorithm while others were very easy. The histogram for the hybrid algorithm has
only one mode, suggesting that all the problems were quite easy for the algorithm. For
the hybrid algorithm, about 74% of the observations coincide with the mode, indicating
that the algorithm located the global optimum in almost all cases. Since the hybrid
algorithm almost never failed to solve a problem in all 20 trials, it would appear that this
algorithm scales better with population size than the plain one. The hybrid algorithm is

now considered in some detail.

Gradient Ascent Hybrid

As the histogram in panel (b) of figure 5.8 indicates, three quarters of the program runs
succeeded in each of the 20 trials. A salient question at this point is whether there is any
variation at all over some of the explanatory variables. Table 5.5 shows the proportion
of cells for which the observed success rate was 100% for each level of the explanatory
variables. Tabulating the double interactions between each pair of explanatory variables
(COST.LINES is shown in table 5.6 as an example) shows that only the following combi-
nations were saturated: COST = Bayesian and LINES = 9 or 28; POP = 30 or 40 and
LINES = 9; GEN = 8 and LINES = 9. There may still, therefore, be scope for modelling,

especially with the linear criterion.

Factor / Level 1 2 3 4
COST 1794 (0.44) 3831 (0.94) ; ;
CROSS 1369 (0.67) 1422 (0.69) 1405 (0.69) 1429 (0.70)
LINES 2011 (0.98) 1358 (0.66) 1492 (0.73) 764 (0.37)
POP 1105 (0.54) 1350 (0.66) 1530 (0.75) 1640 (0.80)
GEN 1123 (0.55) 1422 (0.69) 1524 (0.74) 1556 (0.76)
P, 1311 (0.64) 1384 (0.68) 1449 (0.71) 1481 (0.72)
Py, 1373 (0.67) 1395 (0.68) 1420 (0.69) 1437 (0.70)

Table 5.5: Saturated Factor Levels for Hybrid Algorithm. The total number of cells at each level
is 4096 for COST and 2048 for the other factors. The table shows counts (proportions) of cells

which had 20 out of 20 successes for each factor level.
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Figure 5.8: Histograms of Success Rate. None of the test problems seemed hard for the hybrid

algorithm. The plain algorithm clearly did not find the global optimum in some cases.
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The initial statistical model fitted was the quadratic response surface,

1+(COST+CROSS+LINES+POP+GEN+P,+P,;,) **2 (5.3)
+(COST+CROSS) * (LINES<2>+P0P<2>+GEN<2>+ P, <2>+P,,<2>)

which has a deviance® of 6776.9 on 8124 degrees of freedom (d.f.). The model contains
68 terms and appears to be somewhat overfitted. The standard method for simplifying
such models is to observe that for binomial data, if two models M1 and M2 are nested -
i.e. M2 is a subset of M1 - the difference in their deviances is approximately distributed
as x2 on the difference in their d.f. This approximation is good when the total number
of binary observations is high (as it is here being 163840). Thus, terms may removed or
added to a model, their significance being judged on the basis of x2-tests in a procedure

analogous to the analysis of variance. A good introduction to this topic is given by Collett

in (Collett 1991).

LINES
COST 9 21 28 40
Linear 987 336 468 3

Bayesian | 1024 1022 1024 761

Table 5.6: Saturated Cells Between COST and LINES. The maximum possible number of satu-

rated cells is 1024. Only the 40-line problem presents problems to the Bayesian criterion.

The analysis of deviance for the interactions of COST in model 5.3 is given in table 5.7
as an example. There is insufficient space to give full analyses, so only the results will be
quoted. Table 5.7 shows that in addition to an obvious main effect, four out of six double
interactions are significant. This means that there are really two different models, which
would be cumbersome to consider simultaneously. The modelling will therefore be done

separately for each criterion.

5The deviance is a summary measure of goodness of fit derived from the likelihood ratio of the current
model to an ideal one with a parameter for every observation. It is approximately distributed as x2 on the

residual degrees of freedom of the current model.
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Interaction Deviance change d.f. change p-value
COST.CROSS 24.05 3 0.00
COST.LINES 136.7 2 0.00
COST.POP 132.2 2 0.00
COST.GEN 0.1460 2 0.93
COST. P, 19.58 2 0.00
COST. P, 0.9683 2 0.62

Table 5.7: Analysis of Deviance for Interactions of COST. The p-value indicates the probability
that such a large deviance change could have arisen by chance if the term in question really were

insignificant.

Bayesian Criterion

As shown in table 5.5, 94% of cells with the Bayesian criterion have 100% success rates.
The interaction tabulated in table 5.6 indicates that this criterion virtually guarantees
success for the 9 and 28-line problems given the other explanatory variables. Because of
this, it is only sensible to consider models which are linear in the explanatory variables:
there is insufficient variation in the data set to support more complex models. The first

model is:

1+CROSS+LINES+POP+GEN+P,+P,, (5.4)

which has a deviance of just 675.72 on 4087 d.f. The part of the linear predictor involving
CROSS is shown in table 5.8. For binomial data, the t-value has a standard Normal

distribution under the null hypothesis, g = 0.

Term B se.(8)  t-value p-value
CROSS = two point -0.2850 0.1214 -2.348 0.02
CROSS = geometric -0.1964 0.1231  -1.595 0.11
CROSS = half-uniform 4.700x107'*  0.1275  3.687x1013 1.00

Table 5.8: Parameter Estimates for CROSS. The t-value is the ratio of the estimate to its standard

error, 3 / s.e.(ﬁ). The significance test is one-tailed.
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By this criterion, only two point crossover has a parameter significantly different from zero,
so uniform, geometric and half-uniform crossovers may be amalgamated, and an offset for
two point crossover included, in future models. An analysis of the link function, given in

table 5.9, showed that the probit link gave the best fit.

Link function Deviance

Logit 679.15
Ideal Aranda-Ordaz 675.64

Complementary log-log  689.47
Probit 674.11

Table 5.9: Goodness of Link Test. There is no formal significance test: the link function with the
lowest deviance gives the best fit, which in this case is the probit link. For the Aranda-Ordaz link,
the constructed variable technique described in (Collett 1991) was used to estimate the parameter

of the link function.

It was also found that taking the logarithms of POP and GEN improved the fit. This

leads to the model

r = probit~!(n)
n = 3.659 —0.1786zr + 1.176 Inzp + 1.080 In zg+
1.010zx + 6.066z s + 0.1243wx ’ (5.5)

0 for two point crossover

1 otherwise

This model will help achieve the primary goal of finding optimal conditions for the algo-

rithm since the Bayesian is the better of the two criteria.

Linear Criterion

This was investigated in pursuit of the second goal, to shed some light on the relationships
between the explanatory variables and the outcome. The Bayesian criterion worked so
well that there was little scope for such investigation in the previous section, so the linear
criterion was used for this purpose. Initial analysis suggested that the complementary
log-log link function was the most appropriate. Again, it appears on the basis of t-values

that uniform, geometric and half-uniform crossovers could not be distinguished, so CROSS
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will be redefined with only two levels: two point and non-two point.

Since there are only four levels of LINES, POP, GEN, P, and P,, the most complex

response surface supported is cubic:

1+CROSS* (LINES<3>+1n(POP) <3>+1n (GEN) <3>+P,<3>+P,,<3>
+(LINES+1n(POP)+1n (GEN) +P,+P,, ) **2) (5.6)
+(LINES+1n(POP)+1n (GEN) +P,+P,,) **3

which has a deviance of 3140.6 on 4034 d.f. This model can be simplified using repeated

analysis of deviance to

1+CROSS* (LINES<3>+1n (GEN) <2>) +1n(POP) + P,<2>+ P, <2>
+(LINES+1n(POP) +1n (GEN) +Py+ P, ) **2) -1n (POP) . P, (5.7)
+LINES.1n(POP) . 1n(GEN)+LINES.1n(GEN) . P,

which has deviance 3179.2 on 4068 d.f. Since these models are nested, the deviance
change of 38.6 can be compared to x? on 34 d.f., and found to be insignificant. This is the
simplest model which adequately describes the data. A plot of the Anscombe residuals
given in figure 5.9 for this model shows no clear pattern apart from some overfitting to
the smallest problem, and only about 2% of the residuals are significantly large at the 5%
level.5 Although a significantly large residual implies a poor fit, one would expect about

5% of the residuals to be large purely by chance.

The functional form of model 5.7 contains 28 terms and is given in equation 5.8. This
is a very complex six-dimensional function. The only way to visualise it is to hold some
of the explanatory variables constant. Figure 5.10 shows the success rates for the factor
levels of LINES, POP, GEN, P, and P,,. The least important variables appear to be P,
and P,,. The coefficients in the model in equation 5.8 for interactions involving P, and
P, are smaller than those for the main effects, suggesting that the interactions are not
as important as the main effects. If three of POP, GEN P, and P,, are fixed, the success
rate can be plotted as a function of LINES and the fourth variable. These are shown in

figures 5.11 and 5.12 for POP and GEN.

8 Anscombe residuals (Anscombe 1953) are constructed so as to have a standard Normal distribution

for binomial data. A residual of magnitude 1.96 is therefore significantly large at the 5% level.
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Figure 5.9: Anscombe Residuals for Model 5.7. The plot shows that the model overfits the 9-line

problem. Apart from that there is no pattern to the residuals.

ro= cll7(n)

n = 2.401—1.213z;, + 0.05144z% — 0.0007183z% + 1.943Inzp+
2.811Inzg — 0.4411(Inzg)? + 2.325xx — 0.9407x3 +
42.46xpr — 184.9$?M —0.01940z;, Inzp — 0.6367Inzp Inzo—
0.003289z Inzg + 0.01239z,zx — 0.3246zx Inz—
5.948z 5 Inzp — 0.3023z 25 — 9.499z 3 In 26— > (5.8)
10.03zxzpr + 0.019702; InzpInzg + 0.46752 1,2 In 2
wx (—1.116 + 0.1529z 7, — 0.007309z2 + 0.0001018z3 +
0.70891In zg — 0.2670(In z5)?)

0 for two point crossover

wx =
1 otherwise
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slope indicates that a particular variable has a greater effect on the success rate. The ranges of the
variables must also be taken into account - for example, only 21—5th of the range of mutation rate is

explored.
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Figure 5.11: Plot of Model 5.8. Success rate is plotted as a function of LINES and POP, with
GEN fixed at 8, P, fixed at 0.8 and P, fixed at 0.04.
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Figure 5.12: Plot of Model 5.8. Success rate is plotted against LINES and GEN with POP fixed

at 40, P, = 0.8 and P,, = 0.04.

Figure 5.13: Plot of Model 5.8. Success rate is plotted as a function of POP and GEN for the
40-line problem, P, fixed at 0.8 and P, fixed at 0.04.
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Although this model explains the data well by statistical criteria, there remains some
question as to its validity. The 28-line problem seems to be easier for the algorithm than
the 21-line problem. This difference is not very great but it does account for the cubic
polynomial in LINES: any curve fitted to these points must have two local optima and must
therefore be cubic or of higher order. There must be additional aspects of the problems
which make them easy or hard, apart from the number of lines in the drawing. These
aspects are probably structural - neither the numbers nor ratios of the different junction
types are any better at explaining the data than drawing size. These structural differences
between line drawings mean that one must be careful about fitting models polynomial in
LINES since they are likely to be responding as much to structural variations among
problems as to problem size. In view of this, attention should perhaps be paid to the

relationships to POP and GEN, shown in figure 5.13.

The success rate increases with the logarithm of the population size confirming the obser-
vation made at the end of section 5.3.1 that there is a limit to the benefit of increasing
the population size. This is an interesting phenomenon because the size of the search
spaces for these problems are so large that it is very unlikely that a global optimum will
be found in the initial population (which is generated at random). Of course, all that is
really necessary is that a sufficiently good initial guess for gradient ascent is present in the

population: this often occurs with the 9-line problem but rarely with the other problems.

It is, however, virtually certain that all labels will appear at all loci. There are only four
labels, which are equiprobable, so the probability of a label not appearing at a particular

locus is pg, =4 x (3/4)*P. The probability of this happening at least once is

P(at least 1 missing label) = 1 — P(no missing labels)

= 1-(1=pd)™ (5.9)

This is shown in figure 5.14, together with the expected number of missing labels (LINES x
Pa), as a function of LINES and POP. For smaller problems, these are effectively zero for
population sizes larger than 30. This agrees with the results of the preliminary study and
suggests that POP should increase with LINES so that the probability of missing labels
in the initial population is very small. If this probability is to be no greater than some

threshold, P*, manipulation of equation 5.9 gives:
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over all loci. (b) Expected number of missing labels over all loci.
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1
In|1—(1—P*)*z| —In|A]
In(JA] — 1) — In|A]|

zp > (5.10)
where |A| is the size of the label set (4 in this case). The optimal population size clearly
increases with LINES with no upper bound. This formula is not amenable to direct
manipulation, but it is shown graphically in figure 5.15 that this lower bound on population

size increases at a lower rate for larger problems.
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Figure 5.15: Lower Bound on Population Size. Equation 5.10 is plotted as a function of LINES
with P* set to 0.9.

Under the assumption that the population is large enough to “guarantee” that all labels
appear at all loci, all that remains is for the genetic algorithm to assemble a good initial
guess for gradient ascent. Following this argument, it would seem that high mutation and
crossover rates are grist to the mill for gradient ascent. There must be some point beyond
which increasing the mutation rate is counterproductive, since mutation indiscriminately
perturbs the population. Such a danger does not exist for crossover, since it has its

disruptive effect only at those loci where there is disagreement as to the labelling.

To summarise, the behaviour of the hybrid genetic algorithm can be understood in terms
of gradient ascent transforming a good initial guess into an optimal solution. This happens
over the course of a single algorithm iteration. So, provided the population is large enough
to furnish a good selection of labels for all loci, crossover and mutation can stitch together
a suitable initial guess within a few iterations. Clearly, the more iterations, the larger the

chance of this occurring, provided selection pressure is not too great.
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Validity of Models

The third goal of this study is to establish how robust the models are for the purpose
of setting control variables. Only the optimal conditions for the algorithm described in
section 5.3.3 are relevant here. If the crossover type is fixed at non-two point (uniform),

equation 5.5 becomes

r = probit~!(n)
n = 3.783 —0.1786z; + 1.176Inzp + 1.080ln zg + 1.010zx + 6.066x 5,

(5.11)

The task is now to solve the inverse problem: for a given value of LINES, what values
of POP, GEN, P, and P,, will give an acceptably high success probability, p? This is
generally not an easy problem to solve; however if the surface is simple enough, numerical
optimisation techniques such as the downhill simplex method can be used (see pages 408-
412 of (Press et al. 1992) for a good description and implementation). Table 5.10 shows
how well the model predicts control variables for (1) the four problems in the data set, (2)

three new problems requiring interpolation, and (3) four problems requiring extrapolation.

The model seems reasonable for interpolation, which is not really surprising since the
process of model-fitting is essentially one of interpolation. However, the model’s perfor-
mance degrades very rapidly on extrapolation, giving excessively large estimates for POP,
GEN, and in the last case P,. The required population sizes are at odds with both the
predictions of equation 5.10 and one’s experience with genetic algorithms. On the other
hand, the predictions for crossover and mutation rates appear quite reasonable, except in
the last case. This suggests that the problem is with the form of the model. Although
there are good reasons to believe that logarithmic terms in POP and GEN explain the
algorithm’s performance well, a little re-arrangement of equation 5.11 will indicate that,
all other things being equal, the model is of the form: Inzp «x x1 + k. This suggests that
the population size should increase exponentially with the number of lines to be labelled,

exactly the opposite of the previous conclusion.

The implication of equation 5.10 and figure 5.15, is that a model should be used which is
logarithmic in LINES rather than in POP and GEN. Such a model is shown in equation
5.12, and also includes interaction terms which further increase the estimated success rate.

Since it is generally inadvisable to extrapolate with polynomial models, only linear terms
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LINES Simplex Optimum Predicted 95% | Actual p
POP GEN P, P, p | Conf. Int. for p | (N=100)
9 5 2 0.008 0.0003 1.00 [1.00, 1.00] 1.00
21 6 2 0.006 0.001 0.99 [0.99, 1.00] 1.00
28 6 3 038 0.050 0.99 [0.99, 1.00] 1.00
40 7 13 0.77 0.040 0.99 [0.99, 1.00] 1.00
26 6 3 029 0.048 0.99 [0.99, 1.00] 0.94
33 6 5 0.69 0.043 0.99 [0.99, 1.00] 1.00
36 6 8 0.79 0.041 0.99 [0.99, 1.00] 1.00
41 8 14 069 0.039 0.99| [0.99, 1.00] 1.00
53 22 32 078 0.025 0.99 | [0.98, 1.00] 1.00
65 61 59 0.71 0.076  0.99 [0.96, 1.00] 1.00
130* 1039 793 098  0.93 0.99 [0.07, 1.00] 1.00

Table 5.10: Performance of Model 5.11. The upper rows are the original test problems, the middle
rows are interpolation problems and the bottom rows are extrapolation problems. The simplex
optimum vector is shown, together with a 95% confidence interval for the outcome based on the
model, and the actual outcome over 100 trials of the algorithm. The initial guess for the simplex
method was POP=40, GEN=8, P,=0.8 and P,,=0.03, except for the row marked (*), which was
POP=800, GEN=800, P,=0.9 and P,,=0.3.

are included. Table 5.11 shows the results for this model. It still appears to overestimate
the requirements for POP and GEN but nowhere near as badly as model 5.11. On the

other hand, it is not very good for small problems.

r = probit~!(n)
20.92 — 5.597Inz, + 0.022152p — 0.1781xg + 0.6277xx — 11.64x 5+ (5.12)
0.01597zpzg + 0.1229z4x x + 5.506zG TN

3
I

The surface can be visualised by fixing P, and P, as before, and requiring that r = 0.99,
hence probit(r) = 2.326: it is shown in figure 5.16. The figure shows that the model
extrapolates stably as LINES and POP increase well beyond the range of the data set.
Whether or not the predicted value of GEN is correct is another matter: it is decreasingly

likely to be accurate as one departs further from the original data.
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LINES Simplex Optimum Predicted 95% | Actual p
POP GEN P, P, p | Conf. Int. for p | (N=100)
9 6 2 0.006 0.001 1.00 [1.00, 1.00] 0.99
21 5 1 0.0056 0.001 1.00 [1.00, 1.00] 0.57
28 5 1 019 0.00 1.00 [0.97, 1.00] 1.00
40 6 6 0.74 0.05 0.99 [0.98, 1.00] 0.90
26 5 1 0.00 0.00 1.00 [0.98, 1.00] 0.82
33 6 3 0.72  0.038 0.99 [0.98, 0.99] 1.00
36 6 5 0.52 0.044 0.99 [0.98, 0.99] 1.00
41 6 7 0.60 0.042 0.99 | [0.98, 0.99] 0.98
53 7 10 072 0.044 0.99 | [0.96, 1.00] 1.00
65 16 8 0.79 0.048 0.99 [0.93, 1.00] 1.00
130 32 11 0.74 0.044 0.99 [0.88, 1.00] 1.00

Table 5.11: Performance of Model 5.12. The upper rows are the original test problems, the middle
rows are interpolation problems and the bottom rows are extrapolation problems. The simplex
optimum vector is shown, together with a 95% confidence interval for the outcome based on the
model, and the actual outcome over 100 trials of the algorithm. Again, the initial guess for the

simplex method was POP=40, GEN=8, P,=0.8 and P,,=0.03.

5.3.4 Solution Yield

The simplest model found to explain the data well is given in equation 5.13. This is shown
under four conditions, 2 each for COST and CROSS, in figures 5.17 and 5.18, from which
it is clear that these models will only be usable for interpolation. The models in figure 5.17
have a moderately large quadratic component in GEN which suggests that solution yield
will decrease as GEN is increased. This is plausible since by genetic drift the population
will eventually become saturated and the number of distinct optimal solutions will fall to
1. The models for the Bayesian criterion in figure 5.18, however, suggest that as LINES
is increased beyond 40, the solution yield should increase. Unsurprisingly, extrapolation

of equation 5.13 gives poor results.
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Figure 5.16: Plot of Model 5.12. Number of iterations (GEN) required to achieve a success rate
of 0.99 is plotted against LINES and POP. P, and P, are fixed at 0.8 and 0.03.

y = g '(1;39.51)

n = 6.819 — 1.553z, + 0.0709522 — 0.001019z3 + 0.1428z¢—
0.03260x% + 1.140xx + 7.055z3 + 0.01235z1,7¢ + 0.01738z 7 x +
we(—17.85 + 3.221z7, — 0.14312% + 0.001919z3 — 0.09142z;+
0.02629z% — 0.7607zx — 7.077zar — 0.01154z 26—
0.02247zzx)+ > (5.13)
wx (—1.714 + 0.3029z;, — 0.0142222 + 0.000194273 )

1 for the Bayesian criterion
wo =
0 for the linear criterion

1 for two point or geometric crossover
wx =

0 for uniform or half-uniform crossover
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(a) Two point and geometric crossovers
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(b) Uniform and half-uniform crossovers

Figure 5.17: Model 5.13 with linear criterion. Solution yield as a proportion of population size.

P, is fixed at 0.8, P,, at 0.03.
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(a) Two point and geometric crossovers

(b) Uniform and half-uniform crossovers

Figure 5.18: Model 5.13 with Bayesian criterion. Solution yield as a proportion of population

size. P, is fixed at 0.8, P, at 0.03.
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A simpler, first-order model is given in equation 5.14. Figure 5.19 shows the surfaces for
the linear and Bayesian criteria, both with uniform crossover. Unfortunately, this model
is not particularly useful since it always recommends that GEN be set as low as possible

and is not much more enlightening about P, or P,.

y = g '(n;173.5)

n = 10.49 — 04774z, — 0.7547xc + 6.832x x +
24.75x s + 0.0411zze — 0.05175x L x x +
we(1.431 + 0.2992z 1, + 0.6844z¢ — 4.255z x —
9506231 — 0.0400421 7))

> (5.14)
+0.07401wx
1 for the Bayesian criterion
we =
0 for the linear criterion
1 for two point or geometric crossover
wx =

0 for uniform or half-uniform crossover

The difficulty appears to be that if the algorithm is allowed to iterate, the population will
tend to converge to a single solution. This means that the best solution yield occurs when
initial guesses leading to different optimal solutions under gradient ascent are formed from
the starting population. However, reducing the iteration limit will tend to compromise
the search for global optima. So the fundamental problem with using control variables to
influence solution yield appears to be the loss of diversity over algorithm iterations. This
loss of diversity is mediated by the selection operator, which is not directly affected by the

control variables, and which shall be investigated in chapter 6.
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(a) Linear Criterion

(b) Bayesian Criterion

Figure 5.19: Model 5.14. Solution yield as a proportion of population size. Uniform crossover

was used for both. P, is fixed at 0.8, P,,, at 0.03.
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5.4 Graph Matching

This section repeats the analysis of section 5.3 for graph matching, which is a more real-
istic (and difficult) problem than line labelling. The knowledge of line labelling from the

previous section can be used to a limited extent to guide the exploration of this problem.

Unlike line labelling, inexact graph matching does not permit the identification of global
optima purely on the basis of the matching criterion. The global optimum of the criterion
need not coincide with the best possible match since it is an indirect measure. For synthetic
graphs it is possible to calculate the fraction of correct mappings, since the ground truth
is known. This quantity, Fc, is a proportion, Nc/|Vp|, where the number of correct
mappings, Nc, is binomially distributed on the size of the data graph, |V p|. The average
fraction of correct mappings in the final population will be used to measure algorithm
performance. By the central limit theorem, this quantity is asymptotically Normally
distributed as the population size increases. The advantage of this approximation is that
it allows the use of ANOVA instead of logistic regression. ANOVA is simpler because model
terms may be considered independent in orthogonal designs. Model-fitting is also faster,
so it is feasible to look at all interactions between the explanatory variables. According to
Snedecor and Cochran (page 53 of (Snedecor and Cochran 1980)), the smallest population
size for which this approximation is valid is about 20. Ten replications are performed for

each combination.

Since it is not possible count the number of distinct global optima, the measure of solution
yield will be based on the number of distinct solutions with fractions correct above a certain
threshold. For 10% relational corruption the empirical lower bound of matching accuracy
is about 95%, so this will be taken as the threshold (see figure 3.5 in section 3.8 of chapter
3). This quantity is binomially distributed on the population size. Ten replications are

performed for each combination.

The next section discusses some previous work by Cross on graph matching with a genetic
algorithm (Cross 1998), then algorithm performance is considered in section 5.4.2, and

solution yield in section 5.4.3.
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5.4.1 Preliminaries

In (Cross 1998), Cross found that the gradient ascent step was essential if the algorithm
was to find an acceptable solution in a reasonable amount of time. For example, without
gradient ascent, a 10-node graph required a population size of 1000 and thousands of iter-
ations. Cross also used a somewhat ad hoc argument which suggested that the population
size should be made approximately equal to the number of nodes in the data graph, so
that the average Hamming distance between members of the population would be less
than some threshold. The crossover rate was fixed at 1.0 and the mutation rate was set

equal to the label error probability, P,.

Fixing the crossover rate at 1.0 seems sensible in view of Cross’s findings and the results
for line labelling. However, tying the mutation rate to P, is more contentious. The la-
bel error probability refers to a theoretical process of corruption which turns a consistent
match into an inconsistent one (Wilson and Hancock 1997; Hancock 1994), and is viewed
as a control variable which progressively tightens constraints over successive iterations of
gradient ascent. Mutation, on the other hand, is a process by which the genetic algo-
rithm recovers labels that have been lost through selection. Simultaneously reducing the
mutation rate and tightening the matching constraints will certainly lead to algorithm
convergence, but not necessarily to the best possible match. Indeed, it could be argued
that as the matching criterion progressively enforces constraints, the mutation rate should
be increased: gradient ascent is more likely to correct noise when constraints are tight
(up to a point). Cross found that when the mutation rate was decoupled from P, the

algorithm appeared to be relatively insensitive to mutation for P, < 0.6.

5.4.2 Final Correct Fraction

This study compared algorithm performance over Bayesian and linear criteria, and three
different crossovers (uniform, balanced geometric and balanced contiguous) for four match-
ing problems. The graphs had 20, 30, 40 and 50 nodes with 10% additive relational cor-
ruption. According to Cross’s recommendations, population sizes of 30, 40, 50 and 60
were used. The crossover rate was fixed at 1.0 and the mutation rate took values of 0.2,
0.4, 0.6 and 0.8. The iteration limits were 4, 6, 8 and 10. These explanatory variables
have the same names as in table 5.3, except that problem size is denoted NODES, zy in

formulae, instead of LINES. The main effects are summarised in figure 5.20. The most
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surprising findings are that the linear criterion outperformed the Bayesian one, and that
the population size appeared to have no main effect. There also appear to be structural
effects at play as well as graph size. The best mutation rate is somewhere between 0.4
and 0.6 which accords with Cross’s predictions and (unreported) observations for line la-
belling. As with line labelling, annealing the label error probability, P., was not found to

significantly affect the outcome.

The superiority of the linear criterion may be due to the more direct way in which it
measures consistency: it is based on the sum of minimum edit distances to dictionary
items. It is axiomatic that a mapping with a low minimum edit distance to its dictio-
nary is better than one with a high minimum distance. The Bayesian criterion measures
consistency by summing the edit distance over all dictionary items. The smoother opti-
misation surface thus provided reduces the risk that gradient ascent will stop in a poor
local optimum. However, the genetic algorithm is a global optimiser, so this benefit of the
Bayesian criterion disappears, leaving only the cost associated with considering distances
between labelling configurations and inappropriate dictionary items. The fact that this
trade-off appears to favour the linear criterion for graph matching but the Bayesian one for
line labelling can be explained by recalling how algorithm performance for line labelling
is measured. For line labelling, the outcome is all-or-nothing: the algorithm either locates
a global optimum or it does not. Hence, any correlation between the criterion and the
fraction of correct labellings is immaterial. However, the global optima of both criteria
correspond to 100% correct labellings because the problem is exact. This is not the case
with inexact graph matching, where a fraction correct of 1.0 may not coincide with the
global optimum of the Bayesian criterion, but must still coincide with the global optimum

of the linear one.

Population Size

The apparent lack of main effect for population size does not mean that this is not an
important consideration. First, the possibility of there being interactions with other vari-
ables, which equalise the marginal totals for POP, must be eliminated (this is not likely).
The ANOVA given in table 5.12 showed that POP does actually have a significant main
effect together with a significant interaction with COST. This is shown in figure 5.21.

The interaction is much smaller than the main effect. The conclusion is that POP, although
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Figure 5.20: Average Fraction Correct. (a) Effect of criterion. The linear criterion appears to
perform better. (b) NODES, POP, GEN and P,,. A larger slope indicates that a particular variable

has more influence on the outcome.

statistically significant, has a very small effect indeed: it accounts for less than 1% of
the total variation in the data. The reason for this is almost certainly that all of these

population sizes are sufficiently large for all problems to be solved by the algorithm.

At first sight, the missing label argument from section 5.3.3 and equation 5.10 suggests that
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Figure 5.21: Interaction of COST with POP. The plots for fraction correct versus population size

are nearly parallel, indicating a very small interaction.

even larger population sizes are needed, e.g. about 250 for a 20-node graph for a missing
label probability of 0.001. However, for graph matching an inferior initial guess suffices.
It has already been established in chapter 3 that a poor initial guess is good enough for
gradient ascent when matching graphs. It is capable of correcting 90% initialisation error
to around 10% (see figure 3.6 in section 3.8 of chapter 3). So the genetic algorithm need
only assemble an initial guess with about 10% of the mappings correct for gradient ascent
to have a good chance of success within a few iterations. Panel (b) of figure 5.20 supports
this idea since the algorithm seems to need at least one iteration to produce a reasonable

solution.

Under the hypothesis that, for a graph with 10% corruption, there are on average 1.1
correct labels per node, the probability of at least one correct label appearing at a given
locus at least once in the initial population is pc =1 — (1 — %)“’. So the probability

that at least 10% the loci will have at least one correct label is

Vbl

P(> 1 correct label at >10% loci) = Z
k

[Vpl
S <k<|Vp|

pc®(1 —pe)lVoI=F  (5.15)

For a 50-node problem and a population size of 10, this probability is 0.98; with a popula-
tion size of 5, the probability is 0.60. So even for the largest graph, a population of about
10 should be adequate.
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Analysis of Variance

Part of the analysis of variance table is given in table 5.12. Main effects account for about
80% of the variation, double interactions for another 15%, and triple interactions for 1%,
with error accounting for the remaining 5%. The most important effects together with

their contributions to the total variation are given in table 5.13.

These contributions suggest the appropriate model should probably just include these
terms. The best model found was a cubic response surface which is virtually guaranteed
to break down under extrapolation. Taking the partial derivative with respect to NODES
showed that, all other things being equal, there was a maximum at NODES=15 and a
minimum at NODES=50, beyond which Fc continued to rise (steeply). The implication

Source SS df MS F-ratio P
Main Effects:

COST 405.0 1 405.0 16300.0 0.00
CROSS 3.64 2 1.82 731.0 0.00
LINES 96.2 3 32.1 12900.0 0.00
POP 0.0431 3 0.0144 5.76 0.00
GEN 26.8 3 8.94 3590.0 0.00
PM 38.0 3 12.7 5080.0 0.00
2-way Interactions:

COST.CROSS 0.426 2 0.213 85.6 0.00
COST.LINES 94.7 3 31.6 12700.0 0.00
COST.POP 0.0371 3 0.0124 4.97 0.00
COST.GEN 2.36 3 0.785 315.0 0.00
COST.PM 0.0917 3 0.0306 12.3 0.00
CROSS.LINES 0.981 6 0.163 65.6 0.00
CROSS.POP 0.0402 6 0.00671 2.69 0.01
CROSS.GEN 0.0481 6 0.00801 3.22 0.00
CROSS.PM 0.0982 6 0.0164 6.57 0.00
LINES.POP 0.0287 9 0.00319 1.28 0.24
LINES.GEN 5.36 9 0.596 239.0 0.00
LINES.PM 1.08 9 0.120 48.3 0.00
POP.GEN 0.0369 9 0.00410 1.65 0.10
POP.PM 0.0138 9 0.00154 0.617 n/s
GEN.PM 1.92 9 0.213 85.5 0.00
Error 34.4 13824 0.002491

TOTAL 719.0 15359

Table 5.12: Analysis of Variance. For brevity, only main effects and double interactions are
shown. Abbreviations: SS=sum of squares, df=degrees of freedom, MS=mean square (MS=SS/df),

n/s=not significant.
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Effect Contribution

COST 0.56
LINES 0.13
COST.LINES 0.13
PM 0.05
GEN 0.04
LINES.GEN 0.01
CROSS 0.01

0.93
Error 0.05
TOTAL 0.98

Table 5.13: Contributions of Major Terms to Total Variation. The additional 2% is distributed

among 22 terms which individually account for less than 0.4% of the total variation.

was that the larger the graph, the larger Fc will be for the same set of control variables:
this is clearly implausible. Recalling panel (b) of figure 5.20, one can see that structural
differences between the graphs account for the cubic polynomial. Since it is the smallest of
these graphs that seems anomalous, a quadratic surface would also probably be incorrect;
the best that can be done is linear. Fitting a quadratic model for GEN is also guaranteed
to give trouble sooner or later because the maximum will be to the right of GEN=4 - i.e.
the predicted Fc will eventually start to fall as GEN is increased. It is also possible to
simplify P, by regarding values below 0.6 as reasonable and those above as unreasonable
(this is supported by an analysis of the t-values for the levels of P,,). The final model

obtained is given in equation 5.16.
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Fc = 1.083 — 0.006526zy — 0.007803z¢ -+ 0.0006489z v s+ |
we(—0.3506 — 0.001249z x + 0.01099z¢)+
wx (0.007154 — 0.0008139z ) — 0.02214wcwx+
wr(—0.03976 — 0.01054z;)

1 for the Bayesian criterion
we = > (5.16)
0 for the linear criterion
1 for balanced geometric crossover
wy =
0 otherwise
1 if P, > 0.6
wpy =

0 otherwise

Figure 5.22 shows the optimal condition of this model together with the results of extrap-
olation of NODES and GEN. Extrapolation seems possible with respect to NODES but
not GEN: beyond about 14 iterations the slope for NODES becomes positive - i.e. the
model suggests that larger problems will be easier to solve when the number of iterations

is also large, which is implausible.

Extrapolation Study

Fortunately, it will not generally be necessary to extrapolate quantitative components of
model 5.16 since NODES is a feature of the problem under study and, given that POP
will be made large enough to furnish a reasonable initial guess for gradient ascent, GEN
need not be set too high. The element of extrapolation comes from the fact that for larger
graphs, the linear criterion will be used with uniform or balanced contiguous crossover,
together with a mutation rate below 0.6. If GEN is fixed at 10, model 5.16 becomes linear
in NODES, as shown in equation 5.17 and figure 5.23.

Fc =1.005 — 0.000037zn (5.17)
Extrapolation of this model can only show how well the algorithm should be expected

to perform under the conditions just mentioned. Table 5.14 compares the predicted and

actual outcomes: the good agreement between them shows that the model is reasonable.
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Figure 5.22: Model 5.16 for linear criterion with balanced contiguous or uniform crossover and
P, < 0.6: (a) Fitted model and (b) Extrapolation. The model is not particularly good under
extrapolation of GEN.
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Figure 5.23: Model 5.17. The estimated final correct fraction is a slowly decreasing linear function

of NODES.

Graph | Population  Predicted 95%  Actual Fc Actual 95%
Size Size Conf. Int. for Fc (N =40) Conf. Int. for Fc
70 10 [0.99, 1.01] 0.98 [0.87, 1.07]
100 15 [0.98, 1.03] 0.98 [0.97, 0.99]
150 20 [0.96, 1.04] 0.97 [0.93, 1.01]
200 25 [0.94, 1.06] 0.98 [0.96, 1.00]

Table 5.14: Extrapolation of Model 5.17. These experiments used the linear criterion, uniform
crossover, and had GEN set to 10 and P,, set to 0.4. Population sizes were chosen so that the
probability of there being a correct label for at least 10% of nodes in the initial population was
around 0.9 (equation 5.15). Predicted and actual 95% confidence intervals for Fc are given: overlap

indicates good model performance.
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5.4.3 Number of Distinct Solutions

Solution yield was measured by the number of distinct matches in the final population
with at least 95% of the mappings correct. The number of distinct matches in the final
population is inversely correlated with the average final fraction correct, which merely
reflects the fact that the population is more diverse when the algorithm fails to find good
solutions. Only the linear criterion was considered. As with previous models, the model
which best fitted the data had a cubic term, presumably as a result of structural differences
between the graphs. A simple linear model, given in equation 5.18, was fitted. This model

is shown in figures 5.24 and 5.25 as fitted and under extrapolation with respect to NODES.

y = g '(17;46.6)
n = —12.68 4+ 0.4076zy — 0.2401zc — 0.4074z s+
0.002940z vz — 0.01310z Nz ps + 0.2919z G2 8+
wx (4.463 — 0.1780z — 0.6729x¢ + 4.076zr,+ ¢ (5.18)
0.02737zyxe — 0.1661z Nz )
1 for balanced geometric crossover

0 otherwise

The model appears to be relatively insensitive to mutation rate and iteration limit. How-
ever, it suggests that solution yield should increase as the graphs become larger. This
result is plausible to the extent that larger graphs may have more good matches than
smaller ones, but it should be treated with caution. As with line labelling, it seems that
attempting to use the genetic algorithm control variables to influence the solution yield is
inappropriate: this is the province of the selection operator to which we turn our attention

in chapter 6.
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Figure 5.24: Model 5.18. Solution yield as a proportion of population size vs. graph size and

iteration limit. P,, is fixed at 0.4; crossover is assumed to be uniform or balanced contiguous.
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Figure 5.25: Model 5.18. Solution yield as a proportion of population size vs. graph size and

mutation rate. GEN is fixed at 10; crossover is assumed to be uniform or balanced contiguous.
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5.5 Summary

This chapter has described a series of factorial experiments which attempted to

e find optimal genetic algorithm control variable settings
e model the relationship between control variables and algorithm performance

e establish the stability of those models under extrapolation

for line labelling and graph matching problems. Two outcomes were considered: quality

of the solution found, and solution yield.

Optimal conditions common to both problems were: the addition of a gradient ascent
step, the use of disruptive crossovers at a rate of 1.0, and setting the mutation rate below
0.6. It was also found that annealing P, had no effect on the outcome. The Bayesian
criterion outperformed the linear one for line labelling, but the linear criterion was better

for graph matching. Only a few algorithm iterations were needed.

In general, the most important variable determining algorithm performance was the prob-
lem to be solved, with structural effects rather than problem size responsible for much of
the variation in the data sets. Second to problem size was population size, which can be
minimised by observing that the genetic operators need only assemble a good initial guess
for gradient ascent, which is responsible for most of the optimisation. These population

sizes are considerably smaller than those suggested by Cross in (Cross 1998).

The empirical models for solution quality were found to be reasonably stable under mod-
erate extrapolation with respect to problem size, predicting performance with reasonable

accuracy for problems at least three times larger than those initially studied.

It was not possible adequately to control solution yield by the methods described in this
chapter. Solution yield is closely coupled to diversity in the genetic algorithm population,

and it is to this which we turn our attention next.
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Chapter 6

Maintenance of Diversity in the

Genetic Algorithm

This chapter considers more sophisticated control strategies for the genetic algorithm, with
a view to enhancing the solution yield by maintaining greater diversity in the population.
Previous chapters have considered the crossover and local search operators, and the choice
of algorithm parameters. This chapter concentrates on mutation and selection. The novel
contributions in this chapter are first, the definitions of three different yet complementary
measures of diversity in the population, and second, the development of non-standard

mutation and selection operators for the algorithm.

Section 6.2 defines the three quantitative diversity measures and considers the likely effects
of the standard genetic algorithm operators on them. The evolution of these diversity
measures is tracked: a common feature is that most of the diversity is lost within the
first few algorithm iterations. Section 6.3 identifies the mutation operator as a potential
cause of early loss of diversity, and considers two methods of varying the mutation rate
as the algorithm proceeds. This is distinguished from other reported attempts at using
variable mutation rates by the fact that the mutation rate generally increases as the
algorithm proceeds. Section 6.4 considers ways of modifying the selection operator to
avoid unnecessary loss of diversity. Finally, section 6.5 presents two examples of the

algorithm applied to real data.
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6.1 Introduction

The maintenance of diversity is crucial to the genetic algorithm, because what differentiates
it from parallel generate-and-test is the ability to combine information from several sources
in the quest for global optima. However, the action of the algorithm is to reduce diversity
at every iteration. This happens because the selection operator can only remove particular
genotypes from a finite population: it cannot create new ones. This effect of selection,
known as “genetic drift”, cannot be counteracted by mutation, since the required rate
would be so high as to compromise the search. Neither can it be corrected by crossover,
which can only recombine genetic material currently in the population. Like selection,
crossover cannot introduce new information. Genetic drift is therefore a major problem
with genetic algorithms, which has attracted considerable attention in the literature over
the past 25 years (DeJong 1975; Baker 1987; Mauldin 1984; Louis and Rawlins 1993). The

problem is even more pressing when more than one optimum is sought.

Strategies for maintaining diversity with a view to finding multiple optima tend to focus
on the selection operator, either by changing the selection algorithm or by modifying the
fitness function. In (Cedeno et al. 1995), Cedeno et al. used DeJong’s crowding heuristic
(DeJong 1975) twice per algorithm iteration. Although they obtained good results for the
algorithm on a DNA sequencing problem, the method requires two additional parameters

(the two “crowding factors”).

In (Goldberg and Richardson 1987), Goldberg and Richardson suggested “fitness sharing”,
in which an individual’s fitness was degraded if it was too similar to other individuals in
the population. In (Deb and Goldberg 1989), Deb and Goldberg used Hamming distance
as the similarity measure. There are three principal disadvantages to this scheme. First,
it is necessary to estimate a “sharing parameter”, which depends on a prior knowledge of
the number of optima. Second, some function by which the fitness should be degraded
must be defined. Third, sharing implicitly assumes that the optima are evenly spaced. In
(Beasley et al. 1993), Beasley and co-workers developed the “sequential niche” technique,
which combines the idea of sharing with Glover’s concept of “tabu search” (Glover 1989).
Sequential niching dynamically changes the fitness criterion so that previously located
optima are ignored. This has the advantage of being applicable to any global optimiser, and
does not require the optima to be equally spaced. However, it requires the estimation of a

“niche radius”, which is the minimum distance the algorithm must keep from previously
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located optima. Sequential niching may not be useful for labelling problems, because
global optima might be adjacent, in which case the niche radius would have to be 0, since
1 would be too large. However, a niche radius of 0 would create new local optima around
the old solution, making the fitness landscape rougher in that region. This is contrary
to the basic idea of sequential niching, which is to make the fitness landscape smoother
around previously visited optima. An additional disadvantage of sharing and sequential
niching when applied to discrete problems is that the fitness de-rating function would
be difficult to implement efficiently, because every fitness evaluation would require an

exhaustive check through the list of known optima.

Smith and co-workers showed in (Smith et al. 1993) that no significant modifications of
the algorithm are necessary for certain problems. They demonstrated that in a simula-
tion of the immune system, in which fitness was assigned by a bidding process, stable

subpopulations developed in a standard genetic algorithm.

The view taken in this chapter is that the genetic algorithm is already over-parameterised,
so the introduction of new parameters is to be avoided. The work of Smith et al. (Smith
et al. 1993) showed that in certain circumstances, diversity can be maintained without
significant alterations to the algorithm. The preliminary studies in chapter 4 suggest that
the hybrid genetic algorithm applied to labelling problems may be such a case. However,

before attempting to maintain diversity, it is necessary to define and then measure it.

6.2 Diversity Measures

Taken loosely, the term “diversity” expresses the concept of differences between population
members. Many authors define these differences in terms of Hamming distance (e.g. Louis
and Rawlins in (Louis and Rawlins 1993), and Deb and Goldberg in (Deb and Goldberg
1989)). Whilst Hamming distance may be appropriate for populations of bit strings, it may
not be useful when the encoding is non-binary. To see the difficulty, consider a population
of symbol strings. Suppose that there are only two types of string in the population, and
that the Hamming distance between them is 20. If the population contains equal numbers
of each type of string, the average Hamming distance between pairs of strings will be 10.
Now suppose that each string in the population is unique at 10 positions. The average
pairwise Hamming distance is still 10, but this second population is surely more diverse

than the first. Nevertheless, the classes in the first population are more different than
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those in the second. This section quantifies three aspects of population diversity. First,
the degree of clustering, or how uniform the population is; second, how far apart the
population members are in the search space; and third, the size of the pool of information

available to the crossover operator.

6.2.1 Clustering

From an information-theoretic point of view, the genetic algorithm’s search space is an
alphabet from which a population of symbols is drawn. The Shannon entropy (Shannon
1948) is a natural measure of how much information about the search space is contained
in the population, and corresponds to the degree of clustering (a “cluster” is a bag of
identical strings in this case). The Shannon entropy is defined as follows for a bag of
strings, ¥. Let pr; be the proportion of the i*! distinct string in ¥. Then the Shannon
entropy, S, is given by:

S=- Z pr; log,. pr; (6.1)

€W
The base of the logarithm, r, depends on the number of possible values of each element
in a string. For a binary encoding, this would be 2, but since the encoding need not
be binary, it seems more sensible to use the natural logarithm, r = e, and measure the

information in “natural units” (Shannon 1948).

The entropy measures clustering. It is 0 when all the strings are identical. Otherwise, S
is greater than 0, and maximal when all the strings are distinct, in which case S = In |¥|.
Consider replacing some string, z, with a new string, y, and the effects of this on the
entropy, S, and the average Hamming distance, H. There are three cases shown in table
6.1, where N;(z) denotes the number of strings z in the population at time ¢. According
to Shannon’s observation that any averaging operation will monotonically increase the

entropy (Shannon 1948), if Ny(z) > Nyy1(y), S must increase when an z is replaced by a

Y.

The entropy monotonically increases as new information is introduced into the popula-
tion (first two cases), and monotonically decreases as information is removed from the

population (last two cases). Thus, crossover and mutation should monotonically increase
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Case Entropy, S Hamming, H

Ni(z) > Npy1(y) | increased  unknown

Ni(z) = Npy1(y) | unchanged unknown

Ni(z) < Niy1(y) | decreased  unknown

Table 6.1: Properties of Entropy, S, and Average Hamming Distance, H.

S in most cases, and selection should monotonically decrease it. An increase in entropy
corresponds to exploration of the search space by the genetic algorithm; a decrease to
convergence of the algorithm (in the sense of loss of diversity, as opposed to finding a
global optimum). Even when no distinct string has been added or removed, changes in
S are predictable. By contrast, H is unpredictable in all cases and furthermore tells us

nothing about the homogeneity of the population.

6.2.2 Span

The degree of clustering gives no information about the region of the search space occupied
by the population. If a coordinate system could be applied to the search space, the
volume of the search space (or a subspace) enclosed by the population could be used for
this purpose. However, in labelling problems, there is no ordering of the labels, so no
coordinate system can be imposed. The only useful measure of the distance between two

points in the search space is the Hamming distance.

The extent to which the population spans the search space can be measured by the total
inter-cluster Hamming distance, Hy, which is defined by rewriting ¥ as |J v;, where 1; is

the i'! cluster in ¥. Hr is given by:

Hr=2 3 3 Hipiw) (62)

v €W P eF

The factor of % is needed because every pair of clusters is compared twice in the above sum.
Hr compares favourably with the average Hamming distance, because a population with a
low average Hamming distance may be composed of a few large, different clusters, in which
case it will have a low total inter-cluster Hamming distance. Alternatively, it may consist

of many small, similar clusters, in which the total inter-cluster Hamming distance will be
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high. In general, crossover and mutation should monotonically increase Hy, since they are
unlikely to produce genotypes already present in the population. Selection cannot produce
new genotypes, and may remove a cluster entirely from the population, so its effect should

be to reduce Hy monotonically.

6.2.3 Gene Pool

The genetic algorithm’s population is only one of very many different possible combinations
of the genetic material contained in its constituent individuals. An individual chromosome
is a string of alleles, each allele being a smallest indivisible part of a solution to the problem
in hand. For example, in labelling problems, the chromosome is a string of labels. For
simplicity, assume that all chromosomes are of equal length, and that the number of
possible alleles at each locus on a chromosome is constant. Denoting a chromosome by y
and the set of alleles (labels) by A, the number of possible chromosomes is |A|/X!, which
should be the same as the size of the search space. The mutation operator draws from
this search space to create new individuals. However, neither crossover nor selection has
access to the search space directly. These operate on a subspace defined by the current

population. This “gene pool” is the set of alleles available at each locus across the whole

!
PREET) ‘X

i, A} = {A € A|Fycwx(i) = A}. In (Mithlenbein 1994), Mithlenbein generated offspring

population, i.e. G =< A}, A}, | >, where A is the set of alleles available for locus
by sampling the gene pool directly; however, the interest here is in the size of the gene
pool as an indicator of population diversity rather than in the gene pool itself as a source
of genetic material. Clearly, the cardinality of G is just the length of the chromosomes,

G| = |x|. It is more useful to define the “size” of the gene pool, g, as
g

g= Y |Aj| (6.3)

0<i< x|
This quantity varies with the number of alleles in the population. In the degenerate case,
when the population is saturated with a single individual, there is only one allele per
locus, so g = |x|- The size of the gene pool is maximal when either all alleles appear in
the population, or every individual differs at every locus, depending on which of |¥| and

|A| is the larger. Thus,
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x| < g < [x| min(|¥], |A]) (6.4)

The size of the gene pool, g, is the number of alleles in the population which would be
available to the crossover operator. The number of different individuals that could be

produced by crossover is the “potential”, p, of the gene pool,

p= I A} (6.5)

0<i<x|

which increases monotonically with g since both |x| and |¥| are greater than 1. In the
degenerate case, p = 1; its maximum is [min(| ¥/, \A|)]|X|. Crossover never changes G, g
or p, since it only redistributes alleles already in the population. Mutation may change
the gene pool, either by introducing a new allele, which would increase g and p, or by
deleting the last copy of particular allele, which would decrease g and p. The first case is
more likely, so on the whole, one would expect mutation to increase the size of the gene
pool. Selection is incapable of adding alleles to the population, but it can remove them,

so it will monotonically reduce g and p.

6.2.4 Evolution of Diversity

Figures 6.1 and 6.2 show the evolution of the three diversity measures in two typical
runs of a plain genetic algorithm run on a 42-line Huffman labelling problem. The first
run, figure 6.1, located an optimal solution at iteration 657; the second run failed to find
a global optimum. In both cases, the Shannon entropy started at its maximum value,
In100 = 4.6. As the population became saturated, the entropy fell to some minimum
below about 2, but the variations in entropy and total inter-cluster Hamming distance
after saturation indicate that the algorithm was still attempting to explore the search
space. The presence of a set of relatively fit individuals reduces the likelihood that new
chromosomes will persist, and this may explain why the final entropy for successful runs

was often slightly lower than for unsuccessful runs.

Some, but not all, of the major peaks in entropy coincided with the jumps in the maximum
fitness, which occurred when the algorithm located a new optimum; those which did not

presumably represent unsuccessful forays in the search space. The peaks which coincide
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Figure 6.1: Successful Run of Plain Algorithm for Huffman Labelling. Population size was 100.

with jumps in maximum fitness may either precede or follow them. This can be explained
by proposing two mechanisms by which new optimal solutions can arise. The algorithm
may explore some fruitful avenue in the search space, causing an increase in entropy, then
an optimal solution may be found following a crossover or mutation. Thus an entropy
peak can precede a fitness jump. Alternatively, a new solution may arise spontaneously,
without extensive search. There will be a fitness jump with no entropy peak. However, if
the copy number of the new solution increases over the next few generations, the entropy
peak will succeed the fitness jump. A peak occurs because the initial copy number is
1. Replacing a string from a large cluster with one from a smaller one will increase the
entropy, but at some point, the cluster containing the new string becomes sufficiently large

that adding to it reduces the entropy, hence the peak.

Figures 6.1 and 6.2 only show a single algorithm run, but the evolution of the diversity

measures is remarkably consistent. Figures 6.3 and 6.4 show the change in diversity over
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Figure 6.2: Unsuccessful Run of Plain Algorithm for Huffman Labelling. Population size was 100.

the course of the first 10 iterations of 100 runs of plain and hybrid genetic algorithms for the
same Huffman labelling problem. Both algorithms showed large initial drops in all three
diversity measures, followed by small recoveries in entropy and inter-cluster Hamming
distance. Most of the diversity in the population was lost in the first few iterations. The
total inter-cluster Hamming distance fell from around 100,000 to around 1,000, the size
of the gene pool fell from 170 to between 60 and 80, and the entropy lost over a third of
its initial value. Since the test problem used to generate these figures had 42 lines, a gene
pool size less than 84 means that some loci must be degenerate. The hybrid algorithm
appears to have sustained greater diversity than the plain one. This may be because the
hybrid located several optima. Indeed, by the time that the inevitable decrease in diversity
was under way, the hybrid algorithm had already found optimal solutions. The hybrid
algorithm did more searching in 10 iterations than the plain algorithm. Thus, in addition
to being more efficient, the hybrid conducts its most fruitful search when the population

is still relatively diverse.
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Figure 6.3: 100 Runs of Plain Algorithm for Huffman Labelling. Population size was 100, there

were 10 iterations.

Figures 6.5 and 6.6 show the change in diversity over the course of 10 iterations of hybrid
genetic and CHC algorithms for a 30-node graph matching problem, averaged over 100
program runs. Both algorithms located optimal matches within three iterations on average.
However, the loss of diversity in the hybrid CHC algorithm was catastrophic compared
to the loss of diversity with the hybrid genetic algorithm. This confirms the observation
from chapter 4 that the hybrid genetic algorithm gives a higher solution yield than CHC,
although CHC is the better optimiser.! The main reason for the lack of diversity with
CHC would appear to be that CHC does not use mutation at every step, relying on restarts

whenever the population members become sufficiently similar. However, the hybrid CHC

'n fact, the CHC algorithm is capable of matching 30-node graphs even without a gradient ascent step.
However, this is less efficient than the hybrid version, and not as reliable, requiring a population of over
500 and about 150 iterations. Nevertheless, this is a vast improvement on the very poor performance of

the plain genetic algorithm reported by Cross in (Cross 1998).
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Figure 6.4: 100 Runs of Hybrid Algorithm for Huffman Labelling. Population size was 100, there

were 10 iterations.

algorithm never loses enough diversity to force a restart, with the result that hybrid CHC

effectively does not use mutation at all.

The common feature of all these experiments is a substantial, irreversible loss of diversity
over the first few algorithm iterations. This is especially marked in the line labelling
experiments. The reduction in diversity is almost certainly the result of genetic drift.
However, the initial decreases are much more pronounced for line labelling. A natural
explanation of this might be that genetic drift is greater for line labelling, but the initial
fitness distributions are very similar in both cases. So the selection operator alone cannot
be responsible for the decrease in diversity, since it should affect each problem equally.

The next section considers the mutation operator and its effect on diversity.
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Figure 6.5: 100 Runs of Hybrid Genetic Algorithm for Graph Matching. Population size was 50,

there were 10 iterations.
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6.3 Mutation

Consider the effect of mutation on the size of the gene pool. In section 6.2 it was argued
informally that mutation would generally act to increase the Shannon entropy, total inter-
cluster Hamming distance and gene pool size. As for the entropy, we begin by considering
what happens to the size of the gene pool when some allele, z, is changed to a y. This
depends on the numbers of z and y at time ¢, Ny(x) and N¢(y). There are six possibilities,

shown in table 6.2, together with the corresponding changes in the gene pool size, Ag.

Before mutation After mutation
Ni(z)  Ni(y) | Nevi(z) Newaly) | Ag
1 0 0 1 0
>1 0 >1 1| +1
1 1 0 2| -1
>1 1 >1 2 0
1 >1 0 >2 ] —1
>1 >1 >1 > 2 0

Table 6.2: Effect of a Single Mutation of Gene Pool Size.

In terms of the change in gene pool size, Ag, cases 1, 4 and 6 are “don’t cares”, 3 and 5
are reductions, and only in case 2 does the gene pool size increase. The probabilities of
these cases are governed by the distribution of alleles in the population, ¥. Without loss
of generality, consider the alleles at a particular locus drawn from the label set, A. The
bag of alleles at this locus over every individual in the population constitutes a sample of
size |¥| with replacement from A. The number, N(}A), of a single allele A is binomially

distributed:

P(N(X) =n) = pR(1—p)¥" (6.6)

where p) is the probability of finding the label A at this locus. It is now possible to assign
probabilities to the outcomes for Ag in table 6.2, according to the numbers of z and y at

time t.
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1 with probability P(N¢(z) >
Ag =4 -1 with probability P(N;(z) =

0 otherwise

It can be seen that Ag will be +1 only when the proportion of z is greater than ﬁ and
the proportion of y is zero. Similarly, Ag will be —1 when the proportion of z is exactly
1

& and the proportion of y is non-zero. This gives rise to two extreme cases:

1. Saturated population. In this case, which corresponds to convergence of the
algorithm, the population is saturated with a single allele, z, such that the N (i) =
|®| and N(y) = 0. In this case, Ag is inevitably +1.

2. Random population. This is the case in the initial iteration of the algorithm.
Assuming that all alleles are equiprobable, i.e. for each label, A, p) = TA]" In this
case, the expectation of the change in gene pool size following a single mutation is

given by

E(Ag) = P(Ni(z)>1,Ni(y) = 0) — P(Ny(z) = 1, Ni(y) > 0) (6.8)

SR

The second case, of a random population, is shown in figure 6.7 for population sizes
between 2 and 100, and between 2 and 100 alleles. This figure shows that the expectation
of Ag is generally negative for a random population, only approaching zero when one of
|¥| or |A| is small. The minimum value is about -0.3, when both are small, and there is

a valley at about -0.15, where |¥| ~ 2|A]|.

The surprising conclusion, then, is that mutation actually reduces the diversity in the initial
population, at least in terms of the size of the gene pool. It appears that the efficiency
of mutation as a “diversity inducer” increases as the population becomes saturated. This
suggests that the mutation rate should be low initially, and then increased as the algorithm
proceeds, quite the opposite of the annealing strategies suggested in (Cross et al. 1997;

Davis and Principe 1991) where the mutation rate is steadily decreased.
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Figure 6.7: Expectation of Ag versus population size and size of label set.

6.3.1 Dynamic Mutation Rate

The idea of varying the mutation rate at each iteration of the genetic algorithm has
appeared several times over the years. Previous studies have all tended to reduce the
mutation rate as the algorithm proceeds (Fogarty 1989; Davis 1989; Cross et al. 1997;
Davis and Principe 1991). Only Whitley in (Whitley and Starkweather 1990) and Srinivas
and Patnaik in (Srinivas and Patnaik 1994a) suggest that the mutation rate should actually
increase as the algorithm converges. Srinivas and Patnaik scaled the mutation rate for
individuals based on their fitness and the current state of convergence, which was estimated
by the difference between the maximum and average fitness in the population. To avoid
destroying solutions, the mutation rate was lower for highly fit individuals. Srinivas and

Patnaik’s formula for mutation probability was

o ki(fuax — f)/(fuax = f) i f>F (6.9)

ko otherwise

where fyax and f are the maximum and average fitness in the population, and f is
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the fitness of the individual under consideration. There are three disadvantages to this
approach. The first is that it requires the addition of two parameters, k1 and k3. Srinivas
and Patnaik set both of these to 0.5 in order to “completely disrupt” solutions with average
or below average fitness. It is not clear how a mutation rate of 0.5 “completely” disrupts
an individual. The second disadvantage is that when the population is saturated, the
mutation rate is actually undefined according to this criterion. The third problem is that
fit individuals will remain immune from the effects of mutation, which would defeat the

purpose of finding distinct optimal solutions.

If mutation is intended to maintain diversity, the mutation rate should vary with one of
the diversity measures in section 6.2. For example, the Shannon entropy could be used to

define the mutation rate:

S

Pp=1——"—0
" In |P|

(6.10)
where P, is the mutation rate, and S is the Shannon entropy of the population, .
Alternatively, the gene pool size could be used instead of the entropy. The difficulty
with defining the mutation rate in this way is that its maximum value depends on the
minimum value of the diversity measure, which is not predictable, and may therefore force
the mutation rate so high that the search is compromised. For example, from panel (b)
of figure 6.5, one might expect that tying mutation rate to the gene pool size in a manner
similar to equation 6.10 could result in assigning an inappropriately large value to Pp,.

At iteration 10, the gene pool size is about 80, but the maximum is 800, so P, would be

1 80

— go0 = 0.9. Furthermore, the mutation rate is now explicitly tied to only one out of the

three diversity measures.

A more general control strategy for the mutation rate might be to vary it with time
according to a pre-defined schedule. Since the number of iterations, tmax, is fixed in

advance, it is possible to define the following simple schedule for the mutation rate:

%:%(ty (6.11)

tmax

for s > 0, where t is the iteration number. The “base mutation rate”, PJ, sets a ceiling

above which P, cannot rise. The schedule parameter, s, controls the profile of the mu-
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tation rate throughout the program run. If s < 1, the mutation rate rises quickly and
stays high over the course of the algorithm. If s > 1, the mutation rate stays low before
rising to P,J,; at the end of the run. Naturally, there are many other ways of increasing the
mutation rate as the algorithm proceeds, but this one has the advantage that it controls
the mutation rate in a natural way. It guarantees that the mutation rate is non-zero, and
that it smoothly increases to a known maximum. The base mutation rate should be set to
the maximum sustainable mutation rate above which the algorithm ceases to perform well
as an optimiser. This leaves only the shape of the schedule, s. It is almost certain that
the most important property of the schedule will be whether it is convex (s < 1), linear
(s = 1) or concave (s > 1). High curvature in either sense corresponds to more or less

constant mutation rate, so in practice, finding a suitable value of s should not be difficult.

Experiments

Two sets of experiments were conducted to evaluate the performance of the different
mutation rate schedules. These experiments were restricted to graph matching. Line
labelling was not considered. In each case, a hybrid genetic algorithm was used, with a
population size of 20, and balanced contiguous crossover at a rate of 1.0, and run to 10
iterations. The selection method was fitness-proportionate with elitism, and the fitness
criterion was the linear one, equation 3.13 from chapter 3. In each set four different graphs
were used, and 50 replications performed for each graph. The first set of experiments used
20, 30, 40 and 50 node graphs; the second set used four 30 node graphs. The schedules
for mutation rate are shown in table 6.3. The first condition was a control in which the
mutation rate is fixed. The second condition used equation 6.10 to set the mutation rate
from the entropy. The other six conditions all used equation 6.11: “reasonable” (0.6 or
0.4) and “unreasonable” (0.9) base mutation rates were used, each with convex (s = 0.5),
linear (s = 1.0), or concave (s = 2.0) schedules. The resulting data matrix for each

experiment had 32 cells, and was drawn from 1600 program runs.

The results for the two experiments are summarised in figures 6.8 and 6.9. Both graph
and condition scales are categorical, i.e. there is no order along the x and y axes. The
z-axis is the solution yield, which in this case is binomially distributed on the population
size (20). From these figures, it can be seen that too high a base mutation rate (conditions
6, 7 and 8) almost always leads to bad performance. However, it is not at all clear

whether basing the mutation rate on entropy or iteration is any better than using a fixed
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Condition | Experiment 1 | Experiment 2
P} s Pl s
1 P, fixed at 0.4

2 P, depends on entropy
3 0.6 0.5 0.4 0.5
4 0.6 1.0 0.4 1.0
5 0.6 2.0 0.4 2.0
6 0.9 0.5 0.9 0.5
7 0.9 1.0 0.9 1.0
8 0.9 2.0 0.9 2.0

Table 6.3: Conditions for Mutation Rate Experiments.

mutation rate. A logistic regression analysis of the data from the first experiment showed
that the entropy based schedule (condition 2), was better than the “reasonable” iteration
based schedules (conditions 3, 4 and 5). However, this conclusion could only be reached by
assuming that the very high yield obtained with the 50 node graph and fixed mutation rate
was anomalous. Unfortunately, there is no reason to believe this assumption. A similar
analysis of the second experiment showed that varying the mutation rate had no significant
effect, as long as PTJ; had a “reasonable” value. Thus it would seem that mutation plays
a relatively minor part in the initial massive loss of diversity for these problems. This
finding is not necessarily at variance with the theoretical account of the effect of mutation
on gene pool size presented in the previous section. Figure 6.7 shows that for a population
size of 20, mutation would cause a relatively small initial loss of diversity for 30 to 50 node
graphs. It would appear, however, that selection has a greater bearing on population
diversity than mutation. Since diversity is lost both with and without the gradient ascent
step, the selection operator must be responsible for most of the initial diversity loss, and

it to is this which we now turn our attention.
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Figure 6.8: Average Yields with Dynamic Mutation Rates I. Note that the graphs have been

arranged to make the plots easier to read.

4
Condition

Figure 6.9: Average Yields with Dynamic Mutation Rates II. Note that the graphs have been

arranged to make the plots easier to read.
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6.4 Selection

This section considers the selection operator itself. After a brief analysis of some standard
selection methods, alternatives for the hybrid genetic algorithm are discussed. The idea
of selection without replacement is introduced, and some strategies for elitist selection are

considered. The section ends with an experimental study.

6.4.1 Standard Methods

In a standard genetic algorithm, selection is crucial to the algorithm’s search performance.
Whereas mutation, crossover and local search are all “next-state” operators, selection im-
poses a stochastic acceptance criterion. The standard “roulette” selection algorithm, de-
scribed by Goldberg in (Goldberg 1989), assigns each individual a probability of selection,
pi, proportional to its fitness, f;. Recall from section 4.3 of chapter 4 that the genetic al-
gorithm used here allows the population to grow transiently and then selects a population
of size |¥| to form the new generation. Denoting the expanded population by ¥, the

selection probability is given by

fi

= = 6.12
P EJE‘I’e fj ( )

The algorithm then holds selection trials for each “slot” in the new population, for a total
of || trials. Since selection is with replacement, the constitution of the new population is
governed by the multinomial distribution, and the copy number of a particular individual,

N(3), is distributed binomially:

povG) =) = | V) pra - py (6.13)

and so the expectation of N (i), is E[N(7)] = |¥|p;, and its variance is Var[N(i)] = |¥|p;(1—

pz‘)-

The search power of the standard genetic algorithm arises from the fact that if the indi-
vidual in question is highly fit, p; will be much larger than the average, and hence the

expectation will be that the copy number will increase. This approach has two disadvan-
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tages. The first is that for small populations, sampling errors may lead to copy numbers
very much higher or lower than the expected values, which is the phenomenon of pre-
mature convergence. In (Baker 1987), Baker proposed “stochastic remainder sampling”,
which guarantees that the copy number will not be much different from the expectation
by stipulating that |E[N(7)]] < N(i) < [E[N(4)]]. However, the larger the population,
the less need there is for Baker’s algorithm (Mitchell 1996). The second disadvantage is
that less fit individuals have lower expectations, and that the lower the fitness, the lower
the variance of the copy number. In other words, less fit individuals are increasingly likely
to have lower copy numbers. When E[N(:)] falls below 1, the individual will probably

disappear from the population.

In general, the copy number variance decreases with decreasing fitness. Only when p; > 0.5
does the variance decrease with increasing fitness. This occurs when the fitness of one
individual accounts for at least half the total fitness of the population, i.e. when it is
at least || — 1 times as fit as any other individual. This occurred very rarely in the
genetic algorithms tested in section 6.2. However, for line labelling, some individuals in
the initial population did meet this criterion. This may account for the larger initial drops

in diversity for line labelling compared with graph matching.

In summary, the problem with roulette selection is that it imposes too strict an acceptance
criterion on individuals with below average fitness. Several alternative strategies have
been proposed to avoid this problem. “Sigma truncation”, rank selection and tournament
selection (Goldberg 1989; Baker 1985) all seek to maintain constant selection pressure by
requiring individuals not to compete on the basis of their fitness, but on some indirect
figure of merit such as the rank of their fitness, or the distance between their fitness and the
average in standard units. Taking rank selection as a typical example of these strategies,
the selection probabilities are assigned based on rank, with the best individual having the

highest rank:

rank;

= = 6.14
i Zje‘I'e rank; ( )

Assume without loss of generality that ties in ranks are resolved by random assignment of
ranks. With this assumption, the denominator of equation 6.14 is simply the sum of the

first |¥.| integers, so the equation becomes
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rank;

05T [([ T - 1)

pi (6.15)
The fittest individual has rank |¥|. and the least fit has rank 1. The expected copy

numbers of the best and worst individuals are given by:

E[N(best)] = rarr

Te (6.16)
E[N(worst)] = EANCAE)

So, the expected copy number of the fittest individual differs from that of the least fit by
a factor of |¥,.|. Moreover, if |¥,| is even moderately large, E[N (worst)] will be much less
than 1. Indeed, E[N(i)] will be less than 1 for about half the population. Thus, under
rank selection, less fit individuals are highly likely to disappear, even if they are quite

good.

A second alternative to roulette selection is Boltzmann selection (Goldberg 1990; Priigel-
Bennett and Shapiro 1994), in which an additional parameter is introduced. The selection

probability is assigned as follows:

= P [Bfi
" Y, exp [Bfi]

(6.17)

where 3 is the inverse temperature. This strategy borrows the idea from simulated an-
nealing that at thermal equilibrium the probability of a system being in a particular state
depends on the temperature, and the system’s energy. The idea is that as § is raised,
high energy (low fitness) states are less likely. The difficulty with this analogy is that it
requires the system to have reached thermal equilibrium. In simulated annealing, this is
achieved after very many updates at a particular temperature (see chapter 10, section 9 of
(Press et al. 1992) for details and an implementation). In a genetic algorithm this would
require many iterations at each temperature level to achieve equilibrium, coupled with a
slow increase of f. Within the 10 or so iterations allowed for hybrid genetic algorithms,
equilibrium cannot even be attained, let alone annealing occur. In this case, § should be
interpreted as a scaling parameter which adjusts the selection pressure imposed by the
algorithm, rather than as inverse temperature. Unfortunately, the experimental studies in

chapter 5 indicated that there was little to be gained from annealing the selection pressure.
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6.4.2 Alternative Methods

It would appear, then, that there is a tradeoff between premature convergence and the
strength of the selection operator. The problem arises from the fact that expected copy
numbers of fit individuals may be greater than one, while those of unfit individuals may be
less than one. One way of preventing the increase in copy number of highly fit individuals
is to use “truncation selection”, as used in Rechenberg and Schwefel’s evolution strategies
(Rechenberg 1973; Schwefel 1981). Truncation selection would simply take the best |¥|
individuals from the expanded population, ¥., to form the new population. The copy

number of each individual is simply

' 1 if rank; > |¥.| — |¥|
N(i) = (6.18)
0 otherwise

Although no individual may increase its copy number, the selection pressure might still
be quite severe, since for the algorithm used in this thesis, |¥,| can be as large as 3|¥|. In
other words, less fit individuals still disappear at an early stage. The fact that individuals
never increase their copy number makes this a relatively weak search operator, and prob-
ably unsuitable for a standard genetic algorithm. However, chapter 5 suggested that the
local search step is mostly responsible for the optimisation performance of the algorithm.
If this is so, selection is a much less important search operator for hybrid algorithms than
for standard genetic algorithms. It may therefore be beneficial to trade search performance

for greater diversity.

The benefits of stochastic selection can be combined with the evenness of truncation se-
lection by selecting without replacement. Strictly speaking, selection without replacement
should be done by recomputing the p; after every selection event, because the popula-
tion, ¥, is changed by selection. However, this extra computation can be avoided by
increasing the probability of the next fittest individual. Suppose individual ¢ is selected,
and that the next fittest individual is 7. The selection probability of j is increased by p;:
;= p;?ld + p;. If there is no next fittest individual, the least fit individual which is fitter
than ¢ has its probability increased. This strategy can be called “biased selection without
replacement”, since it is biased first in favour of fitter individuals, but may also favour

less fit ones.

153



The alternative is to abandon fitness based selection altogether, and rely on the local
search step to do all the optimisation. If the genetic algorithm’s role is explicitly limited
to assembling a good initial guess for the local search operator, the selection probabilities
can be assigned uniformly, i.e. View p; = ﬁ This operator is called “neutral selection”.
Neutral selection without replacement can be implemented very efficiently by shuffling
W, and choosing the “top” |¥| individuals. This strategy shares the advantage with
truncation selection, that the minimum number of individuals are excluded from the new

population, but also maintains the global stochastic acceptance properties of standard

selection operators.

Elitist selection guarantees that at least one copy of the best individual so far found is
selected for the new population. This heuristic is very widely used in genetic algorithms.
In (Rudolph 1994), Rudolph showed that the algorithm’s eventual convergence cannot be
guaranteed without it. The elitist heuristic can be modified in two ways to help maintain
diversity. First, it seems natural that if the goal is to simultaneously obtain several
solutions to the problem in hand, several of the fittest individuals should be guaranteed
in this way. This is called “multiple elitism”. Second, if one wishes to avoid losing too
many unfit individuals, the worst individual can also be granted free passage to the new
population. This is called “anti-elitism”. These heuristics, together with the selection

strategies discussed earlier, are evaluated in the next section.

6.4.3 Experiments

As for the dynamic mutation rate strategies, two sets of experiments were conducted,
both of which concerned graph matching. Both sets used the hybrid genetic algorithm
with the linear fitness criterion. Optimal contiguous crossover was used at a rate of 1.0;
the mutation rate was fixed at 0.4. The first set of experiments used 20, 30, 40 and 50
node graphs, and for these the population size was set to 10, and the algorithm run for
5 iterations. The second set of experiments used four 30 node graphs, with a popula-
tion size of 20 and 10 iterations. Five different selection strategies were compared: they
were standard roulette, rank, and truncation selection, and neutral and biased selection
without replacement. Five combinations of elitist heuristics were considered: they were
no elitism, single elitism, multiple elitism, anti-elitism, and a combination of multiple and
anti-elitism. The experimental design was therefore a 5x5x4 factorial with 100 cells, which

is summarised in table 6.4. The first set of experiments had 40 replications for a total of

154



Key | Selection Elitism

1 | Roulette No elitism

2 | Rank Elitism

3 | Truncation Multiple Elitism

4 | Neutral Anti-elitism

5 | Biased Multiple and Anti-elitism

Table 6.4: Conditions for Selection Experiments. The keys in this table refer to the axis labels in
figures 6.10 and 6.11.

4000 observations; and the second set had 50 replications for 5000 observations. Figures

6.10 and 6.11 summarise the results.

Both plots show that neutral selection without replacement produced the best yields, and
that truncation selection produced the worst. Biased and roulette selection strategies gave
similar results, and were both outperformed by rank selection. Linear logistic regression

analysis of both data sets confirmed this ranking of selection strategies.

Selection 3

Figure 6.10: Average Yields versus Selection and Elitism I. Data from all four graphs has been

pooled.

The results for elitism heuristic were not so convincing. It is questionable whether elitism
has any overall effect: the regression analysis of the second data set found no significant

effect of varying the elitism strategy. The analysis of the first data set did show that either
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Figure 6.11: Average Yields versus Selection and Elitism II. Data from all four graphs has been

pooled.

standard (single) or multiple elitism gave significantly better yields, but that the effect

was small.

6.5 Real Images

This chapter closes with two examples showing the behaviour of the algorithm on real
data. An in-depth study involving real images is beyond the scope of the thesis. However,
these examples give some idea of the algorithm’s capabilities. The sample problem is
uncalibrated stereo matching. Panels (a) and (b) of figure 6.12 show an uncalibrated
stereogram taken with a low-quality camera (an IndyCam). Regions were extracted from
the greyscale image pair using a simple thresholding technique. Each image contained 50
regions. The region centroids were Delaunay triangulated using Triangle (Shewchuk 1996):
the Delaunay graphs are shown superimposed on the original images. The average grey
level over each region was used for the attribute information. As pointed out in section
4.1.1, such features do not generally permit unambiguous assignments. The Delaunay
triangulations were matched using a hybrid genetic algorithm with neutral selection. The
population size was set to 5, and 5 iterations were allowed. The crossover and mutation
rates were 1.0 and 0.5 respectively. Panel (c) of figure 6.12 shows an initial guess in which

none of the mappings is correct. Panels (d) to (f) show the three distinct solutions found.
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There were 50 regions in the left image of which 42 had feasible correspondences in the
right. The amount of relational corruption between the two triangulations was estimated
at around 35% by counting the number of inconsistent supercliques given the ground truth
match. Despite the significant relational corruption, the three solutions had 98%, 93% and

95% correct mappings.

(a) Left Image (b) Right Image

(c) Initial Guess (0%) (d) Final Match (98%)

(e) Final Match (93%) (f) Final Match (95%)

Figure 6.12: Uncalibrated Stereogram 1. The camera positions are not known.

157



A more challenging example is given in panels (a) and (b) of figure 6.13. Each of these
images yielded about 100 regions. The region centroids were Delaunay triangulated as
before. It can be seen from the shapes of the graphs that there is considerable relational
corruption between the two images. The two graphs were again matched using a hybrid
genetic algorithm with neutral selection. The population size was set to 10, and 10 itera-
tions were allowed. The crossover and mutation rates were 1.0 and 0.5 respectively. Panel
(a) of figure 6.14 shows an initial guess. Panels (b) to (f) show five out of the nine distinct
solutions found. There was no ground truth for this example, but it can be seen that the

initial matching errors have been largely corrected.

(a) Left Image (b) Right Image

Figure 6.13: Uncalibrated Stereogram 2. The camera positions are not known.

6.6 Summary

This chapter has considered ways of improving the solution yield of the genetic algorithm
by promoting greater diversity in the population. The methods of maintaining diversity
which have appeared in the literature almost always involve the addition of parameters
to the algorithm, which is already over-parameterised. This chapter has shown that, for
labelling problems, it is possible to maintain diversity in the genetic algorithm’s population

without the introduction of additional parameters.

Three distinct measures of population diversity were introduced. First, the Shannon
entropy (Shannon 1948) measures the amount of clustering in the population. Second,

the total inter-cluster Hamming distance seeks to estimate the volume of the search space
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(a) Initial Guess (b) Final Match

(c) Final Match (d) Final Match

(e) Final Match (f) Final Match

Figure 6.14: Matching Results 2.

occupied by the populations. Third, the size of the gene pool represents the amount
of genetic material available to the crossover operator, from which to synthesise new
solutions. It was shown empirically that all three of these quantities decline inexorably
over the course of an algorithm run, and that this decline is particularly marked in the
first few iterations. With the CHC algorithm, the decline was catastrophic. It was argued

that both selection and mutation played a part in the initial loss of diversity.

The mutation operator was shown to reduce the size of the gene pool in the initial popu-
lation, but to increase it in saturated populations. This lead to the idea that the mutation

rate should be set dynamically as the algorithm proceeds and that it should progressively
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increase, in contrast to previous ideas about dynamic mutation rates (Fogarty 1989; Davis
1989; Cross et al. 1997; Davis and Principe 1991). Two methods of setting mutation rate
were proposed. The first cast the mutation rate as a decreasing function of the entropy,
while the second assigned the mutation rate according to a specific schedule. It was found
that dynamically setting the mutation rate had no significant effect on the solution yield.
This finding suggests that the loss of diversity due to mutation is not a major factor

affecting solution yield.

An analysis of standard selection methods showed that a fundamental problem with this
operator is the tradeoff between good search and premature convergence. Since the hy-
brid genetic algorithm contains a powerful local search mechanism, this tradeoff could be
abandoned in favour of selection strategies which minimise selection pressure. Stochastic
selection methods involving sampling with replacement may make several copies of fit in-
dividuals, but they also permit unfit individuals to be selected. Deterministic strategies,
such as truncation, avoid this duplication at the cost of excluding unfit individuals. Selec-
tion without replacement was proposed in order to combine the advantages of limited copy
number and stochastic acceptance. An experimental study showed that simple random

sampling without replacement gave the best solution yield in a hybrid genetic algorithm.
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Chapter 7

Conclusion

This thesis has shown that the genetic algorithm can be used successfully as part of a
least commitment approach to ambiguous and inexact consistent labelling problems. The
algorithm outperforms deterministic methods both in terms of optimisation performance,
and in terms of the ease with which alternate solutions to a problem can be obtained. The
major contribution of the thesis has been the least commitment framework for labelling.
However, two other contributions are worthy of note. First, a substantial experimental
study was conducted which resulted in empirical models for the algorithm’s behaviour
on labelling problems. These models can be used to set algorithm parameters for given
problems. The models have been shown to extrapolate reasonably well. Second, it has
been suggested that hybrid genetic algorithms work by assembling an initial guess for the
local search step. Rather than the local search being an adjunct to the genetic algorithm,
which is the more conventional view (Cross 1998; Whitley 1996), it actually seems to be

responsible for most of the optimisation.

7.1 Summary of Contribution

Chapter 3 reviewed and gave a unified presentation of the Bayesian consistent labelling
framework of Hancock and Kittler (Hancock and Kittler 1990a). This criterion was mod-
ified in three ways. First, defining the consistency criterion as a geometric rather than
an arithmetic mean yielded a direct measure of consistency which is linear in the mini-

mum distances between configurations and dictionary items. Second, the framework was
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adapted to handle inexact labelling problems in terms of the string edit distance between
labelled configurations and dictionary items. This is a more theoretically sound way of
making the comparisons than Wilson’s dictionary padding approach (Wilson 1995), and
avoids the worst case exponential time and space complexity associated with dictionary
padding. Third, the “neighbourhood approximation” was developed which requires a lin-
ear factor less time (or fewer processors) than the criterion given in (Wilson 1995). This
approximation is specific to graph matching. An experimental study showed that the edit
distance based dictionary comparisons are more accurate with respect to relational cor-
ruption, and more efficient, than those involving padded dictionaries. The edit distance
based method was, however, found to be slightly more sensitive to initialisation error. The
neighbourhood approximation was found to significantly improve algorithm running times

without sacrificing accuracy.

The literature survey in chapter 2 identified the inability to apply the principle of least
commitment to current labelling schemes as an unsolved problem in computer vision.
Chapter 4 described this problem in the context of genuinely ambiguous line labelling
problems. Labelling drawings of impossible objects and inexact matching problems are
ambiguous in the sense that there may be several good, but inconsistent, solutions to
the problem. A new method of combining evidence from the scene with the labelling
constraints was proposed for graph matching problems, which takes into account the
potential ambiguities in the measurement information. The genetic algorithm was applied
to these problems: of particular interest were the crossover and local search operators.
The hybrid genetic algorithm with a gradient ascent step was found to produce good
optimisation performance and tolerable solution yields. This was in stark contrast to pure
gradient ascent, which was inadequate for line labelling. For graph matching, gradient
ascent performed well because the attribute information allowed a good initial guess to
be made. However, this method is deterministic, and therefore only produces a single
possible solution. Similarly, Eshelman’s CHC algorithm (Eshelman 1991), although a
better optimiser than the standard genetic algorithm, produced poor solution yields. A
study of metric based crossovers found that the hybrid genetic algorithm performed better
with highly disruptive crossovers. The standard uniform and novel “balanced optimal
contiguous” crossovers outperformed both two point and Cross’s geometric operator (Cross
1998). This suggests that the gradient ascent step took the greater part in the optimisation,
since disruptive operators might be expected to compromise the search in a standard

genetic algorithm applied to labelling problems (Cross 1998).
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Having established the feasibility of using a genetic algorithm in this way, it was necessary
to find a set of control parameters (population size, iteration limit, crossover and mutation
rates) which gave the best algorithm performance. The literature only “recommends”
three sets of control parameters for the genetic algorithm (DeJong 1975; Grefenstette
1986; Schaffer et al. 1989). The experimental study in chapter 4 demonstrated that two
out of these three sets were inappropriate for hybrid genetic algorithms applied to labelling
problems. The first part of chapter 5 argued against extrapolation from any of the three
parameter sets. Any empirical model of genetic algorithm behaviour must be restricted to
a particular problem domain. Results for line labelling do not always generalise to graph
matching, even though those two problems are both instances of the consistent labelling
problem. It is therefore even less sound to expect algorithm behaviour on continuous
numerical optimisation problems to generalise to discrete optimisation problems. Chapter
5 presented a substantial experimental study which led to quantitative empirical models
for labelling problems. These models allowed optimal conditions for the algorithm to
be established. An interesting feature of the models is that very much lower population
sizes than expected (Cross 1998) were needed. This can be explained by postulating that
the main function of the genetic algorithm is to assemble an initial guess for the local
search step. A probabilistic lower bound on the population size in terms of the size of the
label set was established. As for the other parameters, only 10 iterations of search are
required; the crossover rate should be set to 1.0, and the mutation rate should be high
but below 0.6. The Bayesian criterion outperformed the linear one for line labelling, but
the linear criterion was better for graph matching. The empirical models were found to
behave well under extrapolation to problems up to three times as large as those used for

the experiments.

The solution yield seemed relatively insensitive to algorithm control parameter choice, pro-
vided there was good search. Chapter 6 addressed the question of maintenance of diversity
in the algorithm’s population. Previous attempts invariably required the introduction of
additional parameters (Cedeno et al. 1995; Goldberg and Richardson 1987; Beasley et al.
1993). The view was taken that the algorithm is already over-parameterised, and that at-
tempts to maintain diversity should in the first instance avoid introducing new parameters.
First, three different diversity measures were presented. These were the Shannon entropy,
the total inter-cluster Hamming distance and the size of the gene pool. Experiments
showed that all three of these measures declined as the algorithm proceeds, and that the

most substantial decline occurs at a very early stage in the search. A theoretical analysis

163



showed that mutation would cause a decrease in the gene pool size at first, and suggested
that it might therefore be helpful to steadily increase the mutation rate from some low
initial value. Experiments showed that the initial effects of mutation were not sufficiently
severe to necessitate this approach. The initial loss of diversity can be attributed mostly
to the selection operator, since this phenomenon occurs both in the presence and in the
absence of a gradient ascent step. The idea, from chapters 4 and 5, that in the hybrid
genetic algorithm the standard operators mainly exist to serve initial guesses to the local
search step, suggested that the role of the selection operator was relatively limited in terms
of search. Analysis of selection showed that the tradeoff between good search and prema-
ture convergence could be avoided for hybrid genetic algorithms by applying no selection
pressure at all. “Neutral selection” was proposed, in which individuals are selected from
the current population at random without replacement. This operator guarantees that
individuals will not saturate the population at an early stage. An experimental study

showed that neutral selection produces large solution yields without compromising search.

7.2 Future Work

There are several issues raised by this thesis which merit further attention. The treatment
of edit operation weights in chapter 3 is unsophisticated. It is possible to learn edit weights
for particular problems (Ristad and Yianilos 1998). Rather than arbitrarily setting all the
weights to 1, it might be possible to learn weights from a training set of labelling prob-
lems. Similarly, the ambiguous measurement framework for graph matching, introduced
in chapter 4, was somewhat ad hoc. In particular, the control of the “ambiguity param-
eter” was not properly addressed: it was set according to an estimate of the amount of
overlap between the two graphs. However, it is arguable that the degree of ambiguity need
not remain static during the labelling process. Further work should be done to determine
optimal values for this parameter. Another shortcoming of chapter 4 is the lack of a full
comparative study between different optimisation schemes and genetic algorithm variants.
Although comparison was made to gradient ascent and the CHC algorithm (Eshelman
1991), no attempt was made to compare the algorithm to simulated annealing, and no
investigation of alternate genetic algorithms such as GENITOR (Whitley 1989) or the

steady-state algorithm (Syswerda 1989) was made.

There is also considerable scope for extending the experiments in chapter 5. A limita-
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tion of the experimental study was the relatively small number of graphs used as test
material, especially in view of the finding that structural effects were a dominant factor
in determining algorithm outcome. Any subsequent experiments along these lines should
use several different graphs for each problem size, in the hope that the structural effects
will be absorbed into random error. This would provide a more accurate picture of the
true relationship between problem size and outcome. Because of limited computer time,
it was not possible to study very many levels of each factor. This is less of a weakness
than might be thought, because just four levels of each factor permit cubic models to be
fitted with accuracy, and chapter 5 showed that cubic models were in general too complex
to be of much use when extrapolating. A more subtle limitation relating to computational
resources is that the analysis of factorial experiments is itself subject to a combinatoric
explosion as the number of factors increases. It was not feasible to consider higher than
triple interactions in these experiments, although they may well exist. However, the same
data set can be re-analysed at a later date if higher order interactions are to be studied.
The arguments concerning the minimum population size necessary to enable the algorithm
to assemble a good initial guess need further development. At present, the expressions in
equations 5.10 and 5.15 require the experimenter to choose a population size which raises
the probability of good initial guesses to an arbitrary threshold. It would be better to

have the population size expressed directly in terms of the threshold.

Chapter 6 attempted to control diversity in the genetic algorithm’s population without
introducing many new parameters to the algorithm. However, considerable success has
been reported for niching techniques and distributed algorithms in terms of maintaining
diversity (Goldberg and Richardson 1987; Beasley et al. 1993; Jelasity and Dombi 1998;
Davidor 1991). Even if the distributed approach is only a temporary solution to the
diversity problem, niches would only need to persist for a very few algorithm iterations,
since hybrid algorithms usually locate their optimal solutions within 10 iterations. It is

therefore necessary to extend this study to niching strategies and distributed arrangements.

One of the criticisms which is easiest to level at the genetic algorithm is its hunger for com-
putational resources. A hybrid genetic algorithm with a population size of 100 will require
more than 100 times the resources used by gradient ascent. In terms of improvement of
solution quality, this may not be a price worth paying unless one has another requirement,
such as simultaneously obtaining several solutions to the problem in hand. However, ge-

netic algorithms are naturally parallel (Holland 1975). It is not clear how one might use a
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parallel machine to perform optimisation tasks using other algorithms. It has been found
that methods such as simulated annealing are not easy to implement in parallel (Aarts
and Korst 1989; Goldberg 1990). In other words, a serial implementation of a genetic al-
gorithm might require substantial computational resources, but a parallel implementation
might make optimal use of the available resources. Mahfoud and Goldberg describe an
interesting parallel implementation of a combination of simulated annealing with a genetic
algorithm in (Mahfoud and Goldberg 1995). A parallel genetic algorithm might require
O(1) fitness evaluations given enough processors. However, these fitness evaluations them-
selves could be performed in parallel since the criteria of equations 3.9 and 3.13 in chapter
3 are parallel iterative. The availability of parallel and hardware implementations which
perform edit distance calculations (Egecioglu and Ibel 1996; Sastry et al. 1995) raises the
possibility of real time implementation of the labelling process. Naturally, parallelisation
of all three of the genetic algorithm, fitness evaluation and dictionary comparison would
be a major undertaking. The designer would, however, have the choice of which level of
the process to accelerate. It is quite possible, then, for the genetic algorithm to operate
as a hypothesis server in a multilevel vision system. The algorithm would be capable
of adapting to the dynamic changes in input and labelling constraints which would arise
in real-time vision. The final population would have some of the perceptual richness of
a primal sketch (Marr 1982), presenting many alternatives for a higher level process to

choose from.

A final thought is that the consistent labelling problem encompasses problems ranging
from the trivial to the intractable. Ackley’s ONEMAX problem (Ackley 1987) would be
solved in a single iteration of a hybrid genetic algorithm with a population size of 1. Line
labelling is also relatively easy for the algorithm; graph matching requires a gradient ascent
step. However, satisfiability would perhaps present a serious challenge to the algorithm.
It is therefore not unreasonable to suppose that, because labelling problems have been so
extensively studied (Mackworth 1977; Haralick and Shapiro 1979; Haralick and Shapiro
1980; Haralick et al. 1978; Nudel 1983; Jeavons 1998), they might provide a realistic

framework in which to further investigate genetic algorithm behaviour.
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Appendix A

Genetic Algorithms for Structural

Editing

This appendix is a copy of a paper which was published as (Myers and Hancock 1998). It
proposed a genetic algorithm framework for imposing structure on input data. The idea
was that the genetic algorithm’s operators could be seen as a solution editing process. The
example used was a simple natural language processing problem. This was chosen because
the “tree adjoining grammar” formalism developed by Joshi in (Joshi 1985) provides a
structure and a set of editing rules which seemed readily adaptable to a genetic algorithm
framework. Rather than generating parse trees by the application of rewrite rules, the
algorithm constructed parse trees and attempted to fit them to the input. The quality
(fitness) of the fit was measured by the edit distance between the terminal symbols in the

parse tree and the lexical categories of the input.

Viewed as a labelling problem, the language processing example is not amenable to the dic-
tionary based approach presented in chapter 3. This is because the constraints are applied
globally rather than locally. Each word in the input has a dictionary of terminal symbols
associated with it: these are the unary constraints. However, the binary constraints be-
tween word pairs depend in many cases on the syntactic structure of the sentence. In this
paper, the algorithm effectively labelled the input string with an entire tree, as opposed to
labelling the nodes of a graph as in chapter 4. The problem as posed was thus considerably
harder than relational matching. To make matters worse, no a prior: evidence was used
to guide the labelling process. Expecting a genetic algorithm with no local search step to

solve this problem was perhaps a little optimistic. Nevertheless, this study serves as an
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example of how the algorithm can be used to generate interpretations with quite complex

structures given relatively simple constraints.

A.1 Introduction

Graphical models have recently attracted considerable interest in the connectionist lit-
erature where they have been used to embed causal relations into network structures.
Broadly speaking, the available models can be divided into those that draw on undirected
graphs and those that draw on directed graphs. According to this taxonomy, Markov
models belong to the former category while causal networks fall into the latter category.
In fact directed graph structures are of particular importance since they can be used to
represent subsumption or part-whole hierarchies. Such representational structures are of
pivotal importance in language understanding and vision where they are used to control
the vertical flow of perceptual inference. Despite this interest in the modelling of proba-
bilistic interactions in network structures, the issue of how to control the structure itself
has attracted less attention. This is an important omission since in practice the task of
extracting hierarchical relations from real-world data is invariably one of extreme fragility.
In the machine vision domain, it was Sanfeliu and Fu who first illustrated the importance
of graph-edit operations in matching noise corrupted relational structures (Sanfeliu and
Fu 1983). More recently, Meila and Jordan have used graph-edit operations to moralize

intractable graph-structures (Meila and Jordan 1997).

It is the editing of directed graph structures to which we turn our attention in this paper.
Specifically we focus on the issue of how to extract the most consistent tree-structure from
imperfectly formed input. This can be viewed as an optimisation problem. Our goal is to
recover hierarchical structure inherent in input, based on low-level information, according
to predefined structural rules. Essentially, the structure which best fits the low-level data
is the preferred interpretation. In order to do this we require a hierarchical representation
of the domain of interest and a means of measuring the accuracy with which a model
fits the data. It is clearly inappropriate to enumerate every possible interpretation in
the model database. Rather, a natural means of extending some initial small database is

required.

The obvious hierarchical representation is a graph - for a subsumption hierarchy, a tree.

Models will need to undergo vertical edit operations to adapt their structure to the data.
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Unfortunately, most graphical editing operations described in the literature are rather
naive, being single-node (or -edge) insertion, deletion or relabelling (Sanfeliu and Fu 1983;
Eshera and Fu 1984; Shasha and Zhang 1989; Zhang 1996; Skillicorn 1996) (to be fair,
these are generally intended as measures of distance in matching algorithms rather than
as true editing operations). The geometric crossover operator described by Cross and
Hancock in (Cross et al. 1997) is somewhat closer to the mark: it involves bisecting two
Delaunay graphs with a random line in order to edit a match relation which exists between
them. However, this operation does not necessarily generalise to other types of graph, and
is in any case global. What is required is a local structural edit operation which modifies

intermediate subgraphs, ranging from single nodes to the entire graph.

The tree adjoining grammar formalism developed by Joshi in (Joshi 1985) provides an
interesting starting point. Tree adjoining grammars were originally designed for natural
language processing: rather than use a set of rewrite rules, these grammars provide sets
of minimal parse trees which may be extended by adjunction (section A.2). Thus parsing
with a tree adjoining grammar can be seen as fitting a hierarchical model to the input and
iteratively modifying that model until it adequately describes the data. Our interest is
primarily in the structural editing process, rather than computational linguistics. However,
language processing is the natural application of tree adjoining grammars and provides a
convenient non-trivial hierarchical structure recovery problem with which to explore our

framework.

A.2 Tree Adjoining Grammars

A tree adjoining grammar, G, is a pair, (I, A), of sets of ordered labelled trees, where I
is the set of initial trees, which correspond to minimal sentences in the string language of
G, and A is the set of auziliary trees, which extend the trees in I via adjunction to give
new initial trees. By definition, all the external nodes of an initial tree are preterminal
symbols (lexical categories) and all of its internal nodes are nonterminals. Auxiliary trees
are similar to initial trees, except that exactly one of the external nodes has the same
label as the root: this is the foot node. Tree adjoining grammars are moderately context-
sensitive, a property they owe to the manner in which recursion and dependencies are

expressed (Joshi 1985).
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Figure A.1: Tree Adjunction.

A.2.1 Tree Adjunction

Adjunction (figure A.1) is a composition operation between initial and auxiliary trees:
given an auxiliary tree, A, and an initial tree, I, which contains a node with the same
label, X, as the root of A, the adjunction of I and A is achieved by removing the subtree
in I rooted at X, inserting A in its place, then attaching the children of X to the foot node
of A. Thus, adjunction inserts an extra layer of structure into an initial tree. It is usual to
place constraints on adjunction at some of the internal nodes of trees. These constraints
are discussed in detail in (Becker et al. 1995), where they are used to implement features
via unification. The only constraint of interest to us at present is the null-adjunction

constraint which forbids adjunction at any node bearing it.

A.2.2 Subtree Crossover

We define an additional operation, subtree crossover (figure A.2), in which subtrees with
a common root label are exchanged between two initial trees. The subtrees should be
distinct, as should the remainders of the parent trees. This is a special case of Koza’s
operator (Koza 1992), but a more general case of the substitution operator used in (Becker
et al. 1995), which is essentially a notational shorthand; a non-terminal node in the
frontier of an initial tree must be replaced by another initial tree to yield a tree in which
the frontier nodes are all terminal symbols. Such trees represent sets of sentences with a

certain type of constituent in a particular position.
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Figure A.2: Subtree Crossover.

DP VP DP VP
o~ o~
D NP T D NP T
N \Y PP N \Y PP
/‘\ /‘\
P DP P DP
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D NP D NP
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| A | A
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art cnoun iverb prep ] cnoun art cnoun iverb prep ] cnoun
1;\5 r1|1an v!/ent '7|‘77 1£ywn 1;\5 r1|1an v!/ent t(IJ 1£ywn
(a) Incomplete Sentence (b) Complete Sentence

Figure A.3: Handling of Incomplete Sentences. The parser should recognise that a prepo-
sition is missing from the sentence *“the man went town”, possibly enabling it to correct

the error.

A.3 Natural Language Processing

This section describes our approach to natural language parsing. We use this as a test
problem for the structural editing framework, and therefore give a much simpler formula-
tion than the state of the art for language processing. Specifically, we concentrate on the
structure of the parse tree and ignore augmentations such as features. The problem can
be simply stated as that of finding the best parse of an input sentence. We would like to
be able to gracefully handle the case where a word in the input is unknown, misspelt or
missing as illustrated in figure A.3. We would also like ambiguous cases (see figure A.4)
to be handled neutrally in the absence of a priori evidence, i.e. the ordering of rules in

the rulebase should not bias the parser in favour of any particular interpretation.
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Figure A.4: Handling of Ambiguous Sentences. The parser should not discriminate arbi-
trarily between the available interpretations. This example is a modification of the one in

(Allen 1994).

A.3.1 The Grammar

Our grammar is based on the lexicalised tree adjoining grammar given in (Becker et al.
1995). We do not consider features, and have simplified the grammar considerably to suit
our experimental purposes. Nevertheless, we retain the null-adjunction constraint, and
have also added a few trees to make the grammar more consistent with X-bar theory. The
grammar covers sentences involving intransitive, transitive and ditransitive verbs, relative
and subordinate clauses, adjuncts, conjunction, and a number of simple constructions;
however, we make no claim as to its completeness or accuracy which are not of primary
interest in this paper. As is standard, the nonterminal symbols are typically phrasal
constituents and are written in uppercase letters: noun phrases (NP), verb phrases (VP),
clauses (SC), sentences (S), adverbials (ADV) and so-on. The terminal symbols are the
lexical categories for which we use a non-standard notation to partly compensate for the
lack of features. These are written in lowercase and include articles (art), common nouns

(cnoun), transitive verbs (tverb) and so-on.

A.3.2 Accuracy of Parses

Section A.2 describes how parse trees for a particular sentence may be generated; it remains
to define some measure of how accurate a parse is, and whether or not it contains missing
constituents. In (Becker et al. 1995), a lexicalised grammar is used: each word in the

input selects a set of trees which are then combined to form a parse; the final parses are
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Figure A.5: Extreme Examples. In (a), words in parentheses are unknown, and may match
anything (they must match something); the edit-distance is 2 without wildcards, 0 with.
In (b) the essential structure of the utterance is recovered even though it is badly formed;
the edit distance is 3. In both cases, the edit-distance algorithm allows the parser to make

maximal use of the available information, yielding “correct” parses of the input.

assessed manually. In our scheme, each position in the sentence is assigned a dictionary
of lexical entries based on the lexicon for the word at that position. For example, for the
sentence “rice flies like sand”, the dictionary at position 3 would be {tverb, prep}, hence
the ambiguity (figure A.4). It is now possible to evaluate the accuracy of a parse tree by
considering how well its frontier matches the dictionaries assigned to the word-positions
in the input. This is done using a modified version of the classic edit-distance algorithm
given by Wagner and Fischer in (Wagner and Fischer 1974): where they used equality as
a match condition, we use set-membership. This algorithm is known to find the minimum
number of insertions and deletions necessary to make the two strings identical and thus
provides a natural measure of how well a particular parse tree describes a given sentence
(since the hierarchical structure of a sentence depends only on the grammatical rules used
to parse it). We use a wildcard dictionary entry for unknown words: this allows sentences
with missing or misspelt words to be parsed successfully whilst preserving the structure

of the known parts of the sentence.

Using the string edit-distance in this way imparts a measure of “intelligent” behavior to
the algorithm. Suppose the input is “Edward’s cat sat on John’s mat” and that neither
“Kdward’s” nor “John’s” is in the lexicon. The best parse is still that shown in figure A.5

(a). Similarly, the best parse of *“cat sat mat” is that given in figure A.5 (b).
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A.4 Genetic Algorithms

The genetic algorithm (and variants thereof) is a well-known population-based global
optimisation strategy (Holland 1975; Rudolph 1994) - reviews may be found in (Fogel
1994) and (Srinivas and Patnaik 1994b). Briefly, a population of candidate solutions to
a problem (the individuals), usually encoded as binary strings, is iteratively subjected to
crossover in which parts of two individuals are mixed to yield two offspring, mutation in
which one individual is subject to random change, and selection in which individuals are
stochastically chosen to form the next generation. A measure of the quality of the solution
represented by the individual is its fitness, which is translated into a probability of its
survival into the next generation. The algorithm intuitively lends itself to problems which
may be decomposed or partially decomposed and which have many local and global optima,
for example line labelling (Huffman 1971; Myers and Hancock 1997a). The algorithm
composes a good solution by mixing sub-solutions with the crossover operator. Mutation
operates at a low level as a source of background variation which allows new information
to enter the population. The stochastic nature of selection allows the population to escape

local optima.

Natural language processing is related to line labelling, both being instances of the consis-
tent labelling problem first formulated by Haralick and Shapiro in the 1970s (Haralick and
Shapiro 1979; Haralick and Shapiro 1980). In natural language processing, the goal of the
parser is to label the words in the input sentence with their lexical categories. Unlike line
labelling, however, it is also desirable to construct a hierarchical representation of the sen-
tence, its parse tree. We have demonstrated elsewhere that genetic algorithms are suitable
for line labelling (Myers and Hancock 1997a), especially when it is necessary to obtain
several closely related solutions simultaneously (Myers and Hancock 1997b). Our interest
here is the algorithm’s solution-editing framework (crossover and mutation) rather than
its optimisation properties which are not certain - indeed for medium (40 to 60 lines) line
labelling problems, exhaustive search comfortably outperforms the algorithm. The rest of
this section formulates our version of natural language processing with a tree adjoining

grammar for the genetic algorithm.
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Figure A.6: S-Tree Example. This is the graphical representation of the S-tree
(S((NP((art) (n))) (VP((v) (NP((art)(n))))))).

A.4.1 Solution Encoding

The population in our genetic algorithm consists of a set of initial trees drawn (initially
at random) from the set of initial trees in the grammar. A natural way to encode trees is
as strings. These are technically Lisp-like S-expressions, but we refer to them as S-trees

to emphasise their structure. The grammar for constructing S-trees is given below.

STREE --> ’(’ label [’(’ SUBTREES ’)’] ?)’
SUBTREES --> STREE | STREE SUBTREES

Label is the label of a node in the tree which must be a string of characters. As an example,

figure A.6 gives a graphical representation of the S-tree:

(S((NP((art) (n))) (VP((v) (NP((art) (n)))))))

A null-label may be applied to any symbol in the tree, for example (D:-) is an empty
D(eterminer). Other assignments are made by the edit-distance algorithm: when an
assignment is inconsistent or involves an unknown word, it is denoted with an asterisk,

“_ Thus, the trees in figure A.5 would be denoted as shown in table A.1.

In principle, any tree can be represented in this manner, although the representation be-
comes clumsy when the node-labels are complex or the nodes contain a large amount of
information. Simple features such as the null-adjunction constraint can be added by pre-
fixing the node label with special characters according to some simple regular grammar.
The advantage of this representation is its transparency, the ease of extracting the frontier
while computing the edit-distance from the input, and the fact that the operations de-
scribed in sections A.2 and A.4.3 can be implemented by matching and copying substrings.

This representation is also compact.
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(a) Unknown Words

(b) Missing Words

(s( (s(

(D ( (DP(
(D((*art:Edward’s))) (*D:-)
(NP((N((cnoun:cat))))) (NP((N((cnoun:cat)))))

) )]

(VP( (VP(

(V((tverb:sat))) (V((tverb:sat)))
(PP ( (PP(
(P((prep:on))) (P((*prep:-)))
(DP( (DP(
(D((*art:John’s))) (*D:-)
(NP ((N((cnoun:mat))))))) (NP ((N((cnoun:mat)))))))
) )
)) )
) ))

Table A.1: String Representation of Parse Trees. Inconsistent assignments are marked

with asterisks (‘“*').

A.4.2 TFitness Measure

The edit-distance cost function described in section A.3.2 is a discrete measure which takes
values from the set {0, 1, ..., N}, where N is the larger of the number of words in the input
and the number of nodes in the frontier of the tree. To convert this into a fitness measure
suitable for use with a genetic algorithm we exponentiate. In equation A.1, ED; is the
edit-distance of the i*" S-tree, F; is its fitness and £ is an arbitrary scaling constant which

defaults to 1.

F; = exp (-B.ED;) (A.1)

To convert this into a survival probability for the selection step, we divide by the total

fitness of the n members of the genetic algorithm population.
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(A.2)

A.4.3 Genetic Algorithm Operators

Crossover is simply implemented using subtree crossover defined in section A.2. Given
two parent S-trees, the algorithm selects a node from each subject to the conditions that
(1) the nodes have identical labels and are not subject to null-adjunction, (2) the subtrees
rooted at the nodes are different, (3) the remainders of the parent trees following excision
of the subtrees are different, (4) at least one of the nodes is not the root node, and (5) at
least one of the subtrees is not empty. In practice, several pairs of nodes may satisfy these
criteria: in this case the crossover sites are selected at random. A drawback of subtree
crossover is that not all pairs of trees can be crossed, and only a subset of the nodes may
be part of a crossover site in a particular crossing, both of which make the term “crossover
rate” a little harder to define. However, since our choice of interpretation is restricted by
the input data, in practice only a relatively small number of S-trees will survive the first
few iterations of the algorithm, and these are likely to be of similar types. This crossover
will thus be less disruptive and explore the search space less well than more traditional

operators.

Mutation does not have such a natural implementation. It does not make sense to
simply relabel nodes in a parse tree: internal nodes must never be relabelled since they
describe permitted phrase structures in the grammar, and frontier nodes cannot generally
be relabelled because only certain classes of words can form particular constituents. The
adjunction operator seems a reasonable choice since this makes a point-modification to
a single initial tree. This is implemented by forming a set of adjoinable auxiliary trees,
selecting one and then finding a suitable adjunction site in the initial tree (i.e. a node with
the same label as the root of the auxiliary tree, and not subject to the null-adjunction
constraint). A major disadvantage of this implementation is that mutation can no longer
necessarily be considered a background operator: adjunction is a fundamental means by
which novel parse trees are constructed. One way around this limitation is to adjoin every
tree with every adjoinable auxiliary tree at every possible site in a preprocessing step.
This step, which we call “expansion” may be repeated as many times as desired; however

it is computationally expensive! and is therefore only suitable when the sets of trees are

"We do not give a formal complexity result, but the number of adjunctions is linear in the numbers
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small. Adjunction may have far-reaching effects on the structure of a tree which is in

sharp contrast to the local nature of the standard mutation operator.

A.5 Experiments

In a preliminary study, our algorithm was tested on artificially constructed sentences; for
added realism, we also used 16 sentences drawn from a letter from a funding body. We
increased the complexity of some sentences by adding adverbs, adjectives and additional

words and clauses. Sample sentences are given below.

1) All awards are available.

2) A1l studentship awards are available.

3) Our awards are clearly helpful.

4) Please remember to include your award reference number.

5) Please remember to include the award reference number in the top

right hand corner of the address label.

The grammar consisted of 49 initial and 45 auxiliary trees (370 and 1138 with expansion).
We tested the algorithm on several different parameter settings with and without a single
pass of expansion. 25 trials were conducted for each sentence with a variety of population
sizes and iteration limits; crossover and mutation rates were fixed at 0.9. Lower values of
crossover and mutation rates were also tried: these yielded uniformly poor performance

and are not reported here. The results are given in table A.2.

A.5.1 Discussion

Elsewhere we have reported that for line labelling, mutation rate is the most accurate
predictor of success rate, followed by population size and crossover rate with iteration
limit playing little part (Myers and Hancock 1997a). Our initial results for language

parsing agree to some extent with this: all the best runs had population sizes of 4000, and

of initial and auxiliary trees. The number of initial trees increases with the squares of the numbers of
auxiliary trees and adjunction sites, which respectively increase quadratically and linearly with iteration

number
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Population Size Iteration Limit | Accurate Parses
expansion no expansion
100 1000 0% 13%
200 500 0% 13%
500 200 0% 13%
1000 100 6% 25%
2000 50 6% 25%
- 17%
2000 100 0% 19%
4000 25 6% 13%
4000 50 6% 31%
- 22},
4000 100 6% 25%
- 27%

Table A.2: Experimental Results. 25 runs were performed for each sentence to give a total
of 400 runs. The crossover and mutation rates were fixed at 0.9. Some combinations were

tried more than once.

the limit on iterations does not seem to be particularly relevant. However, low values of
the mutation and crossover rates tended to give poor performance. This is unsurprising

since both operators are of fundamental importance in the parsing process.

The need for high population size is remarkable, since the best population size we tested
was about 100 times the cardinality of the unexpanded initial tree set. This is probably
due to the well-known problem of premature convergence - we have shown previously that
the diversity of the population decreases sharply in the first few iterations (Myers and
Hancock 1997b). Thus for complex sentences there may be relatively few avenues open

for search after the initial phase of the algorithm.

It is clear that grammar expansion does not help. This can perhaps be explained in terms
of the structure of the input sentence. A “deep” sentence is one which requires many
adjunctions to generate a correct parse: it has a lot of structure and will typically contain
many modifiers. It appears that the deep structure of sentences is relatively inaccessible
to the algorithm, since many specific adjunctions are required to generate a correct parse.

Thus, a single pass of the expansion step is unlikely to substantially simplify the task of
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parsing complex sentences: only those sentences with one or two levels of complexity are
made significantly easier. However, the expansion process does create a large number of
“spurious” initial trees: it is likely that without expansion all 49 initial trees would be
represented in a population of 1000, with few auxiliary trees to choose from for adjunction.
Blindly increasing the numbers of initial and auxiliary trees appears to effectively increase

the probability of making an incorrect choice.

A.6 Conclusion

The main contribution of this paper has been to investigate the use of discrete graphical
editing operations within an optimisation framework. We have adapted the genetic algo-
rithm for use with a tree adjoining grammar, and demonstrated its utility with a simple

natural language processing example.

It is clear that there are several directions in which this work can be developed. It is
worth investing some time fine-tuning the genetic algorithm’s control parameters; these
are notoriously difficult to set a priori (Grefenstette 1986; Schaffer et al. 1989; DeJong
and Spears 1990) . To use our framework for serious language processing would require
considerable work on augmenting the grammar and lexicon. We intend to develop the
work by exploring more complex hierarchical problems furnished by vision, for example

multilevel scene analysis.
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Appendix B

Publication List

The following is a list of publications which resulted from the work undertaken in this

thesis.

R. Myers and E. R. Hancock. Genetic algorithms for ambiguous labelling problems.
Lecture Notes in Computer Science (EMMCVPR 97), 1223:345-360, 1997.

R. Myers and E. R. Hancock. Genetic algorithm parameters for line labelling. Pattern
Recognition Letters, 18:1363-1371, 1997.

R. Myers and E. R. Hancock. Genetic algorithms for structural editing. Lecture Notes in

Computer Science (SSPR 98), 1451:159-168, 1998.

R. C. Wilson, R. Myers and E. R. Hancock. Efficient relational matching with local edit
distance. In Proceedings of the 14" International Conference on Pattern Recognition,

pages 1711-1714, 1998.
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