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Abstract

The overall aim of this thesis is to provide a hierarchical framework of method-

ologies for recognising objects represented as line patterns from large structural li-

braries.

One of the novel aspects of our work is a new shape representation for rapidly

indexing and recognising line-patterns from large databases. The basic idea is to

exploit both geometric attributes and structural information to compute a two-

dimensional relational pairwise geometric histogram. Shapes are indexed by search-

ing for the line-pattern that maximises the cross-correlation of the normalised his-

togram bin-contents. A sensitivity study reveals that the structural gating of the

histogram not only improves recognition performance, but it also overcomes the

problem of saturation when large patterns are being recalled. This technique pro-

vides the first level of the hierarchy, which is used to prune the database of many

unwanted candidates.

The intermediate level of our hierarchical framework is based on a novel similar-

ity measure for object recognition from large libraries of line-patterns. This operates

at a more local image level than the histogram based indexing layer. The measure is

derived from a Bayesian consistency criterion and resembles the Hausdorff distance.

This consistency criterion has been developed for locating correspondence matches

between attributed relational graphs using iterative relaxation operations. Our aim

here, is to simplify the consistency measure so that it may be used in a non-iterative

manner without the need to compute explicit correspondence matches. This con-

siderably reduces the computational overheads and renders the consistency mea-

sure suitable for large-scale object recognition. A sensitivity study reveals that the

method is capable of delivering a recognition accuracy of 94%.



A Bayesian graph matching algorithm for data-mining from large structural

databases operates as final level of the hierarchy. The matching algorithm uses both

edge-consistency and node attribute similarity to determine the a posteriori probabil-

ity of a query graph for each of the candidate matches in the reduced database gener-

ated by the lower levels of the hierarchy. The node feature-vectors are constructed by

computing normalised histograms of pairwise geometric attributes. Attribute simi-

larity is assessed by computing the Bhattacharyya distance between the histograms.

Recognition is realised by selecting the candidate with the largest a posteriori proba-

bility. Here the recognition technique is shown to significantly outperform a number

of algorithm alternatives.

For each of the above methodologies a thorough sensitivity study is undertaken

for a library of over 2500 lines-patterns. We investigate the algorithms under line-

dropout, line fragmentation, line addition and line end-point position errors. The

analysis reveals the robustness of each method on its own as well as within the

hierarchical framework. This suggests that there is a degree of complementarity

between the approaches.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

This thesis is about the retrieval of images from large databases using line-patterns.

Line-segments are commonly employed as the basis for representing objects or

scenes in computer vision tasks (Huttenlocher and Ullman, 1987; Evans et al., 1993;

Princen et al., 1992; Costa and Shapiro, 1995). A large number of object recognition

algorithms make direct use of straight-line pixel arrangements detected in digital

images although other approaches have also been proposed and offer good recogni-

tion performance. Two sources of information are available. Firstly, the recognition

process may consist of comparing attributes (or measurements). Secondly, the rela-

tional arrangement may be used to perform recognition. Because of the complexity

of the task at hand, object recognition algorithms are often computationally expen-

sive and therefore rather slow. Furthermore, current recognition techniques become

extremely impractical and inefficient as the number of object model increases.

For content-based image retrieval, shape indexing is the focus of atten-

tion (Eakins, 1989; Taubin and Cooper, 1991; Niblack et al., 1993; Sclaroff and

Pentland, 1993; Jain and Vailaya, 1996; Picard and Pentland, 1996). However, this

problem is approached in a slightly different way than object recognition. Because
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of the speed requirement during the retrieval process, new methods have been pro-

posed to achieve shape similarity retrieval. In many cases, these methods are based

on boundary descriptions of image regions, which are semi-manually annotated.

Having established the topic of the thesis, we intend to propose a methodol-

ogy for rapidly indexing and recognising object images into a large library of line-

segment representations (or line-patterns). In order to achieve this goal with a high

degree of accuracy and robustness as well as an economical amount of processing

time, we intend to devise a hierarchical (or multi-level) framework where each level

takes as input domain the result obtained by the previous level. The first (lowest)

level employs image summaries (or signatures) to represent the shape content of

the images. These compact summaries are easily and rapidly compared in order to

index into a large library of models according to their shape similarity. The second

level uses local image feature sets as a representation. A similarity measure de-

rived from fuzzy set theory, the Hausdorff distance measure and a Bayesian based

consistency measure is used to recover matches between local image features and

ultimately provides a global measure of similarity between images. The third and fi-

nal level uses attributed relational graph representation and explicit correspondence

matching to verify the recognition.

We are going to review the literature on object recognition. We will be focussing

more particularly on techniques based on line-patterns. The field of object recog-

nition can be broadly divided in four areas; (a) evidence combination and voting,

(b) correspondence matching, (c) graph matching and (d) alignment. The idea be-

hind evidence combination approaches is to build a summary of image features.

Examples include the Hough transform (Ballard, 1981; Illingworth and Kittler, 1987;

Illingworth and Kittler, 1988; Princen et al., 1992), geometric hashing (Lamdan et al.,

1988a; Lamdan et al., 1988b; Rigoutsos and Hummel, 1995; Procter and Illingworth,

1997) and Histogram (Swain and Ballard, 1990; Jain and Vailaya, 1996; Dorai and

Jain, 1995; Evans et al., 1993). Correspondence matching aims at associating in-

3



dividual image features between a data image and its model. Techniques such as

moments (Eakins, 1989; Taubin and Cooper, 1991; Niblack et al., 1993), principal

component analysis (Turk and Pentland, 1991; Sclaroff and Pentland, 1993), feature

indexing (Grimson and Lozano-Perez, 1987; Knoll and Jain, 1986; Ettinger, 1988)

and feature sets (Rucklidge, 1995; Bloch, 1996) fall into this category and are not

too computationally demanding. Graph matching approaches offer more detailed

analysis of the consistency of matches using structural and relational information.

Matching based on this enriched representation is more challenging because of the

problem of relational inexactness. A number of algorithms have been proposed to

perform graph matching. The methods used include probabilistic relaxation (Kittler

and Hancock, 1989; Christmas et al., 1995; Wilson and Hancock, 1995), genetic algo-

rithms (Cross and Hancock, 1996; Cross et al., 1996) and structural indexing (Costa

and Shapiro, 1995; Messmer and Bunke, 1994). Alignment techniques may be re-

garded as a form of template matching, where shape deformations are allowed (Ull-

man, 1979). There are a number of alignment methods; These include direct align-

ment methods (Huttenlocher and Ullman, 1987; Viola and Wells, 1997) and optimi-

sation based alignment methods (Ullman, 1979; Scott and Longuet-Higgins, 1991;

Shapiro and Brady, 1992; Cootes and Taylor, 1995; Sclaroff and Pentland, 1995).

The correspondence matching, graph matching and alignment methods require non-

negligible computational effort. They are therefore not particularly appropriate to

operate in large libraries of models, unless they can be rendered more efficient.

The aim of the research presented here is to achieve large-scale object recognition

using relational and attribute representation of line-pattern arrangements. Current

object recognition techniques are too computationally intensive to be used for rapid

retrieval and recognition where a large number of possible candidate models have

to be investigated. Additionally, the rapid recognition methodologies proposed by

the content-based retrieval community do not provide the level of accuracy required

by most object recognition tasks. We therefore intend to devise a hierarchical frame-
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work by combining the rapidity of image database retrieval techniques with the

robustness and accuracy of the most effective object recognition approaches. Each

of the three levels of the hierarchy proposed, (i.e. summary based, local feature set

based, and attributed graph based) present original contribution to the literature.

One of the novel features of our approach is to make use of single and very com-

pact histogram representation for the purpose of rapid recognition. In this way we

can rapidly gauge the similarity between any pairs of objects. Thus, making the

problem of object recognition from large model libraries an achievable task. Rather

than histograming directly from pixel attributes (e.g. grey-levels, RGB-levels or tex-

ture descriptions) (Swain and Ballard, 1990; Jain and Vailaya, 1996), Euclidean in-

variant attributes computed from line-segment pairs are employed. The pairwise

geometric histogram encodes the distribution of geometric co-occurrence between

image line-segment pairs.

Another important contribution of our work is to encapsulate relational (or struc-

tural) constraints within the histogram representation to improve its robustness to

noise, clutter and occlusion without loosing any of the invariant properties of the

line-patterns.

Additionally, a novel similarity measure for object recognition from the at-

tributed relational representation is presented. The measure commences from a

Bayesian consistency criterion, which has been developed for locating correspon-

dence matches between attributed relational graphs using iterative relaxation oper-

ations (Wilson and Hancock, 1994). Here we simplify considerably the consistency

measure so that it is used in a non-iterative manner. The design of the simplified

measure draws inspiration from both the Hausdorff distance (Huttenlocher et al.,

1993; Rucklidge, 1995) and a Bayesian based consistency criterion. This reduces the

computational overheads and renders the relational consistency measure suitable

for object recognition from large modelbases. We have called it the Fuzzy Hausdorff

Distance.
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Another novel aspect of the approach presented here is its hierarchical organi-

sation. The hierarchy consists of three distinct levels. The lower level consists of

the rapid indexation scheme, briefly introduced in an above paragraph. This aims

to discard the images or object models that do not have sufficient similarity with

the query image when based on the relational pairwise geometric histograms. The

intermediate level refines the rather crude model selection provided by the under-

lying layer. A novel similarity measure for non-iterative attributed graph based ob-

ject recognition has been devised. The result is an accurately selected set of image

models all bearing geometric and structural similarities with a query object.

Having greatly reduced the number of possible model candidates from the line-

pattern library, a more computationally intensive object recognition technique may

be used to accurately reject false positives and locate true positives. The technique

we are using here is directly related to graph matching. Since the very first level

of the hierarchy, image line-patterns have been represented using both relational

structure and geometrical attributes. The graph matching algorithm we use allows

us to recover line to line correspondences between the query image and selected

objects from the library of line patterns.

The thesis is written in the following fashion. We will start with a review of

the state of the art in object recognition and content based image retrieval from large

databases. This review pays particular attention to shape similarity. We then present

in Chapter 2 the particular case of object representation based on line-patterns from

other people’s work and our own. The following Chapter (Chapter 3) presents the

lower level of our hierarchical approach; based on a two-dimensional pairwise ge-

ometric structural histogram representation. This Chapter includes comparison of

various attribute based histograms. Here we investigate the use of relational infor-

mation as well as a number of alternative histogram distance measures. Chapter 4

presents the Fuzzy Hausdorff Distance measure. In this chapter we give compar-

ative results with the standard and Rucklidge’s Haussdorff (Rucklidge, 1995). We
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also present experiments with a number of relational graph structures as well as a

variety possible pairwise attributes (vector based and histogram based). The last

level of the hierarchical framework is presented in chapter 5. Finally, we give our

conclusion about the work reported here and provide detailed information about

possible future work and extensions to the proposed methods.

1.2 Object Recognition

Object recognition has been one of the primary goals of computer vision, since its

origin as a distinct field of research in the early 1960’s. Indeed, for many vision sys-

tems or applications, object recognition is the ultimate goal. This probably justifies

why it is still a very active area of research. Many very advanced, robust and effi-

cient algorithms have been proposed over the last 30 or so years (Suetens et al., 1992).

Due to the complexity of the task at hand and computational requirements of most

object recognition algorithms, their use in real world problem is limited to small or

very specialised tasks. Our aim is to devise a methodology that would enable object

recognition to be performed from very large libraries of models. Posed in this man-

ner the problem bears some obvious similarities with the recent and considerable

problem of content-based retrieval in multimedia databases, and more specifically

image databases (Niblack et al., 1993; Pentland et al., 1994; Gevers and Smeulders,

1992; Swain, 1993; Picard, 1995; Jain and Vailaya, 1996). It is therefore appropriate

to survey both areas of research in order to identify the advantages and weaknesses

of alternative approaches.

The methodologies for object recognition found in the literature may be broadly

categorised into four groups. A key issue for indexing and retrieval of object in

large libraries is to achieve speed while retaining accuracy. We will therefore present

each method in order of computational complexity and time requirements. The

simplest and least demanding approach is evidence combination. Correspondence
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matching methods require increased computational effort over the summary based

approaches but most benefit from improved accuracy performances. Finally the

very computational demanding graph matching and alignment algorithms will be

presented. Increased robustness and accuracy usually reward for the loss of rapidity

of those methods.

1.2.1 Evidence Combination

The basic idea behind evidence combination or accumulation techniques is to pro-

duce a very compact object representation. Some approaches make direct use of

image pixel values while others compute feature measurements prior to voting. De-

spite the compactness of the representation a careful selection of the measurements

allows rapid, unambiguous, and robust identification and recognition of objects or

images. The main voting methods are listed below.

Histograms

Swain and Ballard (Swain and Ballard, 1991) have devoted considerable effort into

the study of colour histogram. The colours contained in an image are discretised

in the RGB (red-green-blue) space and each bin in the histogram is the count of the

number of times each discrete colour occurs. They have shown that such a represen-

tation may be used to index into an image database and that the technique is invari-

ant to small changes in translation and rotation (Swain, 1993; Stricker and Swain,

1994). However, this technique is not robust to variations in lighting conditions, al-

though more recent research (Finlayson et al., 1996) indicates that alternative meth-

ods can solve this problem. Finally, the FINDIT system (Swain, 1993) relies solely on

the colour histogram to perform retrieval. In our opinion, this is not sufficient and

may lead to ambiguous retrieval due to the insensitivity of the histograms to pixel

permutation.

Jain and Vailaya (Jain and Vailaya, 1996) augmented the colour histogram ap-
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proach with a histogram computed from edgel direction to capture the general shape

information. This very simple and compact representation is shown to perform well

but suffers from inherent scale and rotation dependence. This is a major drawback

for any object recognition technique. Additionally, since the representation is di-

rectly generated from the detected edge pixels, a non-negligible amount of noise

and clutter is likely to affect the representation dramatically. This will lead to a poor

performance.

The work of Evans et al. (Evans et al., 1993) is aimed at recognising two dimen-

sional object shapes using a two dimensional histogram of pairwise geometric at-

tributes for each line segment found in the image. The attributes used are the rela-

tive angle and range of perpendicular distances between all possible segment pairs.

The second attribute eliminates the problem of line splitting creating multiple entries

during histogram binning. However this attribute does not offer scale invariance.

The major disadvantage of this approach is that the number of histograms required

in order to represent an object or image is equivalent to the number of detected lines

segments. This representation increases the storage space required for every image

or object in the database and the time required to compute the similarity between

two objects views.

This approach has since been improved by Ashbrook et al. (Ashbrook et al., 1995)

who introduced a region of interest. This restricts the set of line-segment pairs used

for histogram creation. This allows the technique to cope with occlusion and im-

proves the robustness to noise and clutter. However, there is no clear or obvious way

to define automatically the size of the region of interest. This may lead to instability

of the representation. The second improvement offered by this approach concerns

improved scale invariance. The method uses a brute force technique, which em-

ploys a separate pairwise geometric histogram representation for each anticipated

scale. This is neither very elegant, nor does it entirely solve the scale invariance

problem. Moreover, it increases the amount of storage and computation required
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during recognition.

The most recent addition to the pairwise geometric histogram approach comes

from Di Mauro et al. (DiMauro et al., 1996). Instead of using the perpendicular

distance attribute, they have modified the algorithm of Ashbrook et al. (Ashbrook

et al., 1995) to use the radial distance attribute. This modification is made in order

to model variable object shapes as well as to provide discrimination between am-

biguous line-pattern pairs. However, the radial distance is computed from the-mid

point of the base segment to the end points of the line-pairs. This is likely to be

subject to uncertainty due to noise and clutter, and will have undesirable effects on

the representation. Furthermore, the advantage of the perpendicular distance is that

the radial distance does not resolve the line-splitting problems.

Recently Dorai and Jain (Dorai and Jain, 1995; Dorai and Jain, 1997) have used

histograms in the context of 3D object recognition. Their approach makes use

of a shape index to represent three-dimensional objects. Koenderink and Van

Doorn originally proposed the shape index as a mean of graphic surface visuali-

sation (Koenderink and vanDoorn, 1992). The object surface orientations are dis-

cretised at every image point in the three dimensional space and the histogram is

created by counting the number of occurrence of each surface orientation. Their

results show that using histograms computed from range images to represent 3D

objects is possible and allows for shape spectra to be compared very effectively.

The Hough Transform

The Hough transform (Ballard, 1981) is a method which transforms complex pixel

patterns usually from an image into some selected parameter space. A set of trans-

formation parameters is computed from each image feature pixel. This parameter

set provides votes in the quantised transformation accumulator. The strength of the

approach relies on the fact that valid associations will tend to vote for a consistent

transform while mismatches will generate evenly distributed votes in the parameter
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space. The usual problem with such an approach is the detection of those peaks in

the quantised parameter space, which represent valid matches.

Duda and Hart (Duda and Hart, 1972) have applied this technique to the de-

tection of straight lines. The generalised Hough transform was then proposed by

Ballard (Ballard, 1981) for the recognition of arbitrary object shapes from their edge

feature in cluttered scenes. For a comprehensive review of the Hough transform,

refer to (Illingworth and Kittler, 1988).

However, the Hough transform remains inherently unable to cope with scale in-

variance, nor rotation invariance. This reduces its effectiveness at rapidly perform-

ing real world object recognition tasks.

Geometric Hashing

The technique of geometric hashing was introduced by Lamdan, Schwartz and Wolf-

son (Lamdan et al., 1988b; Lamdan and Wolfson, 1988) as a more rapid mean of

shape recognition. The various processing steps of this method are as follows. Char-

acteristic points or other features (line-segments, corners, etc.) are extracted from the

original image edge map. Pairs of points are selected and are used to establish a ref-

erence in the scaling, translation and rotation process. The remaining characteristic

points are then used to address a hash table. Retrieval from the hash table involves

comparing data and model hash table entries. A shortcoming of this technique re-

sides in the size of the hash table grid needed to store the shape and effects associated

with over and under binning.

Sengupta and Boyer (Sengupta and Boyer, 1995; Sengupta and Boyer, 1993)

proposed a hybrid method for model-base organisation. Their method combines

surface-based geometric hashing with hierarchical database organisation techniques

for fast recognition of graph models. In this work a hash table based on local surface

properties is used to prune the hierarchical “tree like” modelbase.

The recent work of Rigoutsos and Hummel (Rigoutsos and Hummel, 1995) aims
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at reducing the effect of the binning process associated with the hash table. Their

approach replaces the quantisation of hash values and avoids the resulting binning

of hash entries. Instead, a Bayesian maximum likelihood framework is used to give

increasingly less weight to a hash table entry, as a hashed feature becomes more

distant from the hash entry position. This does not however solve the problems

associated with the size of the hash table, which needs to be as small as possible for

computational reasons.

In an attempt to reduce the noise sensitivity typically found in point-based ge-

ometric hashing methods, Procter and Illingworth (Procter and Illingworth, 1997)

proposed a method based on connected edge-triples. Despite the resulting improve-

ments in efficiency and recognition accuracy, this approach is likely to be sensitive

to line-segmentation errors. The main problem is that the line-segments are likely

to become disconnected and reduce the number of basis useable for hashing and

ultimately recognition. This problem is in some respect similar to the connectivity

issue found in Stein and Medioni’s (Stein and Medioni, 1990; Stein and Medioni,

1992) supersegment approach (see section 1.2.3).

1.2.2 Feature Based Recognition

The methodologies presented in this section have the common property of using

vectors or sets of features in order to represent the content of digital images. These

representations have various degrees of compactness and suitability for operating on

real world data under computational time constraints. The idea behind the statistical

techniques presented here, such as moments (Taubin and Cooper, 1991; Prokop and

Reeves, 1992) and principal component analysis (Turk and Pentland, 1991; Taubin

and Cooper, 1991; Sclaroff and Pentland, 1995; Murase and Nayar, 1995), is to com-

pute a salient image descriptor from image measurements or directly on the pixel

data in the form of vectors or N-tuples thanks to statistical analysis.
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Moments

Moments can be used as scale and orientation invariant shape representa-

tions (Taubin and Cooper, 1991; Prokop and Reeves, 1992). A vector of moments

(each of a different order) is computed directly from the binary pixel image of a

shape. The computed moments can be used for representation and to perform trans-

lation, rotation and scale invariant recognition. Moments provide a very compact

image representation. However since higher-order moments are computed from

the shape centroid (first order moment) this representation is sensitive to noise and

occlusion. Such a representation requires a unique closed contour to be extracted.

It is therefore likely to be sensitive to thresholding or edge detection. Additionally,

it is not possible to represent and therefore recognise multiple part objects. This is

likely to be undesirable in many object recognition situations.

Principal Components

Principal component analysis aims at reducing the dimensionality of a problem by

computing the salient vectors (eigenvectors) for a given data set. In communica-

tion theory, it is known as the Karhunen-Loeve transform. The aim is to find a set

of m orthogonal vectors in data space that account for as much as possible of the

data’s variance. Projecting the data from their original n-dimensional space onto

the m-dimensional subspace spanned by these vectors results in a dimensionality

reduction that often retains most of the intrinsic information originally present in

the data. The first principal component is taken to be along the direction with the

maximum variance. The second principal component is constrained to lie in the sub-

space perpendicular to the first. Within that subspace, it points in the direction of

the maximum variance. Then, the third principal component (if any) is taken in the

maximum variance direction in the subspace perpendicular to the first two, and so

on. In the context of computer vision, an image (data set) is represented as a single

point in the multi-dimensional eigen space. Nearby points in the eigen space belong
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to images (or image description) that are closely related.

A lot of the computer vision literature, involving principal component analysis

(PCA) is related to the problem of face recognition. The work of Turk and Pent-

land (Turk and Pentland, 1991) is probably the most well known. They used PCA

to extract the salient features directly from the grey-level pixel of face images. The

technique is often regarded as the best for face recognition. However, its robust-

ness to rotation, illumination and orientation is limited. Furthermore, computing

the eigenvectors and eigenvalues directly from image pixels is computationally ex-

pensive.

The two-dimensional shape representation problem has also been tackled using

eigen analysis. Taubin and Cooper (Taubin and Cooper, 1991) used PCA performed

on the scaled pixel maps of the object boundaries as one of the shape representa-

tions within the QBIC system (Niblack et al., 1993). A few years later, Sclaroff and

Pentland (Sclaroff and Pentland, 1993; Sclaroff and Pentland, 1995) described object

shapes in terms of generalised symmetries to which they refer as object eigenmodes

in the Photobook project (Pentland et al., 1994). Both approaches are based on binary

image representation (shape mask) or measurements extracted from them. This pro-

vides invariance to illumination, two-dimensional rotation, and three-dimensional

orientation.

Recently Murase and Nayar (Murase and Nayar, 1995) used a combination of

two eigen spaces for three dimensional object recognition from two dimensional

images. The first eigen space is computed from multiple 2D views of objects (one

eigen space per object). The second representation is based on all the views of all the

objects within the database. Because of this double representation their approach

performs both object recognition and pose estimation. Besides being computational

expensive, this method has limited robustness to lighting conditions since the eigen

analysis is performed directly on image pixels.
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Other Statistical Approaches

In some cases, the images under consideration are not particularly suited for seg-

mentation. In others, the contour of the object does not contain salient information

that is important for recognition or classification. In such a situation the photometric

properties of the image can be used.

The work of Nayar and Bolle (Nayar and Bolle, 1993) is concerned with the fact

that the illumination and orientation properties of a smoothly curved surface are

almost similar for close image intensity measurements. The technique is based on

a photometric invariant called the region reflectance ratio. The ratio at each image

point is compared with its neighbours and used to segment the image into regions

of similar reflectance ratio. The relative position of the region centroid and the re-

flectance ratio of the segmented region may then be used for object recognition and

pose estimation of three-dimensional objects.

The work of Van Gool et al. (Gool et al., 1996) is also concerned, but not solely,

with photometric invariants. Their recent work combines geometric shape features

and intensity features to generate simple and robust moment invariants. The use of

both geometric and photometric moments allows for improved invariance to trans-

formations.

Feature Sets

Bloch (Bloch, 1996) has applied fuzzy set theory to the problem of object recognition.

The idea is to use fuzzy operators such as max and min to measure the amount

of overlap between the members of unordered sets of image features. The major

benefit of using fuzzy operators is to allow for “soft” decisions to be made about

the feature correspondences, which are crucial to any method that is to perform on

non-synthetic data.

The Hausdorff distance was first used by Huttenlocher et al. (Huttenlocher et al.,

1993) to locate objects, which have undergone translation. This method was then
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further investigated and enhanced by Rucklidge et al. (Huttenlocher et al., 1993) in

order to cope with the translation and scale of objects in the scene. The work of

Rucklidge (Huttenlocher and Rucklidge, 1993; Rucklidge, 1995) presents a method

to recognise and locate objects subjected to affine transformation based on feature

point sets. Feature points, such as corners are extracted and it is their locations that

are used during the process of finding correspondences. Because of the large num-

ber of possible associations between the transformed model and the image, a method

for efficiently searching the space of transformations of the model is required. When

operated on two point sets, representing image feature locations, the Hausdorff dis-

tance is a shape-comparison metric. Rucklidge (Rucklidge, 1995) showed the robust-

ness of this shape metric to point position errors, extra points (due to the presence of

other objects in the scene) and missing points (because of possible occlusion). Algo-

rithms based on the Hausdorff distance, unlike correspondence-based matching and

alignment techniques (Ayache and Faugeras, 1986; Huttenlocher and Ullman, 1990;

Olson, 1994), do not create a one to one correspondence between model and im-

age feature sets. This makes the Hausdorff based recognition metric a very efficient

technique even when the number of points in each image becomes large.

Feature Indexing

The work of Grimson and Lozano-Perez (Grimson and Lozano-Perez, 1984) is con-

cerned with feature indexing. Features are extracted from three dimensional object

data (obtained from a triangulation range sensor). The feature type and any unary

constraint associated with it are used as an index. The database is organised to al-

low efficient access to a model containing particular features. Knoll and Jain (Knoll

and Jain, 1986) have proposed a recognition method based on feature indexing. The

method takes advantages of the similarities and differences between object types.

It is able to handle cases where there are a large number of possible object types in

sub-linear computation time.
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More recently, Ettinger (Ettinger, 1988) proposed a model-based vision system

that exploits hierarchies of both object structure and object scale. The approach taken

is to develop an object shape representation that incorporates a component sub-

part hierarchy. This allows for efficient and correct indexing as well as for relative

parameterisation among sub-parts. It also has a scale hierarchy, to allow for a general

to specific recognition procedure (from gross to fine feature).

1.2.3 Graph Matching

The term graph matching refers to the process of comparing two (or more) graphs

with each other. In the context of computer vision the graph structure represents

features and their relation in the visual data. Graphs are high level representation

and have been shown to provide very compact representation for object recognition

and localisation. The seminal paper of Barrow and Popplestone (Barrow and Pop-

plestone, 1971) established relational graphs as a practical representation for scene

matching. The subsequent paper of Barrow and Burstall (Barrow and Burstall, 1976)

presented some techniques for structural graph matching based upon the idea of

searching for maximal cliques in the association graph. However these early meth-

ods are only effective when exact relational descriptions are under consideration. To

be effective relational matching must be capable of accommodating both errors from

ambiguities in object appearance (initialisation errors) and errors from poor image

segmentation or presence of noise and clutter (structural errors).

Relational Indexing and Hashing

The underlying idea behind relational indexing (or relational hashing) methods is

to use the structural information provided by the features extracted from the image

to produce an alternative representation. The resulting representation is intended to

provide improvements in term of computational requirement and speed during the

matching process when compared with other graph matching algorithms.
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The common aspect of structural hashing techniques is the fact that shapes are

represented as polygonal approximations of their boundary.

For instance, Stein and Medioni (Stein and Medioni, 1990; Stein and Medioni,

1992) extend the polygon approximation description by computing and dividing

outlines into super-segments. A super-segment is a grouping of adjacent segments.

Each super-segment contains information about the number of segments of which

it consists, the sum of the segment length, a list of the angles between successive

segments, its location, its orientation and finally its eccentricity. This description is

then encoded using a gray-code (Hamming, 1980). The encoded descriptions are

then entered in a hash table for efficient storage and retrieval.

Henikoff and Shapiro (Henikoff and Shapiro, 1990) have proposed a method

based on segment triple grouping. Each triple is then encoded according to its type.

The encoded triples are then used to address a hash table.

Costa and Shapiro (Costa and Shapiro, 1995) proposed a technique for efficiently

indexing relational structures. Each model view is represented as a full relational

graph. The graph is then decomposed into n sub-graphs of size s. Each subgraph

is encoded using a table and then used to index into a hash table in order to map

input sub-graphs to model sub-graphs. The technique is limited to a small num-

ber of subgraph “codes” in order to keep the size of the hash table as well as the

computational requirements low.

The main weakness of relational hashing techniques is the non-uniqueness of

the polygonal approximation of a curve, which depends on the line fitting tolerance.

Therefore, for the purpose of robustness, several polygonal approximations have to

be used in order to represent a single object shape.

Relational Graph Matching

A diverse family of algorithms has been proposed over the years to solve the prob-

lem of finding error tolerant sub-graph isomorphisms. The best known algorithm
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for sub-graph isomorphism is that of Ullman (Ullman, 1976). The technique is based

on tree search with backtracking. It has been improved by the use of lookahead for

speedup. Shapiro and Haralick (Shapiro and Haralick, 1985) proposed a general

relational distance measure, that computes a numeric distance between any two

symbolic structural representation in order to gauge relational consistency.

Other algorithms have been proposed with the aim of meeting the dual goal of

gauging consistency and overcoming structural errors, based on simulated anneal-

ing (Herault et al., 1990), neural networks (Feng et al., 1994), genetic algorithms (Jong

and Spears, 1989), continuous optimisation (Kuner and Ueberreiter, 1988) and prob-

abilistic relaxation (Kittler et al., 1992; Wilson and Hancock, 1994). The common fea-

ture of these methods is to iteratively minimise an objective function that represents

the distance of the current solution to the correct solution.

Messmer and Bunke (Bunke and Messmer, 1995; Messmer and Bunke, 1994) have

introduced an exact and error-tolerant graph matching algorithm based on a com-

pact representation of the graphs. Both the input graph and model graph to be

compared are pre-processed so that sub-graphs appearing multiple times are repre-

sented only once by a “meta-node”. The computational effort associated with graph

matching algorithms in general is therefore greatly reduced.

1.2.4 Alignment

Roughly speaking, the problem of alignment may be seen as a template matching

exercise. The basic idea is to use groups of features or templates and to exploit their

geometric properties to find correspondences in a target scene (or image). The main

difficulty lies in the estimation of the transformation geometry. In other words, the

aim is to recover the transformation between image and model co-ordinate systems.

A prerequisite for this estimation process is the correct labelling of correspondence

matches between extracted features in both images. There is therefore a chicken-

and-egg situation to overcome. Before transformation parameters can be estimated
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good correspondences need to be available, yet these correspondences need rough

transformation parameters. A number of approaches have been proposed to re-

solve this problem. These consist of placing constraints on the one to one correspon-

dences (Cross and Hancock, 1998a) or the possible transformation, or by employ-

ing optimisation methods and the Gaussian weighted proximity matrix (Scott and

Longuet-Higgins, 1991; Shapiro and Brady, 1995; Cootes and Taylor, 1995; Sclaroff

and Pentland, 1995).

Direct Alignment Methods

Huttenlocher and Ullman (Huttenlocher and Ullman, 1987; Huttenlocher and Ull-

man, 1990) were the first to propose a method where the grouping of nearly con-

nected features forms alignment features. The alignment features include combina-

tions of end-points of segments, points of high curvature and virtual points induced

by the intersection of straight segments. For recognition each alignment feature

from the image is matched against each possible model alignment feature. Once an

alignment between a triple of data features and model features is found a score is

kept about how well the remaining features in the model and the data map onto

one another. This is repeated for every possible combination of data and model fea-

ture triple. The best alignment is the one that obtains the best score. To reduce the

number of alignment operation, feature labels are employed. However, it is clear

that noise in the image will create mislabelled features. This will lead to increased

computational requirements to perform the alignment. Moreover, in extreme cases

the alignment operation may fail.

Viola and Well (Viola and Wells, 1997) presented a technique for aligning 3D

object models to a real image scene under occlusion and including clutter. Their

approach is based on image intensities rather than features and requires no a priori

model of the relationship between the 3D model and image scene intensities. The

idea is to perform alignment by maximising the mutual information between the
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model about the scene. The mutual information maxima are found by computing

the derivative of the entropy with respect to the transformation between the data

and the model to align. The local maximum of the mutual information is obtained

by using a stochastic analogue of gradient descent.

Optimisation Based Alignment

Ullman (Ullman, 1979) identified the importance of exploiting proximity constraints

during the one to one correspondence matching process. Since then, a number of

approaches have taken Ullman’s idea on point sets matching further. These meth-

ods aim to develop general purpose correspondence matching algorithms using the

Gaussian weighted proximity matrix.

The work of Scott and Longuet-Higgins (Scott and Longuet-Higgins, 1991) is

based on computing the singular value decomposition of the inter-image proximity

matrix in order to determine feature point correspondences. Their approach con-

trasts with the work of Shapiro and Brady (Shapiro and Brady, 1992; Shapiro and

Brady, 1995), who effected the matching process by comparing the modal eigen-

structure of the intra-image proximity matrix. It is from these techniques that the

deformable shape models of Cootes et al. (Cootes and Taylor, 1995) and Sclaroff and

Pentland (Sclaroff and Pentland, 1995) have been inspired and devised. The ma-

jor shortcoming of the Point Distribution Model (PDM) approach is the necessity to

learn the modes of variation of each shape from landmark (or characteristic) points

from a number of examples. Furthermore, an initial estimate of the pose and scale of

the object is required. For this reason the PDM approach is more suitable for object

location and model fitting rather than object recognition.

The computational complexity of alignment techniques makes them highly un-

suitable for working on a large library of models. Finding all the possible corre-

spondences between data image features and each of the models in the model-base

is clearly a not viable solution. It makes a lot more sense to devise a method to
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automatically select the most appropriate models from the library and perform the

alignment process on those selected models only for the purpose of hypothesis ver-

ification.

1.3 Image Representation

Both the problems of retrieving and recognising object images from a large library

based on their similarity to some reference image implies that some features can

be automatically (or semi-automatically) extracted from the digital images. Most of

the recent image database systems make use of three distinct information sources

contained in the image pixel map. These are colour, texture and shape. Object

recognition is mainly concerned with the shape aspect of the image content. The

methods for representing and comparing colour properties in images are solely sta-

tistical. Texture attributes can be dealt with using either statistical (general textures)

or structural (man-made patterns) techniques. Characterising shapes is not quite as

straightforward. There is no clear manner for mathematically describing general ob-

ject shapes (Mumford, 1991). Various approaches for solving this problem have been

proposed. They are based on voting, feature vectors, structural or relational match-

ing and alignment methods. We have reviewed these techniques in section 1.2.

� Colour information

Image colour information, often encoded within a multidimensional his-

togram (Swain, 1993), is used to retrieve image from the database with similar

colour distribution. The histogram offers interesting properties such as invari-

ance to rotation and translation, as well as perturbation by small changes in

the viewing angle, scale and occlusion. However, because of their direct de-

pendence on the image pixel values, changes in the lighting condition will dra-

matically affect the histogram properties. In the context of object recognition,

the colour histogram representation is not a viable solution. This is because
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the spatial information of image pixels is discarded by the histogram.

� Texture information

The principal characteristic of a texture is a repetition of basic patterns. There

are various approaches to texture representation, which are either based on

statistical or structural methods. The latter are less suitable for general texture

indexing problem because of their inability to cope with natural textures. Sta-

tistical methods are numerous and vary in complexity and efficiency. Among

the simple techniques are first order gray-level statistics based on the gray-

level histograms, second order gray-level statistics and eigen analysis. More

complex techniques involve the power spectrum of the texture image, which

is based on its Fourier transform. Angular and radial bins in the Fourier do-

main capture the directionality and the frequency (rapidity of fluctuation) of

an image texture. A detailed review on the subject may be found in a recent

survey by Reed and DuBuf (Reed and DuBuf, 1993).

� Shape information

Many methods for extracting shape information from images have been de-

veloped. Statistical, Geometrical and Structural recognition approaches have

been investigated. Further to the method used is the underlying feature upon

which these techniques are applied. The shape feature can be computed from

either object boundaries (or their feature of interest) or description of the re-

gion occupied by the object in the image plane (or associated features).

Among the possible feature of interest the most commonly used image at-

tributes for shape representation are edge pixels (Jain and Vailaya, 1996;

Rucklidge, 1995), corners (Wang and Brady, 1995), object boundaries (Sclaroff

and Pentland, 1995; Farzin Mokhtarian and Kittler, 1996), straight line-

segments (Evans et al., 1993; Stein and Medioni, 1990; Huttenlocher and

Ullman, 1987; Christmas et al., 1995), geometric invariants (Rothwell et al.,

23



1992; Lamdan et al., 1988a) or surface curvature (Murase and Nayar, 1995;

Dorai and Jain, 1995; Ashbrook et al., 1995).

Section 1.4 reviews many of those shape representation and aims at exposing

the weaknesses and advantages of the most commonly used.

The choice of the low level feature representation used by any recognition or re-

trieval process is very important. If the wrong selection of feature or feature attribute

is made, the approach may not be able to reach a correct conclusion. While selecting

the optimum shape representation one has to ensure the four following criteria are

satisfied (Grimson, 1990).

� Scope and Sensitivity: The representation used by the system should be able

to cope with all the relevant shapes that the image database will contain. Fur-

thermore, the representation used should be sensitive enough to preserve dis-

tinction between shapes.

� Uniqueness: There should be a unique mapping between a shape and its rep-

resentation. If this criterion is met, identical shapes will have identical descrip-

tions. In this way the problem of comparing shapes is simplified.

� Stability: The shape representation should not be dramatically affected by

small changes in the shape features extracted from the raw image. It should

tolerate reasonable amounts of noise and occlusion in the scene.

� Efficiency: The computation of the shape descriptors for the input data should

be rapid. Similarly the representation should allow effective and straight-

forward shape comparison properties. The system should not have to pre-

process the stored shape description in order to compute the similarity be-

tween shapes.

Similarly the retrieval and recognition techniques employed by the system must

obey to the following requirements.
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� Multiple Object Scene: Extra features that may belong to other objects or

result from noise in the original image should not affect the techniques used to

retrieve images from the database. The recognition process or retrieval should

therefore allow grouping of features.

� Occlusion: The methodology used should not be dramatically affected by

missing feature. The features extraction algorithm may not always provide a

perfect output, especially when dealing with real data. The techniques should

allow for a reasonable amount of noise, clutter and occluded features.The

recognition process should be performed through local features.

� Invariance under geometrical transformation: Object recognition application

and similarly image retrieval system may only be used on real world problem

if they are able to abstract the geometrical positioning of the object under con-

sideration within their representation. A representation that does not allow

direct invariance to translation, rotation and scaling dramatically limits the ef-

fectiveness of the algorithm and increases greatly the computational complex-

ity. The recognition process should be based on an invariant representation.

� Efficiency: The image database retrieval or object recognition engine should

allow rapid, but not necessarily real-time, delivery of information. Linear

search of the database content may be sufficient for a small library of objects

and if the object description allows very efficient comparison performances.

However as the number of object models in the collection increases, the need

for efficient indexing techniques arises.

The above lists give us the representation and retrieval requirements to consider

when developing recognition methods. We now review and discuss the possible

representation alternatives.
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1.4 Shape Representation

The problem of representing shapes is not a trivial one. There is no clear win-

ner as far as the various techniques proposed in the object recognition and image

database work. In this section we review some of techniques proposed for repre-

senting salient image information. Some representations appear to provide more

robustness to noise and clutter in the image than others. Moreover, some allow for

invariant shape properties to be encapsulated within the image description. This

will reduce greatly the computational requirement during matching.

Edge Pixels

Jain and Valaya (Jain and Vailaya, 1996) suggested the direct use of edge pixel ori-

entation information to construct a shape histogram. The technique is used for com-

paring trademarks and logos. Similarly, the Hausdorff distance based object recog-

nition method proposed by Rucklidge (Rucklidge, 1995) makes direct use of edge

pixels during the matching. There are many drawbacks of making direct use of

edge pixels within an algorithm. Edge detection algorithms are sensitive to noise in

the original image. This may create a large number of unwanted edge pixels and

therefore increase the complexity of the algorithms. Additionally, using such raw

features does not help in solving the problem of translation, rotation and scale in-

variance. It would be more effective to use higher level features computed from the

edge pixel map. This would reduce the amount of data to be dealt with along with

providing better invariant attributes.

Closed-Contours or Boundaries

The first representation based on object contours is the chain code (Duda and Hart,

1973). The representation is a circular list that consists of the either four or eight

connected paths of edge pixels detected in the image (Gonzalez and Wintz, 1977).
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This representation is translation invariant. The major drawback is that a chain code

representation does not provide rotation and scale invariance. Additionally, in the

presence of noise connected pixels may become disconnected, leading to increased

computational requirements during matching because of the increased number of

chains to be processed.

Mokhtarian and Kittler (Farzin Mokhtarian and Kittler, 1996) uses the curvature

of the object contour between control points carefully positioned in order to create a

Curvature Scale Space representation. The curvature scale space is a multi-scale or-

ganisation of the curvature zero-crossing points of the contour as it evolves. Multiple

scales are introduced by applying a Gaussian filter of increasing standard deviation

to smooth the contours from which the curvature zero-crossing points are recovered.

Partial occlusion of the object boundary may dramatically change the representation

up to a point where it is not matchable against the non-occluded contour.

The recent work of Ogniewicz and Kubler (Ogniewicz and Kubler, 1995) involves

creating hierarchical skeletons of planar shapes. The skeletons are created from ob-

ject outlines and offer an effective transformation of two-dimensional shapes onto a

linear structure. The technique copes with noisy contour and rotation. However the

skeleton may be quite dramatically affected by occlusion. In addition, this approach

does not offer the possibility to work with non-contour based shapes.

Kupeev and Wolfson (Kupeev and Wolfson, 1994) have presented an algorithm

for the detection of perceptual similarity among planar shapes. Their approach

represents shapes using weighted graphs. The vertices of the graph represent the

”lumps” of the shape in a given orientation. However, this representation is not ro-

tation invariant. The graph structure is affected by changes in orientation. Therefore

multiple graphs, one for each shape orientation, have to be constructed. This leads to

increased computational effort. Furthermore, small change on the shape boundary

may lead to extra and missing ”lumps” and affect the structure of the representation.

The shock graph representation of Zucker et al. (Siddiqi et al., 1998) is related
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to both skeletons and graphs. The basic idea is to derive a structural description

of a shape from the shocks of a curve’s evolution process acting on its bounding

contour. The most significant shape component is the root of the graph. The graph

may therefore be re-written as a tree, which simplifies the matching process. The

shocks are labelled into four predefined types according to the local variation of the

radius function along the median axis. Again, perturbation on the contour will affect

both the structure of the graph and the label of its nodes.

The use of object contours is a popular choice and may be effected via spline

fitting, skeletonisation or polygonisation of the edge pixel boundary. However,

the contour may not be entirely detected by the low level feature extraction algo-

rithm and therefore the contour may be broken up. A similar situation will arise

when parts of an object are occluded. For these reasons we believe that limiting the

methodology for object recognition to contours may reduce its ability to perform in

real world situations. It is also for these reasons that we favour the use of a straight

line-segment based pattern representation for our experiments.

Straight line-segments

Using straight line-segments as low level features is probably the most common for

the object recognition algorithm. A wide range of algorithms have been proposed

based on linear features (Arkin et al., 1991; Christmas et al., 1995; Stein and Medioni,

1990; Thacker et al., 1995). Some approaches opt for direct use of the segment po-

sition and orientation (Arkin et al., 1991). Others are based on relative measure-

ments (Kittler et al., 1992; Evans et al., 1993; Stein and Medioni, 1992; Costa and

Shapiro, 1995). The use of relative attributes offers a number of advantages. The

most interesting advantage is the invariant attributes that relative measurements

provide. The most common of these pairwise attributes is the relative angle between

a pair of line-segment (Kittler et al., 1992; Evans et al., 1993; Stein and Medioni, 1992).

The relative angle is translation, rotation and scale invariant; whereas using single
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line-segment orientation does not provide rotation invariance. The other advantage

is that most shapes can be simplified to a polygonal approximation, which is nothing

more than a collection of possibly connected straight line-segments.

A more detailed description of straight line-segment attributes and their use in

fast object recognition algorithms can be found in Chapter 2 Section 2.1.

Geometric Invariants

Considerable efforts have been spent on identifying a robust invariant image rep-

resentation. It is however not possible to compute invariant measurements from

three-dimensional objects under perspective projection onto the image plane.

A simple projective invariant called the cross ratio was first introduced in the

computer vision literature by Duda and Hart (Duda and Hart, 1973). The cross ratio

of four collinear points, although very simple, has the property of being constant re-

gardless of the viewpoint. The work of Maybank (Maybank, 1995; Maybank, 1998)

demonstrated the effectiveness of the cross ratio for model-based object recogni-

tion. However, the cross ratio is not particularly suitable to non polyhedral object

recognition, since accurately locating a set of four collinear points may prove to be

difficult.

Other, more general geometric invariants have been proposed for overcoming

this problem. Rothwell, Zisserman, Forsyth and Mundy (Rothwell et al., 1992) ex-

tended the canonical frame construction for planar object recognition proposed by

Lamdan et al. (Lamdan et al., 1988a). The method is based on the extraction of points

of interest from the object boundary curve (such as concavities and convexities).

Four distinct points are localised for each concavity (or convexity) using two bitan-

gency points to mark the entrance and the two contact points between the contour

and its tangent passing by one of points of entrance. These four points are mapped

into a reference unit square and the resulting transformation is used to project the

curve into the canonical frame. An object shape may be uniquely represented by
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its set of canonical frames (describing semi-local invariants). However, computing

the tangent and therefore point of interest to object curves is not particularly ro-

bust to changes in the edge map generated from the image (noise, occlusion, etc.).

This is likely to severely affect the robustness of the representation and significantly

decrease the level of performance.

Surface curvature

The use of surface curvature indicates that the algorithm will be dealing with three-

dimensional objects. Indeed, the work of Dorai and Jain (Dorai and Jain, 1995),

Murase and Nayar (Murase and Nayar, 1995) and others (Worthington et al., 1998;

Ashbrook et al., 1998) showed how effective the use of surface orientation is for view-

based object recognition. A number of approaches have been proposed to compute

and represent object’s surfaces such as, shape from shading, shape from texture,

reflectance ratio, triangulated meshes and range imagery. The major problem with

these approaches, is the computation of the surface attributes at every image point

under non controlled illumination condition.

1.5 Image Database Systems

In this section, we describe the methods currently used by content based retrieval

systems and discuss how appropriate they are for object recognition from large li-

brary of models.

The content-based representation and retrieval of visual digital data from large

collection is considered a very daunting computer vision task. Although it is always

possible for humans to painlessly organise this kind of data by brute clerical force,

it seems that a more elegant and cost effective self-organising recognition meth-

ods would be welcomed (Grosky and Mehrota, 1989; Gevers and Smeulders, 1992;

Niblack et al., 1993; Swain, 1993; Pentland et al., 1994; Picard, 1995; Farzin Mokhtar-
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ian and Kittler, 1996; Gimelfarb and Jain, 1996; Jain and Vailaya, 1996). Our interest,

here, lies in the area of image content analysis for object recognition, which is com-

monly referred to as shape based.

Recently content-based retrieval techniques have been proposed (Niblack et al.,

1993; Swain, 1993; Pentland et al., 1994; Picard, 1995; Eakins et al., 1996; Gimelfarb

and Jain, 1996; Jain and Vailaya, 1996). Users are able to specify query by means

of examples such as sketches, photos, images or icons. The notion of similarity for

two images or two visual items remains a major issue (Scassellati et al., 1994; Santini

and Jain, 1995). It is common for us humans to categorise similarly two objects

looking rather different in terms of appearances. As far as the work reported here is

concerned similarity is defined solely in terms of shape or visual appearance.

In the early days of image database research most approach had little to do

with computer vision or image processing and more to do with standard databases.

Queries were based on keywords, which were then used to search the textual index

of the database for image. While the early types of systems concentrated on one

aspect of image retrieval and were mainly based on textual (keyword) description,

the new generation incorporates and extends multiple kinds of query. We will now

review some of the latest development in intelligent image databases. For a more

comprehensive review of the state of the art in content based retrieval from image

database, refer to (Picard and Pentland, 1996; Marsicoi et al., 1997).

QBIC (Query By Image Content) (Niblack et al., 1993) was among the first re-

search efforts in content based retrieval. It allows images to be retrieved by a va-

riety of image content descriptors including colour, texture, and shape. The image

object outlines are obtained using an interactive outlining method. The pixel values

within the area defined by the outline are used to compute the colour features (mean

colour, histogram, etc.), the texture features (coarseness, contrast and directionality).

The outline itself is used to compute the shape features (circularity, moments, prin-

cipal component analysis of binary shape images, etc.). Users may use a graphical
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user interface to specify their search criterion based on colour, texture, shape (sketch

or image example) or combination of the latter. It is clear that the major drawback

of the QBIC approach is the interactive outlining, which requires every image in the

database to have all its objects manually located and delineated by hand before they

can be retrieved. Additionally, QBIC’s underlying representation of shapes does not

allow for multiple part objects to be dealt with. Similarly, the robustness or the rep-

resentation to occlusion is only very limited since closed object outlines are the basis

for the computation of shape descriptors such as moments, which as described in

Section 1.2.2 are very sensitive to changes of the shape centroid.

Photobook (Pentland et al., 1994) is a set of interactive tools for browsing and

searching images and image sequences. Direct search on image content is made

possible by using of semantic-preserving image compression, reducing images to

some perceptually significant coefficients. Users are offered three different types of

search; based on grey-level appearance (using eigenfaces (Turk and Pentland, 1991)),

using two dimensional shapes (based on Finite Element Method (FEM) performed

on shape feature point locations (Sclaroff and Pentland, 1993)), and based on textu-

ral properties (using 2D Wold-like decomposition (Picard and Liu, 1994). The Pho-

tobook system appears more like a collection of algorithms rather than an integrated

content-based retrieval system.

FourEyes (Picard, 1995) aims at combining low-level and high-level vision, as

well as interactive input from a human user. The solution is based on learning from

the user what is important visually as well as learning associations between text de-

scriptions and visual data. FourEyes appears to try to solve the major drawback of

Photobook (disconnected methodologies) by computing various feature representa-

tions for each image or object. The selection of the set of features that best represent

the data of interest to the user is determined using an online learning process based

on user interaction and a self organising map.

SQUID (Shape Queries Using Image Databases) (Farzin Mokhtarian and Kittler,
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1996), is a shape based retrieval system. Boundary contours of objects are recov-

ered automatically from a database of 1100 marine creatures pictured on a uniform

background. Each contour is represented by a number of global shape parameters

and the maxima of the curvature zero-crossing contours in its curvature scale space

image, as described earlier (see Section 1.4). The main drawback of this approach, al-

though very effective on clean object contours, is its sensitivity to occlusion. Indeed,

global shape parameters, as we discussed in section 1.2.2 do not allow for missing or

extra parts on the shape contour. Similarly, as the size of the occluded area increases

the Curvature Scale Space image will be dramatically changed.

Jain and Valaya (Jain and Vailaya, 1996) proposed a very simple methodology

for retrieval of logos and trademarks from a large database. The technique is based

on colour and shape histograms. Three, one dimensional histograms are used to

represent the colour distribution, for each of the colour bands (RGB) and another

one dimensional histogram of significant edge directions is used to represent the

shape information contained in an image. The major drawback of this approach,

although it was shown to be very effective, is that in order to cope with rotation

invariance a shift of the histogram bin has to be performed during matching. This

leads to a dramatic increase of the number of histogram comparison to be computed

during the retrieval process.

Unlike object recognition, the result of an image database query is not neces-

sarily error-free, the generated output is an ordered set of images where the first

items match more closely the query than the later ones. This suggests that image

database approaches would be well suited to the task of rapidly pruning. In other

words, those object models baring no similarity with the object presented as query

would be removed. Therefore, its seems appropriate to investigate a methodology

for retrieval and recognition from large libraries based on a hierarchy of processing

levels. In such a framework, each level becomes more selective, by using a more re-

fined but more computationally intensive algorithm thus leading quickly to accurate
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solutions.

1.6 Critical Discussion

The review of object recognition techniques presented in the previous sections indi-

cates that unlike colour and texture, shape information may be characterised using

statistical, geometrical or structural methods. Object recognition algorithms, either

model-based or view-based, are all concerned with the shape characteristics of ob-

jects.

The major drawback of the statistical techniques lies in selecting the right num-

ber of attributes in order to satisfy the “scope and sensitivity” requirement. As an

example, one may consider the PCA approach and ask how many eigen vectors and

values should be used. Choosing a small number of principal components may not

allow discrimination and encoding of all the necessary shapes for a given problem.

Voting techniques such as histograming and hashing suffer from a similar problem.

Structural methods suffer from the related drawback of “uniqueness”. Indeed,

the features (corner, line-segments, etc.) used are directly dependent on the system

designer. Unlike for statistical approaches, there is no automatic salient feature ex-

traction. The number of attributes used by a structural technique directly affects the

uniqueness of the representation for every non identical shape in the database. If

the number of attributes becomes too low the “scope and sensitivity” requirement

may also be affected.

As far as geometrical approaches are concerned the difficulties are mainly asso-

ciated with robustly extracting and grouping the features. In the case of geometric

hashing (Lamdan et al., 1988a; Lamdan et al., 1988b; Rigoutsos and Hummel, 1995),

the performance of the technique is directly linked to the accurate location and ex-

traction of points of interest. Clearly, if the pair of points used for reference is not

found in the original image, or if their location is not correct, the remaining char-
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acteristic points will not fall in their original hash table location. This makes the

representation “unstable”. Similarly the four points of interest used by Rothwell

et al. (Rothwell et al., 1992) need to be accurately extracted and located in order to

compute a stable representation via canonical frames.

One of the nice aspects of statistical methods for representing shapes is that these

techniques are able to directly map the original image to their representation. For

example, one can perform principal component analysis directly on the colour, grey

level or binary images. This is the approach taken by Turk and Pentland (Turk and

Pentland, 1991) for performing face recognition (using grey level images of human

faces) and by Taubin and Cooper (Taubin and Cooper, 1991) for shape recognition

(using thresholded scaled object shape images). However, computing the principal

components directly on the pixel data, does not allow us to easily cope with changes

in scale, viewing position, and illumination condition. It is therefore, more appro-

priate to extract characteristic features from the image first and then perform PCA

on the feature data. The work of Cootes et al. (Cootes and Taylor, 1995) on Point

Deformable Models is a good example of such an approach. However, the draw-

back is its reliance on the automatic detection of these characteristic features and the

construction of the object models.

The main advantage of geometrical approaches for shape representation is based

on the existence of invariants. Global invariant, such as moments, can easily be com-

puted. However, they are not robust to occlusion and may be affected by noise or

clutter in the image. Fortunately, semi-local invariants allow geometrical techniques

to deal with occlusion. In the general sense there are a very limited number of in-

variant (collinear features, concentric features). When considering planar shapes,

parallelism and curvature may be used as invariant features. The work of Roth-

well et al. (Rothwell et al., 1992) provides an effective use of such planar geometric

characteristics by representing local object shape concavities using canonical frames.

Structural methods have the advantage of providing a very compact repre-
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sentation. All the techniques reviewed above such as for example, the weighted

graph (Kupeev and Wolfson, 1994), structural hashing (Stein and Medioni, 1992;

Henikoff and Shapiro, 1990) and skeletons, are able to encode object shapes in a

very limited number of attributes when compared with geometric approaches.

In our opinion, the way forward as far as representation is concerned, is to com-

bine statistical, geometrical and structural approaches. The approach we propose

is one where geometric and structural attributes related to line-segments are used.

These structurally gated geometric measurements are encoded in a histogram data

structure called the pairwise geometric attribute histogram. This is used as a low-

level shape representation in our work. Similarity between images (in terms of

shape) is computed using statistical distance measures between image histograms

(see section 3.2.2 for more details).

Given a library or database of models (images or imaged objects) and their cor-

responding features description or representation, we want to select the models that

are likely to match the features found in a visual query. This is a database organisa-

tion (or indexing) problem. The goal here is to do much better than simply trying

each model in turn. There are various solutions proposed in the literature for organ-

ising the database as efficiently as possible to allow rapid selection of the best model

match. For example, clustering the models within the database will allow efficient

organisation of the search process.

The indexing technique allows ordering of the information within the database

according to some criterion (feature type, feature size, etc.). However the index of a

database is still a “linear” structure. In the worst case one may have to scan through

the whole of this index. Clustering offers a major advantage to indexing in this

respect. It allows the database to be represented as a “tree like” structure. In the

worst case the search becomes now directly dependent on the depth of the database

tree.

Although the actual work will not in its current form make use of indexing or
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clustering techniques there is still a need for pruning the vast quantity of irrelevant

image models from the database. This is required to enable more refined object

recognition techniques to be employed. Indeed, the most powerful object recogni-

tion approaches are also the most computationally demanding. It is therefore in-

appropriate to use traditional object recognition techniques on a large-scale model

library of real world image data. We have also established that image retrieval ap-

proaches are able to cope with massive numbers of images thanks to content-based

compression. However, the level of accuracy of such methods is not usually appro-

priate for object recognition tasks.

1.7 Summary

This review of the literature for object recognition suggests that none of the currently

available algorithms is able to achieve rapid retrieval from large model libraries. A

close look at the field of content-based retrieval from large image databases indicates

that although good progress has been made, the problem of indexing according to

shape similarity is still far from achieving level of performance comparable to colour

and texture indexing. The speed of shape retrieval algorithms is also an important

factor for large-scale object recognition.

The integration of ideas from both fields appears to enable some of the current

problems to be solved or effectively tackled. It is clear that the representation needs

to be very compact, although still easily and effectively compared with other ob-

ject representations. It appears that more work needs to be done with higher level

structural primitives in combination with lower level geometrical attributes. Fur-

thermore, a hierarchical framework of processing levels needs to be investigated.

The low level processing algorithms should be closely related to image retrieval al-

gorithms. Moreover, the system should aim at pruning from the model library all

unrelated entries. The higher level algorithms should be closely focused on object
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recognition. In addition, it would be a great advantage to use the same representa-

tion throughout all the computing steps of the system.
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Chapter 2

Line Patterns

One of the most important parts of any computer vision process is the representa-

tion. This is commonly based on image measurements or image feature measure-

ments. The selection of measurements (or attributes) is crucial to the level of perfor-

mance of the recognition algorithm. In order to accurately represent a large collec-

tion of images (or line-patterns) the attributes have to satisfy a number of properties.

It is beneficial to identify and use measurements that are invariant to changes in po-

sition (translation), orientation, and scale of the objects depicted in the images. In

addition, the robustness of the representation to noise caused either by occlusion or

simply because of non optimal image capture or low-level processing, is essential

if the method is to be used on real world data. For line-segment pattern represen-

tation, multiple geometric attributes can be used. There are advantages in using

line-segment pairs over single line-segments measurements. When considering in-

variance of the attributes to position, orientation and scale it is apparent that unary

measurements from single line-segment will not embed such a powerful descrip-

tion. Consider for example, the orientation information extracted from a single line-

segment as a possible attribute. Although it would remain unchanged during trans-

lation or scaling of the image (or object), small changes in the orientation (rotation)

or viewing angle would lead to changes in the attribute. Such problems disappear,
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if instead of measuring unary line-segment attributes, one bases the representation

on pairs of line-segments. In this chapter, we investigate the properties of various

geometric attributes computed from pairs of line-segments and address their ability

to accurately and robustly represent line-pattern descriptions of images or objects.

2.1 Pairwise Geometric Attributes

Pairwise geometric attributes have been used on several occasions in the litera-

ture (Bray and Hlavac, 1991; Evans et al., 1993; Stein and Medioni, 1990; DiMauro

et al., 1996; Christmas et al., 1995). The most commonly used attribute is the rel-

ative angle attribute that describes the angle between a pair of line-segments. We

are going to investigate five different geometric attributes to construct our object

representation from the line segments. These are:

� the relative angles,

� the ratio of segments length,

� the ratio of segment end-point distances,

� the ratio of segments length to intersection (referred to as relative position),

� the line-segment projection cross ratio.

The geometric attributes considered here have the major advantage of being invari-

ant to changes in scale, position and rotation. They also present limited invariance to

change in viewing position. This presents a major advantage over other possible at-

tributes found in the computer vision literature. For example, Thacker et al. (Thacker

et al., 1995) proposed to use the perpendicular distances between segment pairs. It

is clear that using such attributes for the representation will not allow direct invari-

ance to scale. Instead, a different representation will have to be computed for each
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and every scale change that the algorithm needs to be able to cope with. Need-

less to say that the speed of the algorithm is dramatically decreased and the storage

space required for each database entry is increased. In their super-segment based

representation, Stein and Medioni (Stein and Medioni, 1990) also made use of the

relative angle attribute between successive pairs of connected segments. In addition,

each super-segment (set of connected line-segments) contains information about, the

number of segments it is composed of, the sum of the line-segment length, its loca-

tion and its overall orientation. Again, the use of many of these attributes for our

representation would compromise its invariance properties.

The raw information available for each line-segments is the orientation (slope or

angle with respect to the horizontal axis) and length. To illustrate how the pairwise

attributes are computed, suppose that the two raw-attributes for the line indexed

(ab) are denoted by the vector xab = (lab; �ab)
T where lab is the line-segment length

and �ab is the line-segment orientation (see figure 2.1).

a

b

c

d

ab

cd
i

θ

θ

φ

Figure 2.1: Computing the pairwise geometric attributes from line segments (ab)

and (cd).
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� The relative orientation � between the lines indexed (ab) and (cd) is equal to

�ab;cd = min[(�ab � �cd); (�cd � �ab)]

� The ratio of line-segment length r is given by

rab;cd =
min[lab; lcd]

max[lab; lcd]

� The ratio of the base line-segment length with its distance to intersection with

the line-segment pair # (relative position) is computed from

#ab;cd =
1

1
2
+ lib

lab

� The ratio of segment end-point distances epr is generated as follows

eprab;cd =
min[lac; lbd]

max[lac; lbd]

� The line-segment projection cross-ratio xr is computed as follows:

xrab;cd =
min[lad; lbc]

max[lad; lbc]

The methodology used to compute the histogram attributes allows us to know

the range of the attributes. The relative orientation attribute will range between 0

and �=2, the line-segment length ratio between 0 and 1, the relative position between

0 and 1, the ratio of segment end-point distances between 0 and 1 and, finally, the

cross-ratio between 0 and 1.

The retrieval performance associated with each of the pairwise attributes de-

scribed above may be found in chapter 3 section 3.3.1. The results show that the

relative angle attribute provides the best representation for object recognition. The

attributes based on line-segment length ratio are too sensitive to the effects of the

low level feature extraction process (i.e. line splitting and line end-points displace-

ment). However, the relative angle as it has been described above may be further

enhanced to reduce possible description ambiguities.
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2.2 Directed Pairwise Geometric Attributes

The relative angle pairwise attributes have been used for representing shape from

their polygonised approximation (Evans et al., 1993; Huet and Hancock, 1996b; Huet

and Hancock, 1996a; Stein and Medioni, 1990). However these simple pairwise

attributes can become quite ambiguous. Figure 2.2 depicts three segments. Segment

(ab) is set as the baseline and we compute the pairwise relative angle between line-

segment (ab) and (cd) (angle �1 in figure 2.2) as well as between (ab) and (ef) (angle

�2 in figure 2.2). From this example the underlying ambiguity of the un-directed

relative angle attribute is apparent. One can easily see that �1 is equal to �2 while

they clearly should not.

a b

c

d e

f

θ1
θ2

g

h

θ3

Figure 2.2: Non directed geometric attributes.

The relative angle between segment pairs may be unambiguously determined if

both segments are directed according to some pre-defined rule. Figure 2.3 shows

how directing both segments away from their point of intersection allows us to un-

ambiguously define the relative angle between segments. This is an extension to the

relative angle attributes used by Evans et al. (Evans et al., 1993).

A final enhancement is required to cater for the line-segment (gh), which with

the current extension still shares the same directed relative angle as line-segment
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Figure 2.3: Directed geometric attributes.

(ef) with line-segment (ab). The difference between both relative angles is related

to the direction of travel from the baseline (ab) to either of its pairs ((ef) and (gh)).

Therefore, it seems natural to give the relative angle a positive sign if the direction

of the angle from the baseline xab to its pair xcd is clockwise and a negative sign if it

is counter-clockwise.

We are using the directed relative angle as the base for the representation. The

raw information available for each line segment is its orientation and its length (see

figure 2.4). To illustrate how the pairwise feature attributes are computed, suppose

that we denote the line segment indexed (ab) and (cd) by the vectors xab and xcd re-

spectively, directed away from their point of intersection. The relative angle attribute

is given by

�xab;xcd = arccos
�
xab � xcd

jxabjjxcdj

�

From the relative angle we compute the directed relative angle. This is an exten-

sion to the attribute used by Evans et al. (Evans et al., 1993), that consists of giving

the relative angle a positive sign if the direction of the angle from the baseline xab to

its pair xcd is clockwise and a negative sign if it is counter-clockwise. This allows us

to extend the range of angles describing pairs of segments from [0; �=2] to [��; �].
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Figure 2.4: Computing the geometric attributes.

In order to describe the relative position between a pair of segments and re-

solve the local shape ambiguities produced by the relative angle attribute, a second

attribute is generated. This second attribute allows the representation to capture

the structural arrangement of the shape. Without this structural attribute the line-

segments (cd), (ef) and (gh) of Figure 2.4 would be represented in exactly the same

way. The relative angle between segment (cd), (ef) and (gh) and the base line-

segment (ab) is the same, even using directed geometric attributes. For this reason,

an extra attribute is required in order to unambiguously represent object shapes. The

directed relative position #xab;xcd is encoded by the length ratio between the oriented

baseline vector xab and the vector joining the origin of the baseline segment (ab) to

the intersection of the segment pair (cd).

#x
¯ab

;x
¯ cd

=
Dib

Dab

As a result, the range of this attribute is [1=2,1). A relative position of 1 in-

dicates that the two segments are parallel. A relative position of 1=2 indicates that

the two segments intersect at the middle point of the baseline. A particularly inter-

esting value for the relative position attribute is when the length ratio is equal to 1.

This is likely to originate from a pair of connected segments. Indeed the point of
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intersection of connected line-segments is the end-point both line-segments have in

common. This leads to Dib = Dab and therefore a relative position of 1.

It is not computationally convenient to handle infinite values and histograming

is no exception. It is appropriate to normalise the above described directed relative

position #xab;xcd so that the physical range of this attribute is (0; 1]. This is effected by

computing #xab;xcd in the modified manner:

#a;b =
1

1
2
+ Dib

Dab

Now we consider the special case of parallel segment pairs. In such a situation the

relative angle is 0 and the relative angle is undefined. We allow for a relative position

of 0 to indicate that the two segments are parallel. A relative position of 1 indicates

that the two segments intersect at the middle point of the baseline.

It is worth pointing out that both the directed relative angle and the directed

relative position attributes are invariant to changes of scale, rotation and transla-

tion. This is an important advantage over the representation proposed by Evans

et al. (Evans et al., 1993) if the technique is to be used for shape retrieval from real

world image databases where the size of objects or, more generally shapes, is not

known in advance.

2.3 The Image DataBase

The underlying task common to content-based image retrieval and object recogni-

tion from large model-base techniques is to index or recognise a large collection of

images according to their similarity with a query image. The problem of retrieving

images from a database based on their content similarity to some reference image

directly implies that some features can be automatically (or semi-automatically) ex-

tracted from the digital images. Most of the recent image database systems make use

of three distinct pieces of information contained in the image pixel map. These are

colour, texture and shape. Various approaches for solving this problem have been
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proposed. A review of those approaches may be found in Chapter 1 Section 1.5. Our

current research is concerned solely on retrieval of image or object views that have

shape similarities with the query image (or sketch). In order to study and access the

efficiency of the current and the proposed algorithms we require large data sets. The

following databases will be used for our experiments.

2.3.1 Infra-Red Aerial Images

This image database consists of 22 aerial infra-red line scan images (see figure 2.6)

and a digital map (see figure 2.5). These images are of both rural and urban ar-

eas. The images are formed by a line-scan process in the horizontal direction. The

line-scan is controlled by a rotating mirror. Aircraft motion is responsible for the

sampling in the vertical direction. The main features are man-made road structures

that radiate strongly in the infra-red band. These features present themselves as

intensity ridges in the infra-red images. They are extracted using a relaxational line-

finder (Hancock, 1993) which encourages contour connectivity using a dictionary

of local line structure. Straight-line segments obtained by polygonising the raw

line features extracted from the infra-red images are used to compute the feature

attributes discussed in Section 2.1.

Some of the aerial views depict the same area but have been captured at different

aircraft altitudes. This will obviously have the effect of changing the scale of the

objects present in the scene. Because of the geometry of the line-scan capture process,

there are known to be severe barrel distortions around the border of each aerial

view. The distortions are such that the data cannot be recovered by applying simple

Euclidean transform to the data.

A typical query example for this database is the problem of indexing using a

digital map (depicted in Figure 2.5) of an area known to be contained in some of

the images and see whether the corresponding infra-red images are retrieved ac-

cordingly. The aerial views labelled Map060 and Map170 in the database (Figure 2.6)
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Figure 2.5: The digital map.

depict the same area as the digital map. These two images are taken at different

aircraft altitude and cannot be aligned directly with the digital map.

2.3.2 TradeMark Database

This database is composed of 5430 trademarks from Canadian and international

companies. We would like to thank M. Flickner from IBM Almaden research center

for providing us with these images. We will be using a subset of approximately 2000

images out of the 5430 for our retrieval experiments. All the images in this database

are binary (black and white) and vary greatly in terms of quality of acquisition since

they come from scanned and faxed documents. We have used the Canny edge-

finder (Canny, 1986) to extract the edges from the images. The images are then

processed further using a simple polygonisation algorithm, bearing similarities with

the one used by Evans et al. (Evans et al., 1993). Straight-line segments extracted

from the images are used to compute the feature attributes discussed in section 2.1.

A typical example for this application is to retrieve logos that have a similar

shape (circular, rectangular, triangular, etc...) or are from the same company.
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Figure 2.6: The infra-red aerial image database.

2.3.3 Character Database

This database is smaller in size and the shapes contained are much simpler than

those found in the previous databases. It contains a few hundred alpha-numeric

shapes and the number of segments per image rarely exceeds twenty (see figure 2.8).

The purpose of this collection is to test the invariance characteristics of the proposed

recognition methods. For example several exemplar of the letter “A” are found in

this database with various orientations, scales, positions, degrees of partial occlusion

and segmental noise level.

2.4 Low Level Processing

We are concerned with the task of recognising and indexing into large libraries (or

databases) of images according to their content. As described earlier we concentrate

our efforts on the shape aspect of the images or objects. Our approach assumes the
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Figure 2.7: Subset of the trademark image database.

line-pattern corresponding to every image in the database has been computed. It is

from those line-patterns that the representation for each image or object is going to

be generated. Here follows a description of how the creation of the line-pattern is

effected. Each image in the database is subjected to the following processing steps

prior to histograming and then matching.

� Feature Detection: In the case of the aerial infra-red images we apply a

relaxational line-finder to detect road structures (Hancock, 1993).For the

trademarks and logos we use the Canny edge-detector to locate object out-

lines (Canny, 1986). Both operators deliver a binary feature map that contains

connected edge pixels that are a single pixel wide. It is from this set of

irregular chains of edge pixels that we are going to produce the line-pattern.

� Polygonalisation: Straight line segments are identified using an algorithm

similar variant of the algorithm originally developed by Lowe (Lowe, 1987)

and later refined by Rosin and West (Rosin and West, 1989). The basic idea is
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Figure 2.8: Subset of the character image database.

to find a polygonal approximation to an irregular chain of feature pixels using

a recursive-split algorithm. This is achieved by thresholding the sagittal (or

perpendicular) distance from the pixels on the chain to the chord connecting

the end-points of the arc under consideration. The end-points of the chain of

edge pixels are used during the first recursion. If the sagittal distance is larger

than the threshold, a new control point is placed on the contour, splitting the

current chord into two new chords. This process is repeated until no further

chords (line-segments) may be split. Our refinement of this idea is to make the

polygonisation strategy ”scale-invariant” by thresholding on the basis of the

ratio of the sagittal distance to the chord-length. However, since digital im-

ages are discrete representation (composed of pixel) there is a point where the

definition of the smallest details of the edge contours will not be polygonised

in a ”scale invariant” manner. For example, it would be very useful to be able

to polygonise circles of various radii with the same number of line-segments.

As the resolution (radius in number of pixels) of the circle becomes very small,

the sagittal distance precision is very low and the threshold value ineffective.
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A minimum segment length is required in order to compute an accurate ratio

used to decide whether splitting is required or not. The line-segments pro-

duced by the polygonisation process are also constrained in terms of mini-

mum length. This potentially allows for a large number of spurious edge pixel

chains, which are likely to correspond to noise in the original image to be re-

moved from the representation. However, as the value of this parameter in-

creases the finer details are removed. We have experimented with a number

of possible candidate values for the minimum line-segment length and have

decided to set it to 5 pixels.

� Graph Construction: One of the strengths of our approach is the use of re-

lational information about the image features, in our case line-segments, to

constraint and enhance the attribute representation. A number of adjacency

graph structures are going to be used as part of the line-pattern representation

and their effectiveness evaluated and compared. Here we describe the process

by which the graph structures used in this thesis, are created.

– N-Nearest Neighbour Graph: The N-nearest neighbour graph is one of

the most conceptually simple closest-point graphs. The method used to

generate such a graph structure is as follows. The centre-points of the

straight-line segments are used as the nodes of our N-nearest neighbour

graphs. The edges are computed by selecting the N nodes that have the

closest Euclidean distance on the image plane. Choosing N equal to the

number of lines in the image but one results in a fully connected graph.

This situation will also be considered in our experiments.

– Delaunay Graph: Compared to the nearest neighbour structure the De-

launay graph is more elaborate. The Delaunay graph is more easily de-

scribed as being the dual of the Voronoi tesselation of image points (which

in our case correspond to the centre-points of each line-segment). The
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Voronoi tesselation of a set of planar points is a set of polygons. Each

polygon corresponds to a point. Each pair of points is used in turn to

split the plane in two halves following the perpendicular bisector of the

lines-segment joining the two points. A polygon is obtained from the con-

vex intersection of all perpendicular bisectors related to the associated

point. From the Voronoi tesselation, the construction of the Delaunay

graph simply consists of connecting adjacent areas (polygons) of the tes-

selation by a graph edge. This graph structure has been shown (Tuceryan

and Chorzempa, 1991; Wilson and Hancock, 1997) to provide the most

robust relational structure to noise. However, the complexity of efficient

algorithms to generate the Delaunay triangulation is such that they are

non-trivial to implement. Simple algorithms also exist but their compu-

tational requirements make them inappropriate to operate in a rapid ob-

ject recognition framework. These conditions also rule out the use of the

Gabriel graph and relative neighbourhood graph which are both derived

from the Delaunay triangulation.

In the context of the field of computer vision, closest-point graph structures

are often employed to capture perceptual groupings in an image. The study

of the grouping phenomenon in the human vision system by Gestalt psychol-

ogists (Koffka, 1935; Wertheimer, 1938) indicated that there are rules of human

vision organisation. These include proximity, similarity, continuity, closure

and symmetry in analysing images. The work presented here attempts to em-

bed some of those criteria within the representation of images and objects.

2.5 Performance Measures

In order to provide comparative results between the various approaches, we need

to define a measure representing the level of retrieval or recognition accuracy. Typi-
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cally, object recognition algorithm performance is measured in terms of the percent-

age of times that an object is correctly identified. This is not particularly suitable for

the recognition task at hand. Instead of identifying the model from the library that

corresponds to the object under consideration, we aim at retrieving all the models

from the database that have sufficient similarity with the query image or object. A

performance measure that captures the position (ranking) in which target models

appear in the retrieval or recognition is required. To evaluate retrieval performance

in such situations, a normalised recall metric can be employed (Faloutsos et al., 1994).

This measure was devised by the content-based retrieval community as a mean of

algorithm comparison. The idea is as follows. Suppose that there are n items (or

models) of the same category in the database and these n items appear in the first

n positions for a similarity-based retrieval. In this case, the performance measure

should indicate maximum accuracy. As the position of the n models from the same

category get further apart from the first n positions the performance measure should

decrease gradually. It is important to note that the ordering of the models within a

category is not crucial. What really matters, however, is that all n models from the

correct category appear top in the order of retrieval. Retrieval accuracy is measured

in terms of deviation from the ideal average rank of relevant (IAVRR) items (or mod-

els). The IAVRR is the ideal average rank which corresponds to the case where all n

models from a category have been retrieved in the first n positions. For a database

that contains n models in each category the IAVRR is n=2. In most cases, the library

will be composed of multiple categories each containing varying number of models.

The general equation for the ideal average rank is

IAV RR =
1

m

cX
i=1

n
2
i

2

where m is the total number of models in the library, c is the number of categories,

and ni is the number of models in the i
th category. Normalised recall is measured

by comparing the IAVRR with the average rank of all the relevant models (AVRR)

for each retrieval. The AVRR is computed based on the actual ordered ranking of ni
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models in a particular category for each database retrieval.

AV RR =
1

m

cX
i=1

mX
j=1

8>><
>>:

j if kj 2 C

0 otherwise.

where k is the ranking of each model with respect to a query (ie: the best match

is 1 the second best is 2 and the least similar possible ranking is m) and C is the

set of images from the current category. The ratio of the IAVRR to the AVRR can

be used to give a measure of average retrieval accuracy over a number of experi-

mental trials. Perfect performance would yield to a ratio AV RR=IAV RR = 1. The

performance measure posed in this manner presents two very undesirable draw-

backs. Both the IAVRR and AVRR measures are currently computed by averaging

over all the image models present in the database. In many cases the database is

so large that using every model as a query in turn in order to obtain a performance

measure is impractical. Furthermore, in order to compute an accurate value for the

IAVRR every image or model in the database needs to be assigned to a correspond-

ing ground truth object category by hand. Again such a restriction is impractical in

many cases. For example, suppose that in order to increase the size of the database,

a large number of synthetically and randomly generated models are included. It is

in most cases impossible to assign such models to a particular category. In order to

allow for both non-categorised models and a reduced (partial) image query set, the

definitions of the IAVRR and the AVRR have to be rewritten. We have done so by

devising category dependant IAVRR and AVRR which are defined as follows:

IAV RRc =
1

m

cX
i=1

i =
nc + 1

2

where nc represents the number of models in the category c under consideration.

AV RRc =
1

nc

mX
i=1

8>><
>>:

i if ki 2 C

0 otherwise.

The final performance measure, which represents the retrieval accuracy of the algo-

rithm under consideration, is still based on the ratio of AVRR by IAVRR but is now
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averaged over the queries.

Perf =
1

nq

nqX
c=1

AV RRc

IAV RRc

where nq represents the number of queries for the current experiment. All the re-

trieval performance results provided in this thesis have been computed using this

measure.

2.6 Summary

In this section we have presented the prerequisites of the work presented in this

thesis. The feature attributes, relative angle and relative position, computed from

pairs of line segments have been selected among a number of possible alternatives

and their computation described in details.

The content of the large library of models was then described and the method-

ology used to automatically compute the representation from the image was ex-

plained. Finally, the performance measure, which will allow us to compare the re-

trieval performance of the various algorithms and image representations, was de-

scribed. We will now address the problem of rapidly reducing the number of possi-

ble candidates from a large database, which satisfies the shape similarity criterion.
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Chapter 3

Histogram Based Representation and

Retrieval

We have established, in our literature review (see Chapter 1 Section 1.2, that there

are a number of shortcomings associated with the current object recognition meth-

ods. The major drawback of object recognition techniques is their computational

complexity. Since efficiency is a key issue when performing object recognition in

large image libraries, conventional methods are too computationally demanding

to be used as search engines. This chapter presents a new shape representation

for rapidly indexing and recognising line-patterns from large databases. The basic

idea is to exploit both geometric attributes and structural information to construct

a shape similarity measure. We realise this goal by computing the N-nearest neigh-

bour graph for the line-segments for each pattern. The edges of the neighbourhood

graphs are used to gate contributions to a two-dimensional pairwise geometric his-

togram. Shapes are indexed by searching for the line-pattern that maximises the

cross-correlation of the normalised histogram bin-contents. We evaluate the new

method on a database containing over 2500 line-patterns each composed of hun-

dreds of lines. Here we demonstrate that the structural gating of the histogram not

only improves recognition performance, but that it also overcomes the problem of
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saturation when large patterns are being recalled.

3.1 Related literature and Motivation

It is important to stress that our aim in this chapter is to perform a rapid indexing

of a large database of line-patterns in order to reduce the number of possible model

candidates for further object recognition processing. This is in marked contrast to

the bulk of the current literature on histogram or accumulator based image retrieval,

which has a tendency to concentrate on pixel-based attributes such as colour (Swain,

1993), orientation or texture (Gimelfarb and Jain, 1996).

Our idea of using an accumulator-based method to recognise line-patterns clearly

has similarities with a number of object recognition strategies described elsewhere

in the literature. For instance, the idea of voting is central to the generalised Hough

transform (Ballard, 1981) and its variants (Illingworth and Kittler, 1987). However,

Hough-based methods are concerned with shape recovery for the purposes of ob-

ject localisation. It is therefore important to stress that in our method, the accumula-

tion of evidence is directed at measuring object similarity and presence in the scene

rather than localisation. The idea of using attribute histogram as an indexation de-

vice was originally popularised by Swain and Ballard (Swain, 1993) for retrieving

colour images from databases. The idea has been extended to both texture (Gimel-

farb and Jain, 1996) and orientation representations (Dorai and Jain, 1995; Rigoutsos

and Hummel, 1995). The work presented is more closely related to the pairwise

geometric histogram representation of Evans et al. (Evans et al., 1993). Rather than

using raw image attributes, this representation uses relative attributes defined over

line-pairs. Several alternative attribute sets have been suggested (Bray and Hlavac,

1991), but most algorithms revolve around the use of angle difference. The work

of Thacker et al. (Thacker et al., 1995) is more in line with what we are aiming to

achieve. Histogram based approaches to object recognition can be viewed as accu-
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mulator methods that avoid the problems of storage and search that limits the use

of the generalised Hough transform.

The use of local geometric features is common to a number of object recogni-

tion strategies. For instance, geometric hashing attempts to tabulate local features

in such a way as to index object-shape (Hecker and Bolle, 1994; Tsai, 1994). Stein

and Medioni (Stein and Medioni, 1992) provide one of the most ambitious hashing

scheme, which draws on relatively complex polygonal super-segments as the geo-

metric primitives. Although this representation is considerably more sophisticated

than our use of simple line-segment pairs, it is potentially more fragile as a result of

sensitivity to the token grouping process. Rigoutsos and Hummel (Rigoutsos and

Hummel, 1995) soften the search process using Bayes decision theory. However,

these methods require the identification of a set of global token correspondences.

In our method, there is no such requirement since we compare objects at the his-

togram level. It is this feature that also distinguishes our work from that of Grimson

and Lozano-Perez (Grimson and Lozano-Perez, 1987) who use pairwise relational

constraints to identify objects via the search of the interpretation tree.

Both structural information and attribute histograms have been separately used

to recall and recognise image data. However, they have not been used in conjunc-

tion. The aim in the work presented in this chapter is to fill this gap in the literature

by developing a structurally gated pairwise attribute histogram representation that

can be used to recall complex line-patterns. It is this idea of using histogram gating

together with our aim of indexing into large databases, which gives us a novel ad-

vantage over the work of Thacker et al. (Thacker et al., 1995). Although this work

has provided us with a starting point, we have considerably refined the choice of

feature representation to additionally allow for invariance to scaling. Moreover,

we reduce the computational overheads by conglomerating the line-segments in a

single histogram rather than having a histogram per line-segment. Viewed from

the perspective of structural hashing (Costa and Shapiro, 1995; Sengupta and Boyer,
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1995), our method uses a compact histogram representation rather than a large hash-

table, which can grow to unmanageable size for complex scenes. It is important to

emphasise that we view the histogram-based comparison as the first-step in a hy-

pothesis refinement process that draws on detailed matching for later verification as

described in Chapter 4 and 5.

The outline of this chapter is as follows. Having described in the previous chapter

(see Chapter 2 Section 2.1) the pairwise geometric attributes that may be used to rep-

resent the shape content of each image (or line-pattern) in the database, we may now

further our explanation of the rapid indexing method. In Section 3.2 we describe our

histogram based recognition method. This focuses on details of histogram accumu-

lation and comparison. In Section 3.2.1 we present various relational structures and

address their suitability both in term of simplicity of computation and robustness

to noise for the task at hand. Experimental evaluation of the technique is presented

in Section 3.3. This takes the form of a comparative study aimed at establishing

the effectiveness of the proposed algorithm alternatives on a database of over 2500

line-patterns. This experimentation has several goals. The first sensitivity analysis

is concerned with the choice of the most appropriate pairwise attribute to represent

line-patterns. In the second experiment we investigate the suitability of a number

of distance measures used to gauge histogram similarity. The third experiment aims

to establish the most effective graph structure for gating the histograms. Finally, we

present some retrieval examples using both the gated and un-gated pairwise geo-

metric histogram representation in Section 3.3.4. Section 3.4 addresses the sensitivity

of the rapid recognition methods to errors of the line-segmentation process. Finally,

Section 3.5 presents some conclusions and suggests directions for future investiga-

tion as far as this approach is concerned.
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3.2 Histogram Representation

The two dimensional histogram representation is based on the relative pairwise at-

tributes described in Chapter 2 Section 2.2. In this section, we provide details about

the construction of pairwise histograms from two invariant attributes together with

the structural constraints provided a N-nearest neighbour graph. We also describe

the distance measures used to compare the histogram bin contents.

The method used to compute the pairwise attributes (see chapter 2 Section 2.2)

allows us to know their range. The directed relative angle attribute will range be-

tween ��=2 and �=2, and the directed relative position between 0 and 1. Therefore,

we are able to choose the right number of bin and their corresponding bin size for

each histogram. For the experiments, described hereafter, the directed relative angle

dimension of the histogram is composed of 36 bins (each bin spanning an angle of

�=18 radian). The dimension of the histogram based on the ratio of the base line-

segment length and its distance to the intersection point with the line-segment pair

(directed relative position) is composed of 12 bins. The experiment from which the

number of bins in each histogram is selected was described in (Huet, 1996). The final

two-dimensional histogram representing each line-pattern is composed of 36 bins

(directed relative angle) by 12 bins (directed relative position). All our histograms

are normalised so that the sum of all the bins is equal to unity.

3.2.1 Relational Constraints

In the previous chapter, we have shown that it is important to carefully choose

the attributes (or measurements). Similarly, we intend to reveal how critical the

choice of whether or not using structural information within a representation may

be for the performance of the algorithm. Recent research in the field of graph match-

ing (Shapiro and Haralick, 1985; Wilson and Hancock, 1997; Cross et al., 1996; Bunke

and Messmer, 1995) indicates that using the structural (or relational) information of
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(a) Original image. (b) Raw feature image.

(c) Line image. (d) Nearest-Neighbour

graph.
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(f) 2D Relational His-

togram.

Figure 3.1: A typical aerial infra-red image going through the processing step lead-

ing to the histogram representation.
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image features may provide recognition improvements when image noise and mea-

surement errors are present. The basic idea is to use image features as graph nodes

and related features as graph edges.

There are many alternative graph representations. Four different neighbourhood

graph structures have been particularly studied (Tuceryan and Chorzempa, 1991;

Wilson and Hancock, 1997). These are the Delaunay graph, the Gabriel graph, the

relative neighbourhood graph and the N-nearest neighbour graph. The difference

among the various type of graph depends on the algorithm used to create the edge-

set. In other words, the rule that defines how graph nodes are connected (are related)

to each other. In Chapter 2 Section 2.4 we described a number of alternative graph

structures.

It is interesting to note that this sequence of pruning operations has the effect of

reducing the edge density of the different graph structures. Whereas the Delaunay

graph consists entirely of triangulated faces, the relative neighbourhood graph is

more tree-like in its structure.

The work of Tuceryan and Chorzempa (Tuceryan and Chorzempa, 1991) and Wil-

son and Hancock (Wilson and Hancock, 1997) indicates that the most robust graph

representation in presence of noise is the Delaunay graph. The N-nearest neighbour

graph comes close second. It was also shown that various orders of N-nearest neigh-

bour graphs lead to various level of structural matching accuracy. The results of Wil-

son and Hancock (Wilson and Hancock, 1997) illustrate that optimal performance is

obtained when the number of neighbours is in the range 5-6. It is interesting to note

that these graphs also have approximately the same average connectivity as the De-

launay graph. The Gabriel graph and the relative neighbourhood graphs deliver

performance that drops off rapidly with increasing noise. This is an observation of

critical importance for our study of line-pattern indexation. The computation of the

Delaunay graph is intensive and therefore not particularly well suited for large im-

age databases. The N-nearest neighbour graph on the other hand can be computed

63



inexpensively using very simple algorithms. Moreover, as demonstrated by our ex-

perimental study, the increased computational efficiency is only at the expense of

marginal performance deterioration.

One of the novel ideas introduced in this chapter is to embed relational and struc-

tural information about the line-pattern within the pairwise geometric histogram

using the edge-set of the N-nearest neighbour graph. Although our histograms in-

tegrate information over the complete line-pattern, contributions are gated by the

local structure conveyed by a neighbourhood graph. The motivation here is that

local object representations are more robust to occlusion, missing or extra features

and noise. Moreover, by integrating both geometric attributes and structural infor-

mation into a single histogram we provide a compact relational representation of

line-structure. This gating process greatly reduces the number of entries in each

histogram, hence diminishing the risk of histogram saturation. Structural gating en-

sures that this representation does not become saturated. As pointed out by Stricker

and Swain (Stricker and Swain, 1994), this feature can severely restrict the recall

capacity of the recognition process.

Our idea contrasts with a number of related contributions in the literature. For

instance, Evans et al (Evans et al., 1993) effectively have a local representation of line-

pattern structure, which is less compact than ours since it employs one histogram

per line-segment. Moreover, their attributes are not scale invariant. Di Mauro et

al’s. (DiMauro et al., 1996) idea of using a region-of-interest is close to that of using a

neighbourhood graph. However, their regions are controlled by a scale parameter.

By virtue of their structural character, neighbourhood graphs are scale-invariant.

Suppose that line-segments extracted from an image are indexed by the set V .

More formally, the set V represents the nodes of our nearest neighbourhood graph.

The edge-set of this graphE � V �V is constructed as follows. For each node in turn,

we create an edge to the N line-segments that have the closest distances. With the

edge-set of the nearest neighbour graph to hand, we can construct the structurally
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gated geometric histogram. The bin-incrementing process can be formally described

as follows. Let i and j be two segments extracted from the raw image. The angle and

position attributes �ij and #ij are binned provided the two segments are connected

by an edge, i.e. (i; j) 2 E. If this condition is met then the bin H(B�; B#) spanning

the two attributes is incremented as follows

H(B�; B#) =

8>><
>>:

H(B�; B#) + 1 if (i; j) 2 E and �ij 2 R(B�) and #ij 2 R(B#)

H(B�; B#) otherwise.

where R(B�) is the range of the directed relative angle attributes spanned by the

B�th horizontal histogram bin and R(B#) is the range of the directed relative angle

attributes spanned by the B#th horizontal histogram bin. Each histogram contains

n� relative angle bins and n# length ratio bins. The normalised gated geometric

histogram bin-entries are computed as follows

h(B�; B#) =
H(B�; B#)Pn�

B
0

�
=1

Pn#

B
0

#
=1H(B0

�
; B

0
#
)

The gating process greatly reduces the number of entries in each histogram,

hence diminishing the risk of histogram saturation. As an illustrative example some

of the images used in our experiments contain over 1000 segments. Such a line-

pattern would result in over (1000 � (1000 � 1))=2) = 498500 histogram entries. By

contrast, in our structurally gated histograms based on a six nearest neighbour graph

there are on average only 1000 � 6 = 6000 entries. Both the un-gated and the gated

histogram are depicted in Figure 3.1(e) and 3.1(f) for a typical image. In the case

of the standard histogram representation many histogram bins contains large num-

ber of votes with the highest peak reaching 19000 entries. The highest peak for the

structurally gated histogram is below 140 entries.

To provide some illustrative examples of our methodology, Figure 3.1 shows

the sequence of processing steps from one of the infra-red aerial image leading to

the extraction of the two-dimensional histogram representation. Figure 3.1(a) is the

raw (original) image. The detected pixel chains are shown in Figure 3.1(b). In Fig-
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ure 3.1(c) we show the straight-line segments that result from the application of our

polygonisation algorithm. The 6-nearest neighbour graph generated from the cen-

ter point of the straight line segments is shown in Figure 3.1(d). Figure 3.1(e) shows

the standard pairwise geometric histogram, while figure 3.1(f) shows the gated his-

togram computed using a 6-nearest neighbour graph. In both histograms, the hor-

izontal axis corresponds to directed relative positions and the vertical axis encodes

directed relative angles. The main feature to note from the two histograms is the

much sharper structure of the gated version.

3.2.2 Histogram Distance Measures

Having established the means of representation for our rapid indexing algorithms, a

measure needs to be defined in order to indicate the similarity between line-patterns.

Since we have opted for a histogram based representation we will investigate the ef-

fectiveness of a number of histogram distance measures. The normalised histograms

HM(i) and HD(i) are composed of n = n� � n# distinct bins i, each representing the

frequency f of occurrence of a pairwise attribute between the line-segments within

each line-set. The indices M and D correspond respectively to a model line-pattern

and a query. The distance measures under consideration are the following:

� L1 Norm

L1(HD; HM) =
X
i

jHD(i)�HM(i)j (3.1)

� L2 Norm

L2(HD; HM) =
sX

i

(HD(i)�HM(i))2 (3.2)

� Bhattacharyya Distance

B(HD; HM) = � ln
X
i

q
HD(i)�HM(i) (3.3)

� Matusita Distance

M(HD; HM) =

sX
i

(
q
HD(i)�

q
HM(i))2 (3.4)
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� Divergence

D(HD; HM) =
X
i

[(HD(i)�HM(i)) ln
HD(i)

HM(i)
] (3.5)

Before we proceed to experiment with these different distance measures, it is im-

portant to understand the way in which they gauge differences in histogram struc-

ture. Both the L1 and L2 norms use the difference in histogram bin contents to de-

termine the similarity in the line patterns. One of the problems associated with these

two measures is an undue bias towards bins of zero contents. The Bhattacharyya dis-

tance is effectively a correlation measure. If the case of Gaussian probability density

functions, the Bhattacharyya distance is proportional to the Mahalanobis distance

between the class means. The Bhattacharyya distance uses the correlation between

the normalised bin contents as a measure of pattern similarity. This means that

bins of zero contents do not contribute to the distance. In other words, the measure

favours association between model and data (query) histogram bins, which have

dominant large content. For highly structured histograms, i.e. those which are not

uniformly populated, this can lead to the selection of matches in which there is a

strong compatibility between the salient structure of the model and the data. The

Matusita distance is proportional to the negative exponential of the Bhattacharyya

distance. The divergence has a more subtle structure. In the case of Gaussian mix-

tures, it does not only depend upon the between class Mahalanobis distance, it also

gauges the difference in class covariance.

3.3 Experiments

The examples included here aim to illustrate the effectiveness of the two dimensional

relational histogram representations for performing shape based recognition from a

large database of images.

The database used in our experiments has been described in Chapter 2 Sec-

tion 2.3. For some of our experiments, the recognition task is posed as that of finding
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the infra-red images that contain a pattern of road structure represented in a digi-

tal map (see figure 2.5). Since we also aim to investigate the sensitivity of recall

to the line segmentation process, we have augmented the database with four addi-

tional sets of over and under segmented line-segments for the target aerial infra-red

image. This database may seem rather artificial in its construction. However, the

trademarks and logos provide structured background data, which is more realistic

than random line patterns. Each image in the database is subjected to the processing

steps described in Chapter 2 Section 2.4 (Feature Detection, Polygonalisation and

Construction of the N-nearest Neighbour graph) prior to histograming.

The overall aims of our experiments are to demonstrate the retrieval power and

recognition accuracy of the structurally gated pairwise geometric histogram (or re-

lational pairwise geometric histogram). Following recent work on image retrieval

from a large database of images (Niblack et al., 1993; Pentland et al., 1994; Swain,

1993; Picard, 1995), the aim is to recover the set of images that resemble most closely

a query image. As mentioned above, in the bulk of our experiments the query image

(see figure 2.5) is a Digital Map that represents a pattern of a road structure known

to occur in some of the infra-red aerial images present in the database.

We commence our experimental study by providing some empirical results,

which point to the best choice of pairwise geometric attribute(s), histogram distance

measure, representation and order of relational structure.

3.3.1 Pairwise Geometric Attributes

Figure 3.2 shows the performance results of using each of the pairwise geomet-

ric attributes described in Chapter 2 Section 2.1 to index into a small database of 22

aerial images (see Figure 2.6) using a digital map (see Figure 2.5). From the results

shown in figure 3.2 it is obvious that using the relative angle pairwise attribute offers

the best level of retrieval accuracy. Even on such an experiment, the attributes based

on length ratios show their fragility. Indeed, the end-point position of the line seg-
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Figure 3.2: Performance results using various attributes for shape similarity re-

trieval.

ment is likely to be affected by the extraction process. Based on this experiment, we

have established that a robust representation should favour orientation over length

of the line-segment measurements. However, for ambiguity reasons, as described

earlier in Chapter 2 Section 2.2, the representation needs to be augmented with an

extra pairwise geometric attribute. From the results shown in figure 3.2, it appears

that the relative length ratio is the most appropriate choice for the second attribute.

Unfortunately, this attribute does not solve the ambiguity issues raised in Chapter 2

Section 2.2. Therefore, augmenting the relative angle representation with the rela-

tive length ratio would not improve recognition performance. However, the relative

position attribute is able to solve the ambiguity that arise from using the relative

angle alone. For this reason, the directed relative angle attribute will be combined

with the directed relative position in a two-dimensional histogram representation.

3.3.2 Histogram Distance Measures

In order to determine the most appropriate distance measure for geometric pairwise

histogram comparison we use the augmented aerial infra-red image database. The
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multiple segmentations of the infra-red image related to the digital map allow us to

measure the effectiveness of the various histogram distance measure in the presence

of segmental clutter. The results in table 3.1 show the ranked distances between

the ten first (most similar) aerial images and the digital map. The corresponding

N-nearest neighbours graph may be seen in figure 3.2.

Match L1 Norm L2 Norm Bhattacharyya Matusita Divergence

Best Map60 0.31 Map60 0.09 Map60 0.01 Map60 0.19 Map60 0.14

2nd Map60 20 0.34 Map60 20 0.10 Map60 20 0.02 Map60 20 0.21 Map60 20 0.19

3rd Map60 07 0.37 Map60 07 0.11 Map60 07 0.03 Map60 07 0.24 Map60 07 0.24

4th Map60 25 0.41 Map60 10 0.13 Map60 10 0.03 Map60 10 0.27 Map60 10 0.30

5th Map130 0.44 Map60 25 0.13 Map60 25 0.04 Map60 25 0.28 Map60 25 0.32

6th Map170 0.46 Map150 0.14 Map170 0.04 Map170 0.28 Map170 0.33

7th Map60 10 0.46 Map130 0.15 Map180 0.04 Map180 0.29 Map180 0.34

8th Map180 0.47 Map180 0.15 Map130 0.04 Map130 0.29 Map130 0.37

9th Map90 0.48 Map90 0.15 Map90 0.04 Map90 0.30 Map90 0.37

10th Map50 0.49 Map50 0.15 Map150 0.04 Map150 0.30 Map150 0.37

Table 3.1: Effect of segmental clutter on relative angle histograms using various

distance measures.

The query image (the digital map depicted in Figure 2.5) corresponds to infra-

red images Map60, Map60 07.0, Map60 10.0, ..., Map60 25.0 (various segmentation

parameters) and Map170 (viewpoint variations). It is therefore, those database en-

tries that should be retrieved as first best matches. At first sight, since all the tech-

niques identify Map60 as having the closest histogram similarity to the model data,

we may conclude that they deliver comparable performance. However, it should

also be noted from these results that the L1 and L2 norms do not perform as well

as the other metrics. Particularly, the L1 and L2 norms are the only measure pro-
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viding an incorrect classification of Map170. It is clear from these results that the

Bhattacharyya distance measure, the Matusita distance and the divergence are able

to perform noticeably better that the standard L1 and L2. The sensitivity study ac-

cessing the retrieval performance of the different distances under varying quality

of segmentation, revealed that the Bhattacharyya and Matusita distance measures

are robust to significant differences in the segmentation process (extra and missing

segments). Indeed, both distance measures outperform the divergence measure in

many situations. As expected, the Matusita distance produces identical indexing

results than the Bhattacharyya. However, we favour the use of the Bhattacharyya

distance measure for computational reasons.

3.3.3 Histogram Representation and Distance Measure

To continue our study, we aim to establish which combination of distance measure

and histogram representation (i.e. structurally gated or ungated), gives the best

recognition performance. In figure 3.3 we show the effect of the size of the database

on the accuracy of recall. The plot shows the fraction of times the correct image is

top ranked when 20 trials are repeated. The results are plotted as a function of the

size of the database. The plot presents a comparison of recognition performance

between structurally gated and ungated histograms when some of the different dis-

tance measures outlined in section 3.2.2 are used for the of purposes pattern recall.

The main feature to note from the plot is that the results are clustered according

to the distance measure used. The Bhattacharyya distance delivers the best perfor-

mance, while the poorest performance is delivered by the L2 norm. In each case the

structurally gated histogram outperforms the ungated histogram. However, in the

case of the Bhattacharyya distance the margin of improvement is greatest. Over the

range of database size, the performance of the gated histogram never falls below

85%. For the ungated histogram, the performance is consistently 30-40% poorer.

Moreover, without gating, the performance of the Bhattacharyya distance is only
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Figure 3.3: Effect of the database size on retrieval accuracy.

marginally better than the L1 norm.

Graph Order

Having established that the structurally gated histogram outperforms its ungated

counterpart when the Bhattacharyya distance is used for the purposes of histogram

comparison, our second sensitivity study focuses on the role of relational structure.

Here we are concerned with the identification of the most suitable relational struc-

ture for efficient and robust shape recognition regardless of the size of the database.

The study presented in (Wilson et al., 1996) suggested that nearest neighbour graphs

of order six provided the best performance when full relational matching is per-

formed. In this subsection, we aim to examine whether this assertion holds for shape

recognition using structurally gated pairwise attribute histograms. Our concern here

is to determine the minimum order of the neighbourhood graph that will give the

most robust recall when noise and clutter are limiting factors. Since we are dealing

with a large number of images and each of these images may contain several hun-

dred extracted segments, it is imperative that the order should be kept as small as
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possible.

4 neighbours 6 neighbours 8 neighbours 10 neighbours N-1 neighbours

Map60 0.053 Map60 0.038 Map60 0.029 Map60 20.0 0.036 56-1079.tif 0.005

Map60 10.0 0.059 Map60 25.0 0.038 Map60 20.0 0.029 Map60 0.038 56-1165.tif 0.005

Map60 20.0 0.060 Map60 20.0 0.039 Map60 25.0 0.029 Map60 25.0 0.039 44-1123.tif 0.008

Map60 07.0 0.062 Map60 10.0 0.041 Map60 10.0 0.034 Map60 10.0 0.040 Map060 25.0 0.008

Map60 25.0 0.064 Map60 07.0 0.047 Map60 07.0 0.037 Map50 0.043 54-404.tif 0.008

Map100 0.072 Map170 0.050 Map170 0.038 Map60 07.0 0.044 Map060 20.0 0.009

Map170 0.075 54-1187.tif 0.052 Map50 0.039 Map170 0.047 54-1185.tif 0.009

54-1187.tif 0.075 Map50 0.053 54-1187.tif 0.039 54-1187.tif 0.049 56-1301.tif 0.009

Map200 0.078 Map100 0.054 Map120 0.043 Map70 0.052 56-1078.tif 0.009

56-1121.tif 0.080 Map120 0.057 44-1154.tif 0.043 Map100 0.054 56-1109.tif 0.009

Map120 0.081 44-1154.tif 0.058 Map100 0.044 Map120 0.055 46-308.tif 0.009

Map50 0.081 56-1209.tif 0.058 56-906.tif 0.044 56-1209.tif 0.055 44-405.tif 0.009

56-1209.tif 0.082 44-1155.tif 0.058 54-113.tif 0.045 Map200 0.056 44-1063.tif 0.009

Table 3.2: Effect of the number of N-nearest neighbours on the retrieval perfor-

mance.

We now aim to establish the optimal order of the N-nearest graph used to con-

struct the histogram. Table 3.2 presents the result of querying the image database us-

ing the Digital Map for a number of N-nearest neighbour graphs whose order ranges

from N = 4 to N = M � 1 where M is the number of linear segments extracted from

the raw image. Each entry shows the code-word assigned to the image together with

its Bhattacharyya distance to the query image. The results in this table are ordered

from the top-down in order of increasing distance. The top line indicates the image

that resembles most closely the query image. The smallest recall distance is obtained

when the structure is of order six. In the case when the orders of the graph are six

and eight, then the alternative segmentations of Map60 rank in the top five places

of the table and are closely followed by Map170 in rank six. The right-most column

shows the retrieval obtained when all the segment pairs in the images are used to
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compute the histograms. This corresponds to removing the structural gating process

from the histogram. In this case the highest ranks for the target image are five and

seven. In other words, discarding the gating process results in poor recall.
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Figure 3.4: Effect of the choice of relational structure on retrieval accuracy.

Figure 3.4 compares the performance of a number of N-nearest neighbour graph

with the Delaunay graph. The best performance is achieved with the Delaunay

graph and the N-nearest neighbour graph of order 6 or 7. This is an observation of

critical importance for our study of line-pattern indexation. The computation of the

Delaunay graph is complex and computationally demanding. It is, therefore, not

particularly well suited for large image databases. The N-nearest neighbour graph

on the other hand can be easily computed inexpensively.

From these results, we can conclude that using a nearest neighbour graph of

order six provides the most time efficient and accurate means of line-pattern recall.

3.3.4 Recognition Experiments

Having established the most effective recognition strategy, in this subsection we

provide some qualitative examples of the results obtained in our experiments. The
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results are presented in the form of panels of “thumbnail” images from the database

used in our recognition experiments. The “thumbnails” are ordered (from left-to-

right and top-to-bottom) according to their distance from the query image. The

first experiment involves querying the database with a letter “A”. In this example

the database is augmented with 11 images of the letter “A” subjected to various

rotations and scalings. In some of these images the letter “A” appears alongside

another letter or has random clutter lines superimposed. In Figure 3.5, we compare

the recognition results obtained with the gated and ungated histograms. In the case

of the relationally gated histogram, the first error occurs at rank position 11. Of the

12 “A” in the database the worst recall appears at rank position 14. By contrast, in the

case of the ungated histogram, the first error is at rank position 7 and the worst recall

is at rank position 47. In the case of the structurally gated representation, it is worth

mentioning that letter “V” at rank position 11 and letter “K” at rank position 13 are

not severe recognition errors. Indeed, the symbol corresponding to the letter “V” is

similar to an “A” rotated by 180 degrees and missing its horizontal bar. Similarly, the

letter “K” is closely related to an “A” rotated by 90 degrees with its bar displaced.

To some extent a similar explanation can be provided for letter “W” and “Y” ranked

at position 15 and 16.

In the second example, we experiment with the “Le Suites Days” logo. The re-

sults are shown in figure 3.6. There are four logos in the database that have the same

shape, but they carry a different legend (Hotel Days, Auberge Daystop and Auberge

Days). In the case of both the relationally gated histogram and its ungated counter-

part, the correct logo is correctly recognised in the top ranked position. However, in

the case of the relational histogram, the three logos with the same shape but differ-

ent legends are ranked from second to fourth. In the ungated case, these three logos

are more dispersed and appear at rank positions 2, 4 and 6.

The third example draws on the cartographic section of the database. The line-

patterns contained in the cartographic section of the database are segmented from
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infra-red aerial images of urban and semi-urban areas. The Digital Map (or carto-

graphic model) used to query the database represents a road network known to

appear in a subset of the images contained within the database. The images la-

belled Map060 and Map170 both contain the road network area depicted in the car-

tographic model, but are acquired when the imaging apparatus is making different

altitude passes over the scene. However, there is known to be a significant barrel

distortion in the horizontal direction of the infra-red images caused by the rotating

mirror optics underlying the line-scan process used during sensing. Additionally,

the viewing angle, altitude and direction is not similar to the Digital Map. Ideally the

result of a database query using the Digital Map depicted in figure 3.7(a) is a retrieval

where both the images Map060 and Map170 are recalled as the first and second best

matches.

The ranked “thumbnail” images are compared for the relationally gated and un-

gated histograms in Figure 3.7. In the case of the relational histograms, the five

different segmentations of the target image (Map060) are top-ranked (i.e.Map060 07

etc). The outcome of controlled over and under segmentation of the image results

in significant variation in the number of segments used to construct the histogram

representation. The retrieval is not specifically affected by these segmentation sys-

tematics as it can be seen in figure 3.7. The high altitude image of the same area (i.e.

Map060) appears at rank 6.

In the case of the ungated histogram the different segmentations of the target

image are badly dispersed. Four of the five different segmentations appear at rank

positions 4, 6, 12 and 19. In other words, the recognition performance is very poor.
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(a)

(b) (c)

Figure 3.5: The result of querying the database with the letter “A” (a): The left-hand

panel (b) is the result obtained with the ungated histogram. The right-hand panel (c)

is the result obtained when a relational histogram is used. The images are ordered

from left-to-right and top-to-bottom in increasing distance from the query image,

which is shown at the top of the figure.
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(a)

(b) (c)

Figure 3.6: The result of querying the database with the “Le Suites Days” logo (a):

The left-hand panel (b) is the result obtained with the ungated histogram. The right-

hand panel (c) is the result obtained when a relational histogram is used. The im-

ages are ordered from left-to-right and top-to-bottom in increasing distance from

the query image, which is shown at the top of the figure.
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(a)

(b) (c)

Figure 3.7: The result of querying the database with the digital map (a): The left-

hand panel (b) is the result obtained with the ungated histogram. The right-hand

panel (c) is the result obtained when a relational histogram is used. The images are

ordered from left-to-right and top-to-bottom in increasing distance from the query

image, which is shown at the top of the figure.
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3.4 Sensitivity Study

The aim in this section is to investigate the sensitivity of the two recognition strate-

gies to the systematics of the line-segmentation process. To this end we have simu-

lated the segmentation errors that can occur when line-segments are extracted from

realistic image data. Specifically, the different processes that we have investigated

are listed below:

� Extra lines: Here we have added additional lines at random locations. The

lengths and angles of the added lines have been generated by randomly sam-

pling the distribution for the existing image-segments.

� Missing lines: Here we have deleted a known fraction of line-segments at

random locations. This has a similar effect on the resulting line-pattern than

occlusion of object parts.

� Split lines: Here a predefined fraction of lines have been split into two seg-

ments. The splitting process is realised by deleting an internal fraction of each

line-segment. The deleted segment is randomly positioned along the line. The

fraction of the line deleted is uniformly sampled from the range (0; 1).

� Segment end-point errors: Here we have introduced random displacements

in the end-point positions for a predefined fraction of lines. The distribution of

end-point errors is Gaussian. The degree of error is controlled by the variance

of the Gaussian distribution.

� Combined errors: Here we have introduced the four different segment errors

described above in equal proportion.

The performance measure used in our sensitivity analysis is the retrieval accu-

racy. This is computed as described in Chapter 2 Section 2.5.

In our first experiment, we query the database with a line pattern that is known

to have a unique exact counterpart. In other words the line pattern used for indexing
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is present in the database. However a number of lines from this object have suffered

segmentation errors. Figures 3.8 and 3.9 compare the retrieval accuracy as a func-

tion of the fraction of lines that are subjected to segmentation errors. In the case

of the standard pairwise geometric histogram (Figure 3.8) the performance starts to

degrade as soon as a small amount of segmentation errors is introduced. The most

destructive types of error are line segment splitting and the addition of extra lines.

Splitting line-segments has the effect of increasing the level of binning of the exist-

ing peaks. It is also likely to create a large number of histogram entries in the bin

corresponding to collinear line-segments. The addition of extra-lines has the effect

of saturating the histogram background. This is particularly important in the case of

the standard (ungated) histogram representation since each extra line-segment will

generate as many histogram entries as line-segment pairs present in the line pattern.

The method is significantly less sensitive to missing lines and segment end point er-

rors. Both of these effects simply reduce the histogram contents rather than distort-

ing its shape. It is, however, worth pointing out that the retrieval performance in the

presence of combined errors, situation most likely to simulate real world scenarios,

is rather poor with only 5% accuracy for 20% of the lines affected.

In the case of the structurally gated pairwise geometric histogram representation

the retrieval performance (see figure 3.9) shows some great improvement over the

ungated version. Extra line-segments are again the most destructive errors. How-

ever, it is only after over 20% of the line-segments have been corrupted that the

accuracy becomes non-optimal. The least destructive type of error is line segment

splitting. This is followed by line deletion. When all types of error are combined

in equal amount the retrieval performance is very good until the fraction of line-

segments subjected to errors becomes greater than 50%. This is a major improve-

ment over the results obtained using the ungated version of the pairwise geometric

histogram.
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Figure 3.8: Effect of various kinds of noise on the retrieval performance using the

standard pairwise geometric histogram representation. The query is a noisy version

of a unique target in the database.

We have repeated these experiments with an inexact query. Here the query pat-

tern is a distorted version of the target in the database. An example is furnished by

the digital map (see figure 3.7(a)), which is a barrel-distorted version of the target.

Figures 3.10 and 3.11 again show the retrieval accuracy as a function of the fraction of

segmentation errors. A more complex sensitivity pattern emerges in this case. In the

case of the standard (ungated) histogram (Figure 3.10), the retrieval performances

are very poor indeed, dropping down to just a few percent accuracy whatever the

type of error. This is attributable to the fact that the large number of contribution

saturates the histogram. In the case of the relational histogram (Figure 3.11) the per-

formances are more acceptable. Split lines and extra lines are again the first to affect

the representation. It is interesting to note that under combined errors, a retrieval

accuracy of 87% is still achievable when 40% of the line-segments have suffered

perturbation.
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Figure 3.9: Effect of various kinds of noise on the retrieval performance using the

relational pairwise geometric histogram representation. The query is a noisy version

of a unique target in the database.

To continue the sensitivity study, we focus more closely on the role of segment

end-point errors. The reason for this is that such errors will effect the accuracy of

the relational measurements. Figure 3.12 shows the average absolute error in the

relative angle attribute. This quantity is plotted as a joint function of the fraction of

lines affected by errors and the standard-deviation of the Gaussian position error.

The main feature to note from this plot is that the angle error increases with both the

fraction of effected lines and the variance of the positional errors.

Figure 3.13 shows the effect of line end-point position errors for exact queries

using the ungated version of the pairwise geometric histogram. Figure 3.13 shows

its structurally gated counterpart. The different curves in the plots correspond to

different values of the standard deviation of the end-point position errors. They

show the accuracy of retrieval as a function of the fraction of lines affected by end-

point errors. As the standard deviation of the position error increases, then so does

the fraction of corrupt lines. It appears that perfect recall becomes gradually more
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Figure 3.10: Effect of various kinds of noise on the retrieval performance using the

standard pairwise geometric histogram representation. The target and the query are

similar but not necessarily identical.

difficult as the error in end-point position increases and the fraction of ”correct”

lines decreases. The main point to note from these plots is that the performance of

the relational histogram method degrades less rapidly under line end-point errors

than the standard histogram.

Finally, we turn our attention to the level of pruning provided by the gated pair-

wise geometric histogram. The idea is to use the relational histogram as a filter that

can be applied to the database to limit the search. Once this is done more computa-

tionally demanding techniques can be used for refinement. The important issue is

therefore the rank threshold that can be applied to the histogram similarity measure.

The threshold should be such that the probability of false rejection is low while the

number of images that remain to be verified is small.

To address this question we have conducted the following experiment using the

database described in Chapter 2. The database contains several groups of images,

which are variations of the same object. Some groups contain just a few variations
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Figure 3.11: Effect of various kinds of noise on the retrieval performance using the

relational pairwise geometric histogram representation. The target and the query

are similar but not necessarily identical.

while others have up to 50 variations (including rotation and scale). In figure 3.15 we

show the result of querying the database with an object selected from each group.

The plot shows the worst ranked member of the group as a function of the amount

of added image noise. The plot shows a different curve for each of the five different

noise types listed above. The main conclusion to be drawn from this plot is that

additional lines and end-point segment errors have the most disruptive effect on the

ordering of the rankings. However, provided that less than 20% of the line-segments

are subject to error, then the database can be pruned to 1% of its original size using

the relational histogram comparison. If a target pruning rate of 25% of the database

population is desired then the noise-level can be as high as 75%. This result indi-

cates that it is possible to prune the database to a more manageable size. The lower

the threshold, the more selective the method becomes. Only limited corruption is

allowed to ensure that all the related line patterns are selected for further processing.
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Figure 3.12: Effect of introducing end-point errors on the line-segment orientation.

3.5 Summary

The main contribution of this chapter has been to describe a simple and compact

histogram representation, which combines both geometrical and structural infor-

mation about line-patterns. This representation can be used effectively to index into

a large database according to shape and line-pattern similarity. The best retrieval

performance is obtained when the Bhattacharyya distance measure is used to com-

pare structurally gated pairwise geometric histograms. For a database of over 2500

line-patterns, recall accuracy of over 85% is achievable. Moreover, we show that op-

timal performance is obtained when the nearest neighbour graph used to gate the

histogram is of order six. There are also indications that the method is relatively

robust to the under and over segmentation of the line-patterns.
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Figure 3.13: Effect of introducing segment errors on the retrieval performance using

the standard pairwise geometric histogram representation. The query is a noisy

version of a unique target in the database.

Based on a thorough sensitivity study the effect of a number of segmental error

types on the histogram representation has been established. Similarly, our exper-

iments show that 75% reduction of the line-pattern candidates may be performed

while retaining all those models, which are relevant for the next level of recognition.

The work presented in this chapter may be regarded as an important step in a

more ambitious programme aimed at developing a hierarchical recognition system

for large image database. Our next goal is to refine the rather crude index of struc-

tural similarity. In particular, we aim to derive fine-grain similarity measures from

the recently reported Bayesian framework for relational graph matching of Wilson

and Hancock (Wilson and Hancock, 1997) and the Hausdorff distance measure pro-

posed by Huttenlocker et al. (Huttenlocher et al., 1993).
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Chapter 4

Feature Based Representation and

Retrieval

In the previous chapter we have shown that representing image shapes using re-

lational histograms of pairwise attributes can be very effective for image database

indexing when coupled with the correct distance measures. However, because of the

very nature of histograms it is possible for two completely different line-patterns to

have identical representation. Such a situation would lead to incorrect classification.

In order to solve for this problem and refine the quality of the recognition a new sim-

ilarity measure for object recognition from large libraries of line-patterns based on

local image feature has been devised and is presented in this chapter. The measure

commences from a Bayesian consistency criterion, which has been developed for lo-

cating correspondence matches between attributed relational graphs using iterative

relaxation operations. The aim in this paper is to simplify the consistency measure so

that it may be used in a non-iterative manner without the need to compute explicit

correspondence matches. This considerably reduces the computational overheads

and renders the consistency measure suitable for large-scale object recognition. The

measure uses robust error-kernels to gauge the similarity of pairwise attribute re-

lations defined on the edges of nearest neighbour graphs. We use the similarity
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measure along with some alternatives in a number of recognition experiments. A

sensitivity study reveals that the method is capable of delivering a recognition ac-

curacy of 94%. A comparative study reveals that the method is most effective when

a Gaussian kernel or Huber’s robust kernel is used to weight the attribute relations.

Moreover, the method consistently outperforms Rucklidge’s median Hausdorff dis-

tance.

4.1 Related literature and Motivation

Our aim in this chapter is to provide a method to refine the comparison of the pair-

wise geometric attributes described in Chapter 2. Ideally, the distance measure

should have a degree of robustness to outliers. The issue of how to compare rep-

resentations has received less attention than the problem of efficient object represen-

tation. One exception is the recent work of Rucklidge (Rucklidge, 1995) which has

shown how the Hausdorff distance can be used for relatively robust object recogni-

tion and location.

Despite offering an interesting and effective strategy for comparing image repre-

sentations, there are a number of criticisms that can be raised concerning the use of

the Hausdorff distance. In the first instance, the measure is crisply defined over the

max-min tests between the elements of the sets of object-primitives being compared.

Although this offers a certain degree of robustness to noise and outliers, it fails to

adequately capture uncertainties in the image attributes being compared. The sec-

ond shortcoming, is the failure to impose relational structure on the arrangements of

object-primitives. In other words, a considerable wealth of contextual information

is overlooked.

In this chapter, we address the two issues of object similarity in a more critical

manner. Our first observation is that since the object primitives under study are sub-

ject to both measurement uncertainty and segmentation error, fuzzy or probabilistic
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distance measure may be more appropriate to the comparison task. In particular, re-

cent interest in the matching of relational graphs has furnished methodology for ex-

ploiting contextual constraints. However, this methodology has not been exploited

in large-scale object recognition tasks.

This graph-based recognition process can be viewed as an intermediate step in

a coarse-to-fine object retrieval system. As we envisage the process, a set of can-

didate images is retrieved using a coarse-grained representation. In Chapter 3, we

have provided a tangible example of how such a set of candidates can be located

by comparing structurally gated pairwise geometric histograms. Once overall ob-

ject recognition has been achieved then detailed correspondences may be recovered.

Here, techniques such as graph-matching (Wilson and Hancock, 1997) and pose es-

timation (Cross and Hancock, 1998b) can be used to verify recognition hypotheses

and initiate new searches if necessary. This final step of the retrieval process will be

addressed in Chapter 5.

4.2 Object Representation

Our representation has already been successfully exploited in histogram-based ob-

ject retrieval as described in Chapter 3. Rather than using a global histogram, we

represent each line-segment pair by a vector of pairwise geometric attributes. Ac-

cordingly, each segment pair (i.e.: (xi; xj)) relationship will be represented by a two

dimensional vector Pi;j with

Pi;j = (�xi;xj ; #xi;xj)
T

where �xi;xj is the directed relative angle and #xi;xj is the directed relative position.

We aim to augment the pairwise attributes with constraints provided by the

edge-set of the N-nearest neighbour graph. The conventional Hausdorff distance

explores the complete set of associations between the set of tokens constituting the

model and the data. Here our aim is to limit the set of associations to those that are
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consistent with the local structure of the neighbourhood graph. The motivation here

is that local object representations are more robust to occlusion, missing and extra

features and noise.

Our idea contrasts with a number of related contributions in the literature. For

instance, Evans et al (Evans et al., 1993) effectively have a local representation of line-

pattern structure which is less compact than ours since it employs one histogram per

line-segment. Moreover, their attributes are not scale invariant. The idea of using a

region-of-interest is close to that of using a neighbourhood graph. However, their

regions are controlled by a scale parameter. By virtue of their structural character,

neighbourhood graphs are scale-invariant. Additionally, using segment neighbour

as opposed to the connected segment approach of Stein and Medioni (Stein and

Medioni, 1990) offers greater robustness to segmental clutter. It also allows the rep-

resentation to be much more compact since a single description of each line-pattern

is required.

We represent the sets of line-patterns as 4-tuples of the form G = (V;E; U;B).

Here the line-segments extracted from an image are indexed by the set V . More for-

mally, the set V represents the nodes of our nearest neighbourhood graph. The edge-

set of this graphE � V �V is constructed as follows. For each node in turn, we create

an edge to the N line-segments that have the closest distances. Associated with the

nodes and edges of the N-nearest neighbour graph are unary and binary attributes.

The unary attributes are defined on the nodes of the graph and are represented by

the set U = f(�i; li); i 2 V g. Specifically, the attributes are the line-orientation �i and

the line-length and li. By contrast, the binary attributes are defined over the edge-set

of the graph. The attribute set B = f(�i;j; #i;j; (i; j) 2 E � V � V g consists of the set

of pairwise geometric attributes for line-pairs connected by an edge in the N-nearest

neighbour graph.

We are concerned with attempting to recognise a single line-pattern Gm =

(Vm; Em; Um; Bm), or model, in a database of possible alternatives. The alternative
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data-patterns are denoted by Gd = (Vd; Ed; Ud; Bd), 8d 2 D where D is the index-set

of the database.

4.3 Pairwise Attribute Consistency

The aim in this work is to draw on recent work on relational graph matching to

develop a similarity measure for rapidly comparing relational descriptions of line-

patterns, which are represented in the manner outlined in the previous section. Al-

though the framework furnishes a principled Bayesian measure of relational con-

sistency, it has hitherto been used exclusively for graph-matching using iterative

relaxation operations. It is, hence, unsuitable for rapid recognition of objects from

large object libraries on two counts.

In the first instance, graph matching is concerned with detailed correspondence

matching rather than global object recognition. Secondly, since relaxation algorithms

are iterative in nature, they are too computationally demanding to be used when

large object-libraries are being considered. The aim here is to provide a simplified

relational consistency measure, which can be used, for recognition without the need

to iteratively establish correspondence matches.

4.3.1 Global Pattern Similarity

We take as our starting point the weak-context version of the average consistency

measure developed for evidence combination by Kittler and Hancock (Kittler and

Hancock, 1989). Following Christmas, Kittler and Petrou (Christmas et al., 1995)

we measure the compatibility of the graphs being compared using pairwise at-

tribute relations defined on the edges of the nearest-neighbour graph. To be more

formal, suppose that the set of nodes connected to the model-graph node I is

C
m

I
= fJ j(I; J) 2 EMg. The corresponding set of data-graph nodes connected to

the node i is Cd

i
= fjj(i; j) 2 Edg. With these ingredients, the consistency criterion,
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which combines evidence for the match of the graph Gm onto Gd is

Q(Gd; Gm) =
1

jVM j � jVdj

X
i2Vd

X
I2Vm

1

jC
d

i
j

X
j2Cd

i

1

jC
m

I
j

X
J2Cm

I

P

�
(i; j) ! (I; J)jv

¯
m

I;J
; v

¯
d

i;j

�

(4.1)

The probabilistic ingredients of the evidence combining formula need further

explanation. The a posteriori probability P

�
(i; j)! (I; J)jv

¯
m

I;J
; v

¯
d

i;j

�
represents the

evidence for the match of the model-graph edge (I; J) onto the data-graph edge

(i; j) provided by the corresponding pair of attribute relations vm
I;J

and v
d

i;j
.

We would like to use the Bayesian consistency criterion as the basis of a similarity

measure for graph-based object recognition. To commence this development, we

consider a very simple form for the structural error process. We assume that the

conditional prior can be modelled as follows

P

�
(i; j) ! (I; J)jv

¯
m

I;J
; v

¯
d

i;j

�
= ��(jjv¯

m

I;J
� v

¯
d

i;j
jj) (4.2)

where ��(jju¯
m

I
� u

¯
d

i
jj) is a distance weighting function.

We now consider how to simplify the computation of relational consistency. We

commence by considering the inner sum over the nodes in the model-graph neigh-

bourhood C
M

I
. Rather than averaging the edge-compatibilities over the entire set of

feasible edge-wise associations, we limit the sum to the contribution of maximum

probability. Similarly, we limit the sum over the node-wise associations in the model

graph by considering only the matched neighbourhood of maximum compatibility.

With these restrictions, the process of maximising the Bayesian consistency measure

is equivalent of maximising the following relational-similarity measure

Q(Gd; Gm) =
X
i2Vd

max
I2Vm

X
j2Cd

i

max
J2Cm

I

�
��(jjv¯

m

I;J
� v

¯
d

i;j
jj)
�

(4.3)

With the similarity measure to-hand, the best matched line pattern is the one

which satisfies the condition
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Q(Gd; Gm) = argmax
d02D

Q(G0
d
; Gm) (4.4)

4.3.2 Robust Weighting Kernels

We will consider several alternatives robust weighting functions. The most appeal-

ing of these is a Gaussian of the form

��(�) = exp

 
�
1

2

�
2

�2

!

We will also consider several alternatives suggested by the robust statistics literature.

These include

� the sigmoidal derivative

��(�) = �
�1 tanh

�
��

�

�

� Huber’s kernel

��(�) =

8>><
>>:

1 if � < �

�

j�j
otherwise

� Huber’s narrow-band kernel

��(�) =

 
1 +

j�j

�

!�1

Stated in this way, the recognition metric has much in common with the graph-

matching criterion recently reported by Wilson and Hancock (Wilson and Hancock,

1997). However, rather than being used for primitive-by-primitive correspondence

matching, in the work reported here we use the criterion for recognising primitive

ensembles.

4.4 Feature Set Comparison

In this section, we consider how the Hausdorff distance can be used for comparing

relational representations.
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4.4.1 Hausdorff distance

The idea underpinning the Hausdorff distance is to compute the distance between

two sets of unordered observations when the correspondences between the individ-

ual items are unknown. In object recognition, this problem presents itself when sets

of unlabelled image primitives are being compared. In other words, it provides a

mean of avoiding the computationally demanding problem of attempting to find

correspondence matches between individual primitives whilst performing recogni-

tion.

The distance is computed by exploring the entire space of possible model-data

associations between two sets of unstructured measurement vectors. The metric

gauges the distance between the two sets of observations using the maximum value

of the minimum pairwise data associations. More formally, with the graph-based

notation introduced in Section 4.2, the distance is defined to be

HU(Gd; Gm) = max
i2Vd

min
I2Vm

jju
¯
m

I
� u

¯
d

i
jj

where jju
¯
m

I
� u

¯
d

i
jj is the distance-norm between the unary measurement vectors.

Here we will consider several alternative distance norms. The first of these is the

familiar L2 norm, the second is the Gaussian weighting function while the others

are the robust statistic weighting kernels listed in Section 4.3.2. The measure can

be extended to pairwise attributes in a straightforward manner by exploring the set

of possible pairwise associations. In the case of pairwise attributes, the Hausdorff

distance is given by

HB(Gd; Gm) = max
(i;j)2Vd�Vd

min
(I;J)2Vm�Vm

jjv
¯
m

(I;J) � v
¯
d

(i;j)jj

From the computational standpoint, this represents an increase in the number of

associations that have to be compared. Whereas in the unary case there are jVmj�jVdj

comparisons, in the pairwise case there are jVmj2 � jVdj
2 comparisons. Moreover, if

96



recognition is being attempted then the large number of possible pairwise associa-

tions is likely to render the object representation highly ambiguous.

One way of overcoming these problems and simultaneously improving the qual-

ity of recognition is to confine our attention to those pairwise measurement relations

that are defined on the edges of the graphs representing the adjacency structure of

the object primitives. With this goal in mind we can redefine the Hausdorff distance

over the edge-sets of the model and data graphs. The Hausdorff distance needs to be

augmented by new terms in order to capture both the pairwise geometric attribute

level and the relational level of the comparison. One could compare our novel dis-

tance measure as two levels (or dual step) Hausdorff distance. The basic idea behind

the Hausdorff distance is to compare two sets of points each extracted from an im-

age in order to find the best match for each of those points. In our case, the underly-

ing representation is not computed from image points measurements but from line-

segments pairwise attributes. Additionally, and this is the reason for modifying the

standard Hausdorff distance, the local relational information between line-segment

pairs is retained within the representation by the mean of the N-nearest neighbour

graph. The lower level of the modified Hausdorff distance (rightmost hand maxmin

operation) performs the node to node comparison by looking at pairwise attributes

between graph nodes. The higher level (leftmost maxmin), on the other hand, com-

putes the global correspondences between the data and the model graph by looking

at the nodes previously compared. The modified object-distance is

HG(Gd; Gm) = max
i2Vd

min
I2Vm

max
j2Cd

i

min
J2Cm

I

jjv
¯
m

(I;J) � v
¯
d

(i;j)jj

Rucklidge (Rucklidge, 1995) has reported a further modification of the standard

Hausdorff distance which produces tangible performance improvements. His idea

is to replace the max operator by an operator that selects from the set of attribute

distances using a median test or f -th quantile test. This version of the Hausdorff

distance can be written as
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)

where the operator Ff

i2Vd
selects the f -th quantile value from the set of edge-wise

attribute distances.

4.4.2 The Fuzzy Hausdorff Distance Measure

Rucklidge’s median operator represents a robust procedure for selecting pairwise

attribute differences. Rather than performing a quantile test we sum the attribute

weights. As a final primitive-based distance-measure, we have therefore considered

applying the Hausdorff tests to the summed complement of the weighting function.

The new distance measure is defined to be

H
p(Gd; Gm) =

X
i2Vd

min
I2Vm

X
j2Cd

i

min
J2Cm

I

�
1� ��(jjv¯

m

I;J
� v

¯
d

i;j
jj)
�

(4.5)

This equation is similar to equation 4.3, which was derived from the consistency

measure of Kittler and Hancock (Kittler and Hancock, 1989). This equation may also

be seen as an example of fuzzy composite operation that is similar to those described

in the review of Bloch (Bloch, 1996) on Fuzzy Operator for computer vision and

image processing. This particular kind of fuzzy operator is referred to as context

independent constant behaviour operator.

Finally, when recognition is being attempted over a large database of line pat-

terns, the model is taken to associate with the minimum Hausdorff distance set of

data. The data item associated with the model is

�m = argmin
d2D

H(Gd; Gm)
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4.5 Experiments

The practical goal in this work is to incorporate the distance measures defined in

the previous section into a hierarchical object recognition system. The overall goal

is the recognition of complex line patterns from large databases of alternatives. The

architecture that we have in mind is as follows. Recognition commences by com-

paring a compact shape representation to deliver a set of candidate objects. In our

present work this compact object representation is a multidimensional histogram

of pairwise Euclidean invariant geometric attributes. The candidates are then sub-

jected to a more detailed comparison based on the attributes of the individual object

primitives. It is here that we need a distance measure that captures the closeness

and saliency of the pairwise attributes for the line patterns. Once the closest dis-

tance pattern has been identified, then detailed verification can be attempted by

looking for individual correspondences between the primitives and assessing their

relational consistency. Here we envisage using our recently reported framework for

graph-matching (Wilson and Hancock, 1997).

We are interested in assessing the first two levels of this architecture. We use our

recently reported work on compact line-pattern indexing to deliver a set of candi-

date patterns. Here the patterns are represented using a two-dimensional pairwise

geometric histogram of the directed relative angles and lengths described in Section

2. The contributions to the histogram are gated using relational constraints. In other

words, a histogram entry is only made if a line-segment pair is connected by an edge

in the nearest neighbour graph (Huet and Hancock, 1998c). We compare the his-

togram bin contents using the Bhattacharyya distance (Huet and Hancock, 1996a).

Based on the ordered set of histogram distances we select the N-best matches for

more detailed comparison.
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4.5.1 Distance Measures and Robust Weighting Kernels

We have conducted our recognition experiments with a database of 2500 line-

patterns each containing over a hundred lines as described in Chapter 2 Section 2.3.

The line-patterns have been obtained using the methodology described in Chapter 2

Section 2.4.

(a) Digital Map (b) Target 1 (c) Target 2

Figure 4.1: Images from the database.

The recognition task is posed as one of recovering the line-pattern, which most

closely resembles a digital map. The original images from which our line-patterns

have been extracted have been obtained from a number of diverse sources. However,

a subset of the images is aerial infra-red line-scan views of southern England. Two

of these infra-red images correspond to different views of the area covered by the

digital map (see figure 4.1). These views are obtained when the line-scan device is

flying at different altitudes. The line-scan device used to obtain the aerial images

introduces severe barrel distortions.

In order to explore the sensitivity of our recognition method to segmentation

systematics, we have introduced multiple segmentation of the target images into

the database. These different segmentations have been obtained by maliciously ad-

justing the control parameters of the feature extraction algorithm. In total there are
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ten different segmentations for each of the two target images.
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Figure 4.2: Relative recognition performance for various distance measures.

Our first set of experiment aims to illustrate the relative recognition performance

of the different distance measures. The performances of the system in terms of re-

trieval accuracy are assessed using the standard normalised IAVRR/AVRR recall

metric (Pentland et al., 1996) which is equal to 1 for perfect retrieval accuracy.

For this experiment a database composed of 850 line patterns is used and the

result shown represents the average retrieval accuracy of 100 distinct queries. Fig-

ure 4.2 shows the recognition performance as a function of the control parameter �

for each of the distance measures presented in Section 4.3 in turn. From the figure

it is clear that the best performance is obtained when the weighting kernel is either

Gaussian (black) or a modified narrow-band Huber (red). The poorest performance

is obtained with the crisp Hausdorff distance coupled with the L2 norm (orange).

Rucklidge’s modified Hausdorff distance (using median instead of max compara-

tor (Rucklidge, 1995) and a Gaussian kernel) does not provide an optimal recall per-

formance for this particular task but presents an obvious improvement (green) over
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the standard Hausdorff distance. It is important to note that the x-axis of the plot is

logarithmic and therefore that recognition performance is not particularly sensitive

to the kernel width parameter �. From this graph it can also be seen that an average

correct retrieval rate of 94% is achievable.

4.5.2 Structural Sensitivity

In the next set of experiments we illustrate the effect of relational structure on the

recognition process. Figure 4.3 shows the recognition accuracy as a function of the

width parameter � for a number of different graph-structures. In this experiment
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Figure 4.3: Relative recognition performance for various relational structures.

we have used the similarity measure of equation (3) with the pairwise attributes

weighted using the Gaussian error-kernel. Here we compare the performance ob-

tained with N-nearest neighbour graphs of various orders. We also provide results

for the recognition performance obtained when the relational constraints are weak-

ened. In the first example we relax the requirement for neighbourhood structure,
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and evaluate the similarity measure over the complete space of edge-wise associa-

tions (light green).

In the second example we remove the edge-structure and compute the similarity

measure over the complete space of pairwise associations (light pink). The first ob-

servation that can be drawn from this set of experiments is that the best recognition

performance is obtained when the order of the nearest neighbour graph is seven

(black).

However, even when the order of the graph is small (i.e. one neighbour) or large

(i.e. ten neighbours), then the recognition performance exceeds the one obtained

when either the neighbourhood structure or the edge-structure is ignored.

4.5.3 Recognition Experiments

We now provide some examples to illustrate the qualitative ordering that results

from the two recognition experiments. Figures 4.4, 4.5 and 4.6 compare the recog-

nition rankings obtained from the database. In each case the left-hand panel is the

result of using relational histograms while the right-hand panel is the result of using

feature-sets. In each panel the thumbnails are ordered from left-to-right and from

top-to-bottom according to decreasing rank. In Figure 4.4 we show an example of

querying the database with the letter A. In the case of the feature-sets, the 12 occur-

rences of the letter A are ranked at the top of the order. It is interesting to note that

the noisy versions of the letter are ranked in positions 11 and 12. In the case of the

relational histograms the letter A’s are more dispersed. The letters K and V disrupt

the ordering.

Figure 4.5 shows the result of querying with one of the logos. There are four

versions of this logo in the database. Each has the same overall shape, but has a

different caption. Both the relational histogram and the feature-sets give the exact

query in first position and the three similar logos in the next three positions. How-

ever, when feature sets are used, there is a greater tendency to cluster logos with a
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(a)

(b) (c)

Figure 4.4: The result of querying the database with the letter “A”: The left-hand

panel is the result obtained with the relational histogram. The right-hand panel is

the result obtained when feature-sets are used. The images are ordered from left-

to-right and top-to-bottom in increasing distance from the query image, which is

shown at the top of the figure.
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circular component in the top-ranked positions. In particular the “Branigans” and

“Crush” logos, which are also composed of semi-circular and rectangular blocks,

appear near the top.

Finally, Figure 4.6 shows the result of querying the database with the digital map.

In the case of the feature-sets, the eight segmentations of the two images containing

the road-pattern are recalled in the top-ranked positions. In the case of the rela-

tional histogram, five of the segmentations are top-ranked. Another segmentation

is ranked ninth and one segmentation falls outside the top 16.

In the next sequence of experiments, we investigate the interplay between the

histogram and the relational similarity measure for a number of queries.

Figure 4.7 shows that the retrieval accuracy using the coarse-grained two dimen-

sional pairwise geometric histogram distance (y-axis) is improved when coupled

with the more refined relational distance.

The final set of experiments focuses on the distribution of the distance measures.

We have extracted from the database the 1000 best histogram matches for the digital

map query and have used these for more detailed recognition experiments. Fig-

ure 4.8 compares histograms of the various distance measures for the target images

(red) and for the remaining line-patterns (blue). Figure 4.8(a) shows the distribution

of Bhattacharyya distance between the histograms in the database and the query im-

age. The remaining three plots show the distribution of the primitive-based distance

measures. Figure 4.8(b) shows the distribution of Bayesian similarity measure, Fig-

ure 4.8(c) shows the distribution of standard Hausdorff distance while Figure 4.8(d)

shows the distribution of Rucklidge’s median-based Hausdorff distance. The main

feature to note from these distributions is that the Bayesian measure gives the best

separation between the various segmentations of the two aerial images (shown in

red) and the remainder of the database (shown in blue). In this case the ten differ-

ent aerial image segmentations are ranked above the rest of the database. In other

words, there is no overlap with the remaining patterns in the database. In each of
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(a)

(b) (c)

Figure 4.5: The result of querying the database with the “Le Suites Days” logo: The

left-hand panel is the result obtained with the relational histogram. The right-hand

panel is the result obtained when feature-sets are used. The images are ordered from

left-to-right and top-to-bottom in increasing distance from the query image, which

is shown at the top of the figure.
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(a)

(b) (c)

Figure 4.6: The result of querying the database with the digital map (a): (b) is the

result obtained with a relational histogram. (c) is the result obtained when the fuzzy

hausdorff distance measure is used. The images are ordered from left-to-right and

top-to-bottom in increasing distance from the query image.
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Figure 4.7: Interplay between the histogram and the fuzzy relational distance.

the remaining three cases (i.e. Figures 4.8(a), (c) and (d)) only five of the ten seg-

mentations are top ranked. In other words, the primitive-based Hausdorff distances

perform only as well as histogram-based comparison that overlooks the primitive

structure of the line-patterns. Moreover, the Bayesian recognition process does not

appear to be sensitive to the segmentation and polygonisation process used to ex-

tract the line-patterns from the two aerial images.
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Histogram distance and Rucklidge's modified Hausdorff distance combined
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Figure 4.8: Distribution of the distance measures during retrieval using the digital

map.
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4.6 Sensitivity Analysis

Having established the most effective distance measure, i.e. the use of the so-called

fuzzy Hausdorff distance in conjunction with the Huber kernel, we turn to measur-

ing the sensitivity of the recognition scheme. The analysis focuses on the sensitivity

to the systematics of the line-segmentation process. We repeat the sensitivity analy-

sis described in Chapter 3 Section 3.4.

We have computed two performance measures for the algorithm under the dif-

ferent segment errors described above. The first of these is retrieval accuracy. This

is the fraction of queries that return a correct recognition as described in Chapter 2

Section 2.5. The second measure is the average distance between the query and the

target image.

In our first experiment, we query the database with a line pattern that is known

to have a single precise counterpart. Figure 4.9 shows the retrieval accuracy as a

function of the fraction of lines that are subjected to segmentation errors. From the

plot it is clear that only line-deletion has any significant effect upon recall. Moreover,

it is not until 75% of the lines are deleted that there is any significant effect on the re-

trieval accuracy. Turning our attention to the average distance, in Figure 4.10 we see

that this poorer robustness to line-segment deletions is reflected by the fact that the

average pattern similarity drops off more quickly with the fraction of segmentation

errors.

We have repeated this experiment with an inexact query. Here the query pattern

is a distorted version of the target in the database. An example is provided by the

digital map described earlier, which is a barrel-distorted version of the target. Fig-

ures 4.11 and 4.12 show the retrieval accuracy and the average recall distance as a

function of the fraction of segmentation errors. A more complex sensitivity pattern

emerges in this case. In the case of the retrieval accuracy (Figure 4.11) there is a

marked difference in the different performance curves. The effect of line deletion is
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Figure 4.9: Effect of various kinds of noise to the retrieval performance using the

feature-based relational similarity measure. The query is a noisy version of a unique

target in the database.

again to rapidly degrade recall performance. However, the onset of errors occurs

when as few as 40% of the lines are deleted. The line-patterns are least sensitive to

segment end-point errors. In the case of both line-addition and line-splitting there

is an onset of errors when the fraction of segment errors is about 20%. However, at

larger fractions of segmentation errors the overall effect is significantly less marked

than in the case of line-deletions. This pattern is again reflected in the average simi-

larity measure.

It is important at this stage to look back at the result obtained by the structurally

gated histogram method described and evaluated in the previous chapter (see Chap-

ter 3 Section 3.4). Comparing the retrieval accuracy performance in the case of exact

queries (Figures 3.9 and 4.9) shows a dramatic improvement. Indeed the histogram

based performance dropped off when the fraction of line-segment affected by er-

rors exceeds 50%. However, the relational similarity measure still provides 100%

recognition accuracy when 70% of the lines are subjected to errors. When the level
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Figure 4.10: Effect of various kinds of noise on the fuzzy relational distance. The

query is a noisy version of a unique target in the database.

of corruption exceeds 70%, then it is only the line deletion that significantly affects

the performance. This is very understandable since most the evidence required to

recognise the objects are likely to have been removed.

In the case of inexact queries (see Figure 3.11 and 4.11) a similar pattern emerges.

For the relational histogram the performance starts to be affected when the line-

segment error exceeds 15%. Accuracy becomes poor, approximately 50%, when the

fraction of line-segments subjected to errors exceeds 40%. Turning our attention to

the feature-set based relational similarity measure, performances of over 80% re-

trieval accuracy are obtained with up to 60% of the lines-segment corrupted. In

fact, recognition accuracy never falls below 75%, apart from the case of line deletion.

Again removing lines from the query pattern leads to the poorest recall rate. This is

because of the lack of surviving evidence between the query and the model when

only a small portion of the original line pattern remains.

To conclude the sensitivity study, we focus more closely on the role of segment

end-point errors. The reason for this is that such errors will effect the accuracy of the
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Figure 4.11: Effect of various kinds of noise to the retrieval performance using the

feature-based relational similarity measure. The targets and the query are similar

but not necessarily identical.

relational measurements. Figure 3.12 shows the average error in the relative angle

attribute as a joint function of the fraction of lines affected by such errors and the

standard-deviation of the Gaussian position error. The main feature to note from

this plot is that the angle error increases with both the fraction of affected lines and

the variance of the positional errors.

Figures 4.13 and 4.14 show the effect of line end-point position errors for an

exact query. The different curves in the two plots correspond to different values

of the standard deviation of the end-point position errors. In Figure 4.13 we show

the retrieval accuracy as a function of the fraction of lines affected by end-point

errors. As the standard deviation of the position error increases, the fraction of

corrupt lines for which perfect recall is possible decreases. In Figure 4.14 we show

the average similarity measure as a function of the fraction of corrupt lines. A similar

pattern emerges. The average similarity measure decreases with increasing standard

deviation of the end-point errors.
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Figure 4.12: Effect of various kinds of noise on the fuzzy relational distance. The

targets and the query are similar but not necessarily identical.

Figures 4.15 and 4.16 repeat these experiments for an inexact query. The same

pattern of performance emerges. However, perfect recall is only achieved for lower

levels of line corruption.
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Figure 4.13: Effect of introducing segment errors to the retrieval performance using

the feature-based relational similarity measure. The query is a noisy version of a

unique target in the database.
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Figure 4.14: Effect of various kinds of noise on the fuzzy relational distance. The

query is a noisy version of a unique target in the database.
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Figure 4.15: Effect of introducing segment errors to the retrieval performance us-

ing the feature-based relational similarity measure. The targets and the query are

similar but not necessarily identical.
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Figure 4.16: Effect of various kinds of noise on the fuzzy relational distance. The

targets and the query are similar but not necessarily identical.
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4.7 Summary

In this chapter we have presented a new similarity measure for comparing relational

object descriptions. The idea underpinning the measure is to gauge the similarity

of the pairwise attributes residing on the edges of a graph-structure that represents

the proximity structure of a set of object-primitives. The measure exploits the neigh-

bourhood structure to limit the set of comparisons required.

For a database of 2500 objects (or line-patterns) we have shown that a recall ac-

curacy of over 94% is achievable when the weighting function is Gaussian. We have

presented a number of experiments demonstrating the performance of the proposed

methodology. Moreover, the results obtained indicate that the method is relatively

insensitive to the under and over segmentation of the line-patterns. Moreover, the

method consistently outperforms the standard Hausdorff distance in terms of its

recognition performance.

An important contribution in this chapter has been to demonstrate some of the

noise sensitivity systematics that limit the retrieval accuracy. Our study reveals

that this method offers noticeable recognition performance improvements over the

method presented in the previous chapter. This allows our hierarchical methods to

refine the selection of retrieved objects even further.
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Chapter 5

Attributed Relational Graph

Representation and Retrieval

The work in the previous two chapters was aimed at reducing the set of possible

object models corresponding to a query object from a large image database. In the

first instance (see Chapter 3, a structurally gated pairwise geometric histogram rep-

resentation is employed to rapidly prune the large library of models. The method

presented in Chapter 4 refines the set of object model hypotheses provided by the

simple histogram based technique. It uses a more complex yet efficient relational

similarity measure. The relational similarity measure operates by comparing local

image feature arrangements between a query line-pattern and the set of patterns

in the library. The consistency of the relational arrangement is not taken into ac-

count. The method presented in this chapter, aims to supplement the local feature

structure and the attribute information with the more global (or inter-feature) con-

straints provided by an adjacency graph. Additionally, the technique can be used to

find detailed correspondences between the query object and its conforming model

description.

To meet this goal, this chapter describes a Bayesian graph matching algorithm

for data-mining from large structural databases. The matching algorithm uses
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edge-consistency and node attribute similarity to determine the maximum a pos-

teriori probability of a query graph for each of the candidate matches in the reduced

database. The node feature-vectors are constructed by computing normalised his-

tograms of pairwise geometric attributes. Computing the Bhattacharyya distance

between the histograms assesses attribute similarity. Recognition is realised by se-

lecting the candidate from the database which has the largest a posteriori probability.

We illustrate the recognition technique on a large database of line patterns extracted

from real-world imagery. Here, the recognition technique is shown to significantly

outperform a number of algorithm alternatives. Finally, a sensitivity study exposes

the robustness of the method to a variety of line-segment errors.

5.1 Related Work and Motivation

Since Barrow and Popplestone (Barrow and Popplestone, 1971) first suggested that

relational structures could be used to represent and interpret 2D scenes, there has

been considerable interest in the machine vision literature in developing practical

graph-matching algorithms (Sanfeliu and Fu, 1983; Shapiro and Haralick, 1985; Gold

and Rangarajan, 1996; Wilson and Hancock, 1997). The main computational issues

are how to compare relational descriptions when there is significant structural cor-

ruption (Sanfeliu and Fu, 1983; Shapiro and Haralick, 1985; Wilson and Hancock,

1997) and how to search for the best match (Gold and Rangarajan, 1996). Despite re-

sulting in significant improvements in the available methodology for graph match-

ing, there has been little progress in applying the resulting algorithms to large-scale

object recognition problems. Most of the algorithms developed in the literature are

evaluated for the relatively simple problem of matching a model graph against a

scene known to contain the relevant structure.

A more realistic problem is that of taking a large number (maybe thousands) of

scenes and retrieving the ones that best match the model. Although this problem
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is key to data-mining from large libraries of visual information, it has invariably

been approached using low-level feature comparison techniques. Concrete exam-

ples include the use of colour (Swain and Ballard, 1991), receptive field (Schiele and

Crowley, 1996) or edge orientation (Jain and Vailaya, 1996) histograms. Very little ef-

forts (Sengupta and Boyer, 1995) have been devoted to matching higher-level struc-

tural primitives such as lines, curves or regions. Moreover, because of the perceived

fragility of the graph matching process, there has been even less effort directed at

attempting to retrieve shapes using relational information.

We aim to fill this gap in the literature by using graph matching as a mean of

retrieving the shape from a large database that most closely resembles a query shape.

Although the indexation images in large databases is a problem of current topicality

in the computer vision literature (Niblack et al., 1993; Pentland et al., 1994; Gevers

and Smeulders, 1992; Swain, 1993; Picard, 1995), the work presented in this chapter

is more ambitious.

Firstly, we adopt a structural abstraction of the shape recognition problem and

match using attributed relational graphs. Each shape in our database is a pattern of

line-segments. The structural abstraction is a nearest neighbour graph for the centre-

points of the line-segments. In addition, we exploit attribute information for the line

patterns. The geometric arrangement of the line-segments is encapsulated using a

histogram of Euclidean invariant pairwise (binary) attributes. For each line-segment

in turn we construct a normalised histogram of relative angle and length with the

remaining line-segments in the pattern. These histograms capture the local geo-

metric context of each line-segment. Moreover, we interpret the pairwise geometric

histograms as measurement densities for the line-segments, which we compare us-

ing the Bhattacharyya distance. The choice of the Bhattacharyya distance measure

for histogram comparison was guided by the results obtained while investigating a

number of histogram distance measures (see Chapter 3 Section 3.2.2).

Once we have established the pattern representation, we realise object recogni-
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tion using a Bayesian graph-matching algorithm. This is a two-step process. Firstly,

we establish correspondence matches between the individual tokens in the query

pattern and each of the patterns in the database. Since this is a computationally in-

tensive process, we first filter the set of potential patterns using a rapid histogram-

based recognition technique as described in chapter 3. The resulting set of hypothet-

ical model candidates is further reduced using to the simple feature based relational

similarity measure presented in Chapter 4. The correspondence matches are sought

so as to maximise the a posteriori measurement probability. Here we use an extension

of the graph-matching technique recently reported by Wilson and Hancock (Wilson

and Hancock, 1997) in which we use the correspondence matches residing on the

edges rather than the nodes of our attributed relational graphs to assess consistency.

Once the MAP correspondence matches have been established, then the second step

in our recognition architecture involves selecting the line-pattern from the database,

which has maximum matching probability.

The outline of this chapter is as follows. Having described in the previous chap-

ter (see Chapter 2 Section 2.1) the pairwise geometric attributes and the structural

information that may be used to represent the shape content of the line-patterns,

we may now proceed with the description of the rapid attributed graph matching

algorithm for recognition and correspondence matching. In Section 5.2 we describe

the maximum a posteriori probability (MAP) framework, which is a basis of our at-

tributed graph matching method. This focuses on details of the structural compar-

ison between a pair of graphs. Section 5.3 presents two distinct methodologies for

representing and comparing the attribute associated with the nodes of the ARG.

The representation can either be based on measurement vectors as described in Sec-

tion 5.3.1 or as a histogram of attributes. This graph attribute description and the

method used to measure consistency between nodes in terms of measurements are

presented in Section 5.3.2. Experimental evaluation of the technique is presented in

Section 5.4. This takes the form of a comparative study aimed at establishing the
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effectiveness of the proposed algorithm and some of its variants. The goals of this

experimentation are twofold. The first sensitivity analysis investigates the impor-

tance of the choice of attribute representations on the recognition effectiveness and

accuracy. The second experiment is concerned with identifying the most effective

graph structure. Section 5.5 addresses the sensitivity of the recognition methods in

errors of the line-segmentation process. Then, we further our investigations about

sensitivity to line segmentation systematics and present some examples using our

proposed attributed relational graph matching algorithm in Section 5.5.1. Finally,

Section 5.7 presents some conclusions and suggests directions for future investiga-

tion as far as this approach is concerned.

5.2 MAP Framework

Formally our recognition problem is posed as follows. Each Attributed Relational

Graph (ARG) in the database is a triple, G = (VG; EG; AG), where VG is the set of ver-

tices (nodes), EG is the edge set (EG � VG� VG), and AG is the set of node attributes.

In our experimental example, the nodes represent line-structures segmented from

2D images. The edges are established by computing the N-nearest neighbour graph

for the line-centres. Each node j 2 V is characterised by a vector of attributes, x
¯j

and

hence AG = fx
¯j
jj 2 V g. In the work reported here the attribute-vector represents

the contents of a normalised pairwise attribute histogram.

The database of line-patterns is represented by the set of ARG’s D = fGg. The

goal is to retrieve from the database D, the individual ARG that most closely re-

sembles a query pattern Q = (VQ; EQ; AQ) and identify their correspondences. We

pose the retrieval process as one of associating with the query the graph from the

database that has the largest a posteriori probability. In other words, the class identity

of the graph, which most closely corresponds to the query, is

!Q = argmax
G02D

P (G0
jQ) (5.1)
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However, since we wish to make a detailed structural comparison of the graphs,

rather than comparing their overall statistical properties, we must first establish a

set of best-match correspondences between each ARG in the database and the query

Q. The set of correspondences between the query Q and the ARG G is a relation

fG : VG 7! VQ over the vertex sets of the two graphs. The mapping function consists

of a set of Cartesian pairings between the nodes of the two graphs, i.e.

fG = f(a; �); a 2 VG; � 2 VQg � VG � VQ

Although this may appear to be a brute force method, it must be stressed that we

view this process of correspondence matching as the final step in the filtering of the

line-patterns. We provide more details of practical implementation in the experi-

mental section (see Section 5.4).

With the correspondences to hand we can re-state our maximum a posteriori prob-

ability recognition objective as a two step process. For each graph G in turn, we lo-

cate the maximum a posteriori probability mapping function fG onto the query Q.

The second step is to perform recognition by selecting the graph whose mapping

function results in the largest matching probability. These two steps are succinctly

captured by the following statement of the recognition condition

!Q = argmax
G02D

max
fG0

P (fG0jG
0
; Q) (5.2)

This global MAP condition is developed into a useful local update formula by ap-

plying the Bayes formula to the a posteriori matching probability. The simplification

is as follows

P (f jG;Q) =
p(AG; AQjfG)P (fGjVG; EG; VQ; EQ)P (VG; EG)P (VQ; EQ)

P (G)P (Q)
(5.3)

The terms on the right-hand side of the Bayes formula convey the following

meaning. The conditional measurement density p(AG; AQjfG) models the measure-

ment similarity of the node-sets of the two graphs. The conditional probability
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P (fGjVG; EG; VQ; EQ) models the structural similarity of the two graphs under the

current set of correspondence matches. The assumptions used in developing our

simplification of the a posteriori matching probability are as follows.

We assume that the joint measurements are conditionally independent of the

structure of the two graphs provided that the set of correspondences is known, i.e.

P (AG; AQjfG; EG; VG; EQ; VQ) = P (AG; AQjfG).

We assume that there is conditional independence of the two graphs in the ab-

sence of correspondences. In other words, P (VG; EG; VQ; EQ) = P (VQ; EQ)P (VG; EG)

and P (G;Q) = P (G)P (Q).

The graph priors P (VG; EG), P (VQ; EQ) P (G) and P (Q) are taken as uniform and

are eliminated from the decision making process.

To continue our development, we first focus on the conditional measurement

density p(AG; AQjf), which models the process of comparing attribute similarity on

the nodes of the two graphs. Assuming statistical independence of node attributes,

the conditional measurement density p(AG; AQjf) can be factorised over the Carte-

sian pairs (a; �) 2 VG � VQ, which constitute the correspondence match fG in the

following manner

p(AG; AQjfG) =
Y

(a;�)2fG

p(x
¯a
; x

¯�
jfG(a) = �) (5.4)

As a result the correspondence matches may be optimised using a simple node-

by-node discrete relaxation procedure. The rule for updating the match assigned to

the node a of the graph G is

fG(a) = arg max
�2VQ[f�g

p(x
¯a
; x

¯�
)jfG(a) = �)P (fGjEG; EQ) (5.5)

In order to model the structural consistency of the set of assigned matches, we

turn to the framework recently reported by Finch, Wilson and Hancock (Finch et al.,

1997b). This work provides a framework for computing graph-matching energies

using the weighted Hamming distance between matched cliques.
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Since we are dealing with a large-scale object recognition system, we would like

to minimise the computational overheads associated with establishing correspon-

dence matches. For this reason, rather than working with graph neighbourhoods or

cliques, we chose to work with the relational units of the smallest practical size. In

other words we satisfy ourselves with measuring consistency at the edge level. For

edge-units, the structural matching probability P (fGjVG; EG; VQ; EQ) is computed

from the formula

lnP (fGjVG; EG; VQ; EQ) =
X

(a;b)2EG

X
(�;�)2EQ

�
ln(1�Pe)s

G

a;�
s
Q

b;�
+lnPe(1�s

G

a;�
s
Q

b;�
)
�

(5.6)

where Pe is the probability of an error appearing on one of the edges of the

matched structure. The sa;� are assignment variables, which are used to represent

the current state of match and convey the following meaning

s
G

a;�
=

8<
:
1 if fG(a) = �

0 otherwise
(5.7)

5.3 Attributes Representation and Comparison

The methodology used to compute the pairwise attributes used in our representa-

tion is described in Chapter 2 Section 2.2. Both the directed relative angle and the

directed relative position attributes are invariant to changes of scale, rotation and

translation. We will investigate a number of alternative attribute representations. In

the first instance, we treat the local pairwise measurements as a vector associated

with each graph node. Secondly, we introduce the idea of combining local pairwise

line-segments attributes in a sparse histogram. This may be viewed as having a his-

togram per node in the graph. In either case, we have the choice of either using a

single attribute or combining both the relative angle and position attributes.
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5.3.1 Vector-Based Consistency

We use only the node attributes rather than an attribute histogram to model the a

posteriori matching probabilities. Both the relative angle �i;j and relative position

#i;j attributes are available to describe a pair of line-segments. An attribute vector

x
¯ i
(�i;j; #i;j) defines the pairwise relations for each node i and its set of connected

edges Ci = fjj(i; j) 2 Eg. We use the work presented in the previous chapter on

feature based representation and retrieval to access the probability of a node i from

the graph G corresponding to node � in the query graph Q. The attribute similarity

between a pair of nodes can be computed by comparing their respective pairwise

attribute vectors. However, the ordering of the attributes in the vector is not fixed.

Comparing the vectors cannot be performed by simple distance between respective

vector components. Ordering the attribute vectors using cyclic permutation would

require more processing time without improving the comparison complexity. For ex-

ample the ordering could be disrupted if some image features were removed. This

cyclic problem is similar to the one we faced in chapter 4 when we compared local

features. We will therefore use a similar approach to compute the a posteriori match-

ing probabilities. The probability of match between the pattern vectors is computed

using a weighted fuzzy Hausdorff distance between the sets of attribute vectors. As

a result we note

P (fG(i) = �jx
¯ i

x
¯ �
) = 1�

1

n
C
Q
i

X
C
Q
i

min
CM
�

�
1� ��(jjx¯

G

�
� x

¯
Q

i jj)
�

(5.8)

where n
C
Q
i

is the number of edges connected to node i in the query graph Q and

��(jjx¯
Q

�
�x

¯
G

i
jj) is a distance weighting function. In Chapter 4 Section 4.3.2, we consid-

ered a number of alternative robust weighting functions. The experiment presented

in Section 4.5 shows that the weighting functions that provide the best recognition

performance are the Gaussian and the Huber kernel. Again, it is the Gaussian kernel
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of the form

��(�) = exp

 
�
1

2

�
2

�2

!

that is going to be used in this attribute consistency measure. The a posteriori match-

ing probability based on both the relative angle �(i; j) and the relative position #(i; j)

can be written as follows.

P (f(i) = �jx
¯ i

x
¯ �
) = 1�

1

n
C
Q
i

X
C
Q
i

min
CM
�

 
1� (exp[�

1

2
f
(�i � ��)

2

�2
�

+
(#i � #�)

2

�2
#

g])

!
(5.9)

where �� and �# are the measurement variances for the two pairwise geometric at-

tributes and C
Q

I
is the set of edge connected to node i in graph G.

In the experimental section, we will investigate several variants of the histogram

per node attribute matching process. Again, we will experiment with the two geo-

metric attributes taken alone and in combination. The representations will respec-

tively make use of two-dimensional histograms or one-dimensional histograms.

Then, we compare the effect of using the attribute histogram at every step of the

iterative graph matching process with using it purely for the purposes of initialisa-

tion.

5.3.2 Histogram-Based Consistency

The angle and position attributes �i;j and #i;j are binned in a histogram. Suppose

that Si(B�; B#) = f(i; j) 2 E ^ �i;j 2 R(B�) ^ #i;j 2 R(B#)g is the set of nodes whose

pairwise geometric attributes with the node i are spanned by the range of directed

relative angles R(B�) and the relative position attribute range R(B#). The contents

of the histogram bin spanning the two attribute ranges is given by Hi(B�; B#) =

jSi(B�; B#)j. Each histogram contains n� relative angle bins and n# relative position

bins. The normalised geometric histogram bin-entries are computed as follows

hi(B�; B#) =
Hi(B�; B#)Pn�

B
0

�
=1

Pn#

B
0

#
=1Hi(B�; B#)

(5.10)
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The probability of match between the pattern-vectors i and � is computed using

the Bhattacharyya distance Dhi;h�
between the normalised histograms. The Bhat-

tacharyya distance measure was selected from a number of alternative histogram

distance measures. The experiment presented in Chapter 3 Section 3.3.4 clearly in-

dicated that statistical histogram distance measures outperform Euclidean norms.

P (f(i) = �jx
¯ i
; x

¯ �
) =

n�X
B�=1

n#X
B#=1

hi(B�; B#)h�(B�; B#) = exp[�Dhi;h�
] (5.11)

5.4 Experiments

The aim in this section is to evaluate the graph-based recognition scheme on a

database of real-world line-patterns. We have conducted our recognition experi-

ments with the database described in chapter 2.

In order to prune the set of line-patterns for detailed graph matching we select

about 10% of the database using a two-step process. This consists of first refining

the database using a global histogram of pairwise attributes (see Chapter 3). The top

quartile of matches selected in this way are then further refined using a variant of

the Hausdorff distance to select the set of pairwise attributes that best match against

the query as described in Chapter 4.

The experimental study has two aims. Firstly, we focus on the issue of the best

choice of recognition strategy. The aim here is to compare the performance delivered

by the various components of our recognition process. Secondly, we address the

choice of the adjacency structure. This takes the form of a comparison between a

number of alternative neighbourhood graphs and the Delaunay graph.

We aim to assess the importance of different attribute representations on the re-

trieval process. To this end, we compare vector-based and the histogram-based at-

tribute representations. We also consider the effect of taking the relative angle and

relative position attributes both separately and in combination. The final aspect of
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the comparison is to consider the effects of using the attribute consistency either

purely for initialisation purposes or in a persistent way during the iteration of the

matching process. To this end we consider the following variants of our algorithm.

� Persistant Attributes: Here we use both the attribute information and the

structural constraints in order to find the best match between a pair of graph.

The recognition is performed using the method described in section 5.2.

� Non-Persistent Attributes: Here we ignore the attribute information provided

by either the node-histograms or the node-vectors after the first iteration. In

other words we attempt to maximise only the structural congruence of the

graphs. The recognition condition is

!Q = argmax
G02D

X
(a;b)2E0

G

X
(�;�)2EQ

�
+ ln(1� Pe)sa;�sb;� + lnPe(1� sa;�sb;�)

�
(5.12)

In this mode we simply use the attribute histograms for the purposes of ini-

tialisation. The assignment variables are initialised as follows

sa;� =

8<
:
1 if fG(a) = argmin�Da;�

0 otherwise
(5.13)

In Table 5.1 we present the performance for each of the recognition strategies in

turn. The table lists the recall performance together with the average number of it-

erations per recall for each of the recognition strategies in turn. The main features

to note from this table are as follows. Firstly, the iterative recall using the full his-

togram representation outperforms each of the remaining recognition methods in

terms of both accuracy and computational overheads. Secondly, it is interesting to

compare the effect of using the histogram in the initialisation only and iteration per-

sistent modes. In the latter case the recall performance is some 32% better than in

the former case. In the non-persistent mode the best recognition accuracy that can

129



Graph Matching Strategy Retrieval Iterations

Accuracy per recall

Rel. Position Attribute (Initialisation only) 39% 5.2

Rel. Angle Attribute (Initialisation only) 45% 4.75

Rel. Angle + Position Attributes (Initialisation only) 58% 4.27

1D Rel. Position Histogram (Initialisation only) 42% 4.7

1D Rel. Angle Histogram (Initialisation only) 59% 4.2

2D Histogram (Initialisation only) 68% 3.9

Rel. Position Attribute (Persistent) 63% 3.96

Rel. Angle Attribute (Persistent) 89% 3.59

Rel. Angle + Position Attributes (Persistent) 98% 3.31

1D Rel. Position Histogram (Persistent) 66% 3.46

1D Rel. Angle Histogram (Persistent) 92% 3.23

2D Histogram (Persistent) 100% 3.12

Table 5.1: Recognition performance of various recognition strategies averaged over

26 queries in a database of 260 line-patterns.
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be obtained is 68%. Moreover, the recall is typically achieved in only 3.12 iterations

as opposed to 3.9 (average over 26 queries on a pruned database of 260 images).

Finally, the histogram representation provides better performance, and more signif-

icantly, much faster recognition than the attribute vector similarity measure. When

the attributes are used on their own, rather than as a pair, then it is the relative an-

gle that appears to be the most powerful. This result conforms with our findings in

Chapter 3 Section 3.3.4).

Figure 5.1: Effect of the choice of structural representation on retrieval accuracy.

The second set of experiments examines the role of the structural representation.

Here we investigate the effect of the order of the N-nearest neighbour graph. We also

compare the N-nearest neighbour graph with the Delaunay graph. In Figure 5.1 we

show a plot of the recognition accuracy on a pruned database of 260 line-patterns.

The main effects to note are that the optimal order of the nearest neighbour graph is

6. Again, similar findings where obtained while investigating structural represen-

tation for both the structurally gated histogram approach (Chapter 3) and the rela-

tional similarity measure (Chapter 4). Although the recent study of Tuceryan and
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Chorzempa (Tuceryan and Chorzempa, 1991) indicates that the Delaunay graph of-

fers greater robustness to noise and clutter, in the experiments reported here the

performance advantage is not noticeable.

5.5 Sensitivity Study

The aim in this section is to investigate the sensitivity of the recognition strategy

to the systematics of the line-segmentation process. Again, we investigate the five

types of segment errors described in Chapter 3 Section 3.4.

In our first experiment, we query the database with a line pattern that is known

to have an identical counterpart. However, a fraction of the lines have been sub-

jected to the segmentation errors described above. Figure 5.2 compares the retrieval

accuracy as a function of the fraction of lines that are subjected to segmentation

errors. The recognition performance does not degrade until the fraction of errors

exceeds 70%. The only destructive type of error is the line dropout. As the number

of line-segments providing evidence about the similarity of the two object decreases,

so does the probability of the two objects being identical. Removing line-segments

from the line-pattern introduces changes in both the local histograms and the struc-

ture of the graph. However, the recognition accuracy is not affected by the addition

of lines, the splitting of lines and the addition of end-point displacement errors. The

combination of the various types of error results in perfect retrieval accuracy even

when all the line-segments in the query line-pattern are affected. Recalling the re-

sults obtained by the fuzzy Hausdorff distance in Figure 4.9 of Chapter 4, it is clear

that a slight improvement is provided by the more robust graph matching algorithm.

Indeed, the recognition accuracy for line-patterns subjected to end-point displace-

ment errors is not perfect in the case of the fuzzy Hausdorff distance measure. In

contrast, 100% accuracy is achieved by the more computationally demanding at-

tributed graph matching technique.
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Figure 5.2: Effect of various kinds of noise to the retrieval performances using the

standard pairwise geometric histogram representation. The query is a noisy version

of a unique target in the database.

This experiment is now repeated for an inexact query. Here the query patterns are

distorted versions of targets in the database. An example is furnished by the digital

map (see Figure 2.5), which is a barrel-distorted version of the target. Important

scale transformations are also noticeable between the target line-pattern and the

corresponding query.

Figures 5.3 shows the retrieval accuracy as a function of the fraction of segmenta-

tion errors in the case of inexact query. A more complex sensitivity pattern emerges

in this case. The removal of line-segments from the line-pattern has the greatest ef-

fect on the recognition performance. There is a rather sharp performance drop-off

when more than 40% of the line-segments are missing. Extra line-segments have no

effect on the representation, and therefore the recognition accuracy, until the level

of added clutter exceeds 70%. Even then, the performance never falls below 90%.

Robustness to the other error types is very satisfactory. Under line-segment splitting

the level of recognition accuracy never drops below 80%. Similarly, for line-segment
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Figure 5.3: Effect of various kinds of noise to the retrieval performances using the

relational pairwise geometric histogram representation. The targets and the query

are similar but not necessarily identical.

end-point errors, 68% accuracy is achievable even when all the line-segment end-

points have been displaced.

In terms of improvement compared with the feature-based fuzzy Haussdorff

method presented in Chapter 4, the graph matching method is showing a lot more

prudence in its recognition decisions. The recognition accuracy is improved in the

case of line-segment addition, line-splitting and combined errors. When the num-

ber of line-segments composing an object decreases, the graph matching algorithm is

not able to find enough structural and attribute evidence to provide a high matching

probability. The random removal of line-segments has a greater effect on the graph

matching algorithm than the feature-based fuzzy Hausdorff distance. This would

not be the case if the missing line-segments were all deleted from the same area of

the line-pattern. This is because neither the structure nor the attribute histograms

of the remaining graph nodes (line-segments) would be affected. This situation is

more likely to arise when using real world imagery because of object occlusion. The
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deletion of random line-segments is also likely to be present in non-synthetic object

recognition and cause perturbation but only in small amount.

To continue the sensitivity study, we focus more closely on the effects of segment

end-point errors. The reason for this is that such errors will effect the accuracy of

the relational measurements. Figure 5.4 shows the effect of line end-point position

errors in the case where a model object is used as query and is also present in the

database. The different curves in the plots correspond to different values of the stan-

dard deviation of the end-point position errors. They show the retrieval accuracy

as a function of the fraction of lines effected by end-point errors. Perfect retrieval

is achieved when the standard deviation is less than 5 pixels and fewer than 80%

line-segments are displaced. Line-segment end-point displacements of less than 3

pixels have no effect on the performance. For higher levels of perturbation the recall

accuracy falls gradually to about 40%.

Figure 5.4 shows the recognition accuracy for similarity queries. The results are

averaged over ten queries. As the standard deviation of the position error increases,

then so the fraction of corrupt lines for which perfect recall is possible decreases.

The main point to note from these plots is that the ARG based method degrades less

rapidly under line end-point errors than for both the relational histogram and the

feature-based relational similarity measure. Additionally, there appears to be signif-

icant variation in the accuracy of retrieval. This is caused by small line-segments.

For instance, the displacement of the end-points of a short line-segment has a dra-

matic effect on its orientation, even for small displacements. The line-patterns used

for this experiment have many line-segments, which are under 10 pixels long.
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Figure 5.4: Effect of introducing segment end-point errors on the retrieval perfor-

mance using the relational pairwise geometric histogram representation. The query

is a noisy version of a unique target in the database.
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Figure 5.5: Effect of introducing segment end-point errors on the retrieval perfor-

mance using the relational pairwise geometric histogram representation. The tar-

gets and the query are similar but not necessarily identical.
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5.5.1 Matching Examples

In this section, we investigate the quality of the correspondences obtained by the

attributed graph matching algorithm. The results presented here have been obtained

by attempting to match the digital map (see Figure 2.5) against itself. In order to

assess the sensitivity of the algorithm to line-segmentation errors when computing

correspondences, noise is going to be added to the query line-pattern. Using the

same line-pattern for both the query and target gives us ground truth. This allows

us to compute performance statistics for the method.

For all the matching examples provided in the remainder of this section, both the

query and model line-patterns are shown side by side. The “noisy” query is shown

on the left while the model is on the right. The line-segments highlighted in red in

the query line-patterns have been affected by the addition of synthetic noise. Again

we are going to investigate the standard five types of line-segmentation errors (i.e.

extra lines, missing lines, line splitting, line-segment end-point errors and combined

errors). We distinguish between correct and incorrect correspondences between the

query and the model features by showing them in distinct figures. The left-hand

panel of each figure depicts the correct matches. These are represented by green

lines connecting the center-point of query line-segments to their accurately located

model counterpart. The left-hand panel depicts the incorrect matches. These are

shown by red connecting lines. These correspondences represent query nodes that

have not been correctly associated with a model node.

We begin this study with the addition of extra line-segments to the query line-

pattern. Figure 5.6 shows the matching results when 20% (top) and 50% (bottom)

of the line-segments have been randomly added to the line-pattern. It is clear that

as the amount of clutter increases, then so the number of correctly matched nodes

decreases. For 20% extra line-segments the only incorrect matches come from added

clutter. In other words, the original line-segments are all correctly matched. When

50% extra lines are added to the line-pattern (see Figure 5.6 (bottom)) the number
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of incorrect matches increases. As reported earlier, the structure and local attribute

information are not dramatically affected by the addition of extra clutter. The results

summarized in Table 5.2 show a number of interesting features about the various

matching examples. In the case of extra line-segments, the fraction of line-segments

correctly matched is 82.5% for 20% added clutter and drops down to 65% for 50%

extra line-segments. The number of iterations required is respectively three and six,

while the matching probabilities are 0.61 and 0.41.

(a) 20% of the lines are affected by errors

(b) 50% of the lines are affected by errors

Figure 5.6: Effect of segment addition on the attributed graph matching algorithm.

The lines in green show the correct correspondence while the red lines indicate a

bad match.

We now turn our attention to the case where line-segments are removed from the

original line-pattern. It was shown in the previous section that this type of error had

some effect on the representation and the accuracy of retrieval. Figure 5.7 depicts
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the correspondences found in this situation. At low levels of corruption the method

provides good correspondences (99%) in three iterations. However, when only 50%

of the query line-pattern, the number of mismatches is increased and the matching

probability falls to 0.35. As explained earlier, this is due to both the structure and

the attribute information being heavily distorted.

(a) 20% of the lines are affected by errors

(b) 50% of the lines are affected by errors

Figure 5.7: Effect of segment deletion on the attributed graph matching algorithm.

The lines in green show the correct correspondence while the red lines indicate a

bad match.

For the next matching example, shown in Figure 5.8, a fraction of the line-

segments from the query object are split into two smaller and disconnected line-

segments. This has the dual effect of adding clutter and changing the local attribute

representation. Under small perturbation (see Figure 5.8 (top)) the level of accurately

matched line-segments is 82.5%. Only a small portion of the noisy line-segments
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causes incorrect matches. When the level of corruption is raised to 50%, it is again

the “noisy” line-segments for which the correct correspondences have not been ac-

curately computed (only 59.8% line-segment correctly matched). However, this does

not have such a dramatic effect on the overall matching probability of the two line-

patterns, which are respectively 0.67 for 20% corruption and 0.43 for 50% corruption.

(a) 20% of the lines are affected by errors

(b) 50% of the lines are affected by errors

Figure 5.8: Effect of segment splitting on the attributed graph matching algorithm.

The lines in green show the correct correspondence while the red lines indicate a

bad match.

The next type of error to be investigated is the line-segment end-point displace-

ment. Figure 5.9 shows the results of matching when 20% and 50% of the line-

segments are randomly perturbed by Gaussian displacement errors of standard de-

viation � = 2 pixels. This type of error does not directly affect the structure of the

graph. However, both the relative angle and relative position attributes (and there-
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fore the node-histograms) are going to be affected. For 20% corruption the fraction

of line-segments correctly matched is 86.3%. Incorrectly located correspondences

originate mainly from noisy line-segments. When the corruption is increased to

50% the matching performance does not dramatically degrade. In fact, 65% of the

line-segment correspondences are correctly identified. There is, however, an inter-

esting observation to make at this point. The number of iterations required by the

graph matching is increased to four in the case of the line-segment end-point er-

rors, while only three iterations were required under the remaining types of error

reported above. The higher level of node-histogram corruption is responsible for the

poor level of correctly initialised feature-correspondences. The graph matching re-

lies more heavily on the structural part of the representation and therefore requires

more iteration to converge to the optimal set of correspondences.

Finally, we combine all the types of error previously investigated in equal pro-

portion. Figure 5.10 shows the results obtained for 20% corruption (top) and 50%

corruption (bottom). Again, it is the corrupted line-segments for which the corre-

spondences cannot be located. In many cases (extra lines, missing lines and split-

lines) no corresponding line-segment actually exists in the model line-pattern. Com-

bined errors simulate more closely what is likely to happen when processing real

world object images than the individual error types. The histogram per node graph

matching algorithm provides a good level accuracy combined with improved com-

putational requirements when compared with the feature vector-based method. For

a low level of corruption (20%), 86.3% of the line-segments are correctly matched

in just four algorithm iterations. At the higher level of corruption (50%) only five

iterations are required to recover 75.2% of the correspondences correctly.
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Error Type Fraction of Iterations Matching Fraction of Segments

Segments Affected Required Probability Correctly Matched

Extra Lines 20% 3 0.61 82.5%

Extra Lines 50% 6 0.41 65%

Missing Lines 20% 3 0.7 99%

Missing Lines 50% 5 0.35 69%

Split Lines 20% 3 0.67 82.5%

Split Lines 50% 6 0.43 59.8%

End-point Errors 20% 4 0.71 86.3%

End-point Errors 50% 5 0.40 65%

Combined Errors 20% 4 0.63 86.3%

Combined Errors 50% 5 0.49 75.2%

Table 5.2: Matching performance using the attributed graph matching algorithm.
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(a) 20% of the lines are affected by errors

(b) 50% of the lines are affected by errors

Figure 5.9: Effect of introducing segment end-point errors on the attributed graph

matching algorithm. The lines in green show the correct correspondence while the

red lines indicate a bad match.

5.6 Hierarchical Integration

Finally, we turn our attention to how the three recognition strategies may be inte-

grated. The idea is to use the relational histogram as a filter that can be applied to

the database to limit the search via feature-set comparison. The important issue is

therefore the rank threshold that can be applied to the histogram similarity measure.

The threshold should be such that the probability of false rejection is low while the

number of images that remains to be verified is small.

In Chapter 3 we showed the average result of querying the database with a num-

ber objects selected from a number of different categories. The main conclusion to
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(a) 20% of the lines are affected by errors

(b) 50% of the lines are affected by errors

Figure 5.10: Effect of combining multiple error types on the attributed graph match-

ing algorithm. The lines in green show the correct correspondence while the red

lines indicate a bad match.

be drawn from this study is that, provided less than 20% of the line-segments are

subject to error, then the database can be pruned to 1% of its original size using the

relational histogram comparison. If a target pruning rate of 25% is adequate then

the noise-level can be as high as 75%.

With such a level of pruning the more refined recognition process based on the

fuzzy Hausdorff distance may be performed. The results presented in Chapter 4

indicate that recall accuracy of over 94% is achievable.

The limited set of model hypothesis provided by the feature-based recognition

strategy provides the starting point for the graph matching algorithm. The output

of this algorithm is further enhanced by a set of detailed correspondence matches
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between query line-segments and their corresponding counterpart in the model.

5.7 Summary

We have presented a practical graph matching algorithm for data-mining in struc-

tural libraries. The main conclusion to be drawn from this study is that the combined

use of structural and attribute histogram information improves both recognition per-

formance and recall speed.

This method was designed as the last step of a hierarchical object recognition

system. We showed how the histogram per node representation, combined with

the graph matching method, improved on the recognition accuracy provided by the

structurally gated histogram method and the local feature based fuzzy Hausdorff

distance measure. The results obtained indicate that the proposed method is robust

to a variety of segmentation errors.

Our study of the accuracy of the feature correspondences provided by the tech-

nique is accurate. This remains the case when a large number of the line-segments

have been subject to corruption.
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Chapter 6

Conclusions

Our aim in this thesis was to research and develop a technique for accurately and

quickly retrieve and recognise objects from large libraries of line-pattern. First we in-

vestigated the state of the art in object recognition and content-based image retrieval

in the literature. Our review identified a gap between retrieval and recognition tech-

niques. Many object recognition techniques are able to perform with great accuracy

at the expense of computational requirements. However, content-based retrieval

techniques are able to cope with very large database. The improved computational

performance is at the cost of accuracy. This is particularly true in the case of shape

similarity.

Combining ideas from both image retrieval and object recognition would allow

rapid retrieval and accurate recognition from large libraries of models. The solution

is to devise a compact representation and a method to effectively compare large sets

of object representations. The representation is in many cases limited to image or

feature measurements. We believe that an object representation based on both fea-

ture attributes and relational constraints can improve the robustness and accuracy

of the recognition process. Because of the complexity and computational require-

ments of graph matching algorithms, these are not a realistic proposition for recog-

nition from large object libraries. However, they provide an effective way to find
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correspondences between object features and should be used as such. It is from the

content-based retrieval community that we have found inspiration to devise our fast

line-pattern indexing algorithms. The overall idea is to employ a hierarchical recog-

nition system. The hierarchy is based on three distinct levels each aimed at refining

the indexing provided by the preceding method. In Section 6.1 we briefly describe

the novel contributions of the work presented in the thesis. The main results ob-

tained during our experiments are also mentioned here. Finally, in Section 6.2 we

propose a number of future extensions which we think could further improve the

effectiveness of the large scale recognition method presented here.

6.1 Summary

The idea of employing a hierarchy of algorithms to refine the retrieval and recog-

nition presents a certain level of novelty. The use of hierarchy in computer vision

task usually entails that a unique algorithm operates on multiple object representa-

tions (Ettinger, 1988). The hierarchy presented in this thesis is composed of three

levels. The first level is aimed at coarsely pruning the large line-pattern library of

the majority of unrelated or irrelevant models. This is performed by comparing

structurally gated pairwise geometric histograms using the Bhattacharyya distance

measure.

The use of attribute histograms has been shown to be very effective for indexing

large image databases based on color (Swain, 1993; Finlayson et al., 1996) or tex-

ture (Gimelfarb and Jain, 1996). However, there has been only limited interest in the

use of histograms for content-based retrieval according to shape similarity (Jain and

Vailaya, 1996). It is the compactness of the histogram representations and its rapidity

of comparison that makes them very attractive for large-scale object recognition. Our

histogram representation differs from others (Thacker et al., 1995; DiMauro et al.,

1996; Jain and Vailaya, 1996). This is because of the structural constraints placed on
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the binning process during histogram creation. Additionally, the pairwise geomet-

ric attributes that compose the histograms are invariant to changes in scale, rotation

and translation. A small amount of shear (change in the viewing direction) is also

tolerated. Our experiments showed that the most effective combination of geomet-

ric attributes, structural gating and histogram distance measure is the following.

The pairwise geometric attributes used for creating the histograms are the directed

relative angle and the relative position. Restricting histogram entries to pairwise

attributes that originate from connected line-segments in a six nearest-neighbours

graph provides the best structure. Finally, the Bhattacharyya distance improves the

level of accuracy during retrieval over the standard histogram distance measures.

A number of experiments and sensitivity studies have shown how the structurally

gated pairwise geometric histogram outperforms the un-gated version. Our content-

based retrieval experiments indicate that a database reduction of 75% is achievable

rapidly. This allows us to employ a more computationally demanding algorithm to

further refine the model selection.

The second level of this hierarchy of algorithms is more closely connected to the

local image features. The idea is to devise a fast method to compare attributed re-

lational structures. This similarity measure is derived from a Bayesian consistency

criterion developed by Wilson and Hancock (Wilson and Hancock, 1994) for graph

matching. We have considerably simplified this measure so that it may be used in

a non-iterative manner. This simplification was inspired by the work of Rucklidge

and Huttenlocher on using the Hausdorff distance to locate and recognise objects

based on sets of image primitives (Rucklidge, 1995). Our representation has two

levels. The higher level corresponds to the set of features extracted from the im-

age (line-segments). The lower level is the set of pairwise attributes associated with

every pair of connected line-segments in the neighbourhood graph. Similarity be-

tween pairwise attributes is computed using robust error kernels. We conducted a

serie of experiments aimed at assessing the recognition performance and noise sen-
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sitivity of a number of algorithm alternatives. Our results show that using either

the Gaussian or Huber’s robust kernel with our novel relational similarity measure

delivers up to 94% recognition accuracy when the neighbourhood graph is of order

six. The method is shown to provide good robustness to various line segmentation

errors. Moreover, when compared with both the standard and modified Hausdorff

distances our measure shows important recognition improvements. This feature-

based relational similarity measure allows us to further prune the set of model hy-

potheses to a bare minimum. This makes the use of a more elaborate iterative graph

matching method possible.

The third and final level of the hierarchy is based on attributed relational graph

matching. Again the line-patterns are represented using pairwise geometric at-

tributes constructed from the edges of a neighbourhood graph. The novelty of the

approach is that the pairwise attributes associated with each node in the graph are

combined in a sparse two-dimensional histogram. This offers major advantages

in terms of computational requirements and adaptability to other adjacency graph

structures. The structural graph matching scheme employed here, is a simplified

version of the technique recently reported by Finch, Wilson and Hancock (Finch

et al., 1997a). The outcome of this study is an improvement on the computational

requirement without any noticeable degradation of performance accuracy. An ex-

tensive set of experiments has been conducted to provide detailed information about

the performance of the method. These include recognition performance evaluation

for a number of alternative graph matching strategies. It was shown that the his-

togram per node approach provides enhanced accuracy and reduces the computa-

tional effort during matching. Again, the best structural representation for object

retrieval is the neighbourhood graph of order six. The results obtained during the

sensitivity study indicate adequate robustness to a number of segmentation errors.

Finally, we showed that detailed correspondence matches are provided by the graph

matching method even under non-negligible line-segment corruption.
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6.2 Future Work

There are a number of ways in which the multi-level object recognition framework

presented in this thesis can be extended.

The pairwise geometric attributes we have used for representing two-

dimensional objects are not appropriate for representing three-dimensional ob-

jects. At each level of the hierarchy, the algorithms would benefit from using

affine invariant attributes (Lamdan et al., 1988a; Rothwell et al., 1992; Maybank,

1998). Since we are interested in line-pattern based recognition the first example

of an affine invariant that suggests itself is the cross ratio (Maybank, 1995). The

end-point of collinear line-segments could provide one way to compute the cross-

ratio. This would allow us to perform object recognition from large libraries of

three-dimensional models.

At the moment, the histogram based retrieval performs a complete search of the

database in order to provide a ranked set of most likely hypothesis. We believe that

it is not necessary to do so. As the size of the database increases so will the recall

time. The line-pattern library could be clustered into object groups according to their

structurally gated pairwise geometric similarity. The query histogram would have to

be compared only with a subset of the database. An alternative way of reducing the

search space is to perform Eigen-analysis on the histograms. Rather than comparing

the histograms directly, we could compare the first few eigenmodes.

As far as the relational similarity measure presented in Chapter 4 is concerned, an

alternative local feature representation could be investigated. The results obtained

during our experiments with the histogram per node graph matching algorithm

suggest that local histograms of geometric attributes offer better accuracy and ro-

bustness than vector based representations. The feature-set based representation of

our relational similarity measure could benefit from using a local pairwise geometric

histogram for comparing the low level features.
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The performance of our graph matching scheme (which uses a histogram per

node) is very satisfactory. It provides a good efficiency to accuracy ratio. However,

if higher levels of accuracy were required, there is a number of more computationally

demanding algorithms that could be investigated. In particular, the work on Wilson

and Hancock (Wilson and Hancock, 1995) on graph editing provides an improved

way of dealing with clutter and noise problems by removing from the graph the

nodes that have low correspondence probability.

The graph structure should also be the subject of further investigations. Firstly,

we believe that a more perceptually meaningful representation of the line patterns

would provide better discriminating power between objects. This could be ad-

dressed by using grouping principals derived from Gestalt psychology (Wertheimer,

1938). Alternatively, the relational structure could be automatically learned from

multiple line-pattern examples representing similar objects.

Finally the bottom-up hierarchy between the various levels could be integrated

more effectively. In the current recognition framework the interaction between the

different levels of the hierarchy is very limited. Each algorithm simply prunes the

number of hypotheses that need to be searched by the following level. It would be

interesting to investigate the possibility of retaining some of the information about

the ranking or similarity between objects in order to improve the retrieval. A pos-

sible approach would be to formulate the filtering of the line-patterns using Bayes

decision trees.
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