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Abstract

We present novel methods for locating, tracking and interpreting faces in images
and video sequences using 2D Appearance Models of faces. We describe how to
construct models that represent both the shape and texture variation in faces and
can be used to generate photo-realistic synthetic reconstructions of new faces. We
describe how Appearance Models can be combined with an active search algorithm.
We show how these Active Appearance Models (AAMs) can be efficiently fitted to
image data. AAMs provide the basis for many types of analysis, including face
identification and expression recognition. We show how Appearance Models can be
partitioned into subspaces describing different types of ‘real-world’ variation such as
identity, pose, lighting and expression. This partitioning provides the basis for an
adaptive tracking scheme that exploits the fact that identity must remain constant
during a sequence. The scheme provides on-line refinement of the subspaces during
tracking and improves the stability of measurements of identity. All the methods
have been systematically tested using still images and video sequences. We show
that AAMs provide an effective means of interpreting faces in images and video and
that the adaptive tracking scheme results in improved face recognition compared with

equivalent static methods.
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Chapter 1

Introduction

1.1 Interpreting face images

This thesis presents research into automatic interpretation of video (and still) images
of human faces. The interpretation of face images can be broken down into a number

of distinct tasks. These include:

face detection (where is it?)

face identification (who is it?)

e expression recognition (what is their expression?)

e pose recovery (where are they looking?)
In this thesis we adopt an approach that addresses these, and other tasks, as examples
of the same general problem - understanding images.

Most applications of machine vision require a system to understand images in some
way, recovering some or all of the structure of the world represented by the image,

and explaining the meaning of this structure. We present a number of techniques

18



CHAPTER 1. INTRODUCTION

designed to explain the appearance of faces in still and video images. We build upon
existing methods that explain face images in terms of either their shape, or their
grey-level appearance. The aim of the approach is to devise algorithms that make
optimal use of all the available information. We describe a method that combines both
shape and grey-level description. This generic approach to the image understanding
problem leads to novel methods of image synthesis and manipulation. Further, we
seek to make use of the fact that a video sequence contains more information than a
static image, and present methods that attempt to make optimal use of the dynamic
information present in a sequence. We also demonstrate the wider applicability of

these algorithms in other areas of machine vision.

1.2 Motivation

Face recognition has become one of the most active areas of research in computer
vision. There are two main reasons: the commercial potential offered by practical
recognition systems, and the challenges that face images provide as a test of machine

vision algorithms. In this project we are motivated by both.

The term ‘face recognition’ implies finding the identity of faces in images. This
project goes beyond identity recognition and attempts a more detailed understanding
of face images and video sequences, including, for example, expression recognition.
However, reliable face identification is an important aim of this project. The list below

gives a number of potential applications of reliable face identification technology.

o Access control

Surveillance

Secure transactions

e Human-computer interaction

19



CHAPTER 1. INTRODUCTION

e Database retrieval

1.3 Approach

A successful interpretation system should be able to locate and track faces in images,
interpreting specific properties of the face regardless of confounding factors. For
example, the system should be able to identify a face regardless of variation in pose,
expression and lighting. This makes the analysis of face images a difficult machine
vision task. As a result of this difficulty, many researchers have concentrated on
particular constrained applications, contributing little to overall progress. Others
have attempted to tackle the various generic problems (location, identification, and
expression recognition) independently. The difficulty with this approach is that the
effects of all the sources of variability in face images are compounded, so it is extremely
difficult to extract a descriptor for one characteristic of interest (e.g. identity) without

taking account of the others (e.g. facial expression, lighting and pose).

Rather than separating face analysis into separate tasks, such as feature location,
person identification, expression recognition, lighting normalisation, etc., we have
developed a unified approach. The basis for this is a compact, parameterised model of
facial appearance that accounts for all the important, systematic sources of variability.
Our approach consists of modelling - in which flexible appearance models of facial
appearance are generated - and interpretation - in which the models are used to
analyse the information content of the face image, such as the expression or identity

of the individual.

There are many existing model-based approaches to face interpretation, some of
which will be discussed in Chapter 2. The most closely related work, and indeed the
precursor to our current research, is the appearance model approach of Lanitis et al
[67] [66]. This approach uses statistical models of shape, local grey-level appearance,

and global grey-level appearance. By combining the shape model with the local grey-
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CHAPTER 1. INTRODUCTION

level models, an Active Shape Model (ASM) can be created and used for face location

[64]. The located face is then interpreted using the parameters of all three models.

The work described in this thesis extends Lanitis’ approach by encapsulating
all the information about face variation within a single model. We show how this
full Appearance Model provides a more compact and specific representation of face
images. The model captures the features that are common to all faces and contains
a description of how their appearance is allowed to vary over a large range of face

images.

From this unified description, we show how specific types of variation, such as
identity, expression, pose and lighting can be separated and modelled individually.
This separation of sources of variation is the basis for a novel approach to track-
ing; the system is able to exploit known dynamic constraints, such as the fact that
an individual’s identity must remain fixed over a sequence. Moreover, the param-
eterised representation allows synthesis of photo-realistic faces and manipulation of

their characteristics such as pose and expression.

The unified model provides a complete and specific description of face images,
and is used to locate and interpret faces in images. This involves solving the difficult
optimisation problem of matching the model automatically to new images. As we
will show, a typical model may contain more than 80 parameters; matching methods
based on standard optimisation algorithms fail because of this high-dimensionality
and the preponderance of local minima. Active Shape Model search [27] provides a
partial solution to the problem. Using just the shape and local grey-level information,
faces can be located and their shape recovered. Given the shape, it is relatively
straightforward to find the ‘best-fit’ of the full Appearance Model. The shortcoming
of this approach is that it does not fully exploit knowledge of combined shape and
grey-level appearance during search. We describe a novel solution to the problem
using Active Appearance Model Search, which completely unifies the face location

and interpretation tasks.
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CHAPTER 1. INTRODUCTION

Although the main aim of this thesis is to present a unified framework for face im-
age understanding, none of the algorithms presented are particular to face images. By
adopting a generic, model-based approach, we present methods that are potentially

useful in many model-based image interpretation applications.

1.4 Outline of Thesis

Chapter 2 reviews current approaches to automatic face interpretation. We describe

several approaches, concentrating on those most closely related to our own.

Chapter 3 reviews Active Shape Models (ASMs) and their use in face interpretation.
We also describe the use of grey-level models in combination with ASMs. Previous
results obtained using this approach are presented along with a discussion of the

strengths and weaknesses of the method.

Chapter 4 introduces a combined Appearance Model, which encapsulates both shape
and texture, discussing the motivation for such a model, and the details of its formu-
lation. We describe a specific appearance model, built to describe faces, and illustrate

some of its properties.

Chapter 5 discusses the motivation and describes a method for partitioning the full
appearance model into separate subspaces for pose, expression, lighting and identity.
In particular, we focus on a model that isolates identity variation; this is used later
in the tracking system. In illustrating the partitioned model we show how it can be

used for facial synthesis and manipulation.

Chapter 6 describes the Active Appearance Model algorithm. We explain the novel
optimisation method behind the technique, and discuss the properties of the ap-
proach. We introduce a model trained to interpret face images and present experi-

mental results.
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CHAPTER 1. INTRODUCTION

Chapter 7 describes our approach to face tracking in video sequences. Active Ap-
pearance Model search is combined with a partitioned model, allowing us to impose

strong dynamic constraints on the tracking system.

Chapter 8 shows how the novel tracking method can be used to enhance the inter-
pretation of video sequences. We show how evidence can be integrated over time to
give better estimates of identity. We evaluate the system and present test results for

a set of video sequences.

Chapter 9 presents several recent extensions to the work described in this thesis.

We discuss these, along with directions for future research.

Chapter 10 contains a general discussion of the work presented in this thesis.

23



Chapter 2

Machine Vision for Face

Interpretation

In this chapter we review existing approaches to the automatic interpretation of face
images. We concentrate on methods closely related to those used in our research,
focusing primarily on model-based approaches. Face location and face interpretation
are often treated as separate problems. Some researchers, including ourselves, prefer
a unified approach in which similar techniques are used for both location and iden-
tification; we pay particular attention to such work. First, we discuss some of the

tasks a face interpretation system might be expected to perform.

2.1 Location

A useful face recognition system must have at least some degree of autonomy in
locating faces in images. For example, in security applications, one of the main
attractions of face recognition is the potential of passive, perhaps even covert, person
identification systems. Whilst systems based on the user placing his or her head in a

fixed position are conceivable, it is hard to see what benefits this confers over other
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CHAPTER 2. MACHINE VISION FOR FACE INTERPRETATION

active approaches, such as fingerprint [73] [53] or iris recognition [33] [84], or even the

humble keypad.

We can define face detection as a subtask of face location. This comprises locat-
ing any region of the image that contains a face - including the possible detection
of multiple faces. We define face location to include more detailed description of
the location of features within the face region. There is some overlap between this
definition of location and interpretation, moreover, reliable interpretation is impossi-
ble without accurate location. In this thesis we present methods which combine the

location and interpretation tasks.

2.2 Identification

The primary interpretation task of most systems is to identify the located face(s).
There are two main types of task; given a face image, choose a match from a list
of possible candidates, or, given a face image, decide whether or not it is a close
enough match to a pre-defined candidate. These two tasks are often referred to
as identification and verification. For each task, the same information needs to be

extracted from the image, although the classification methods differ.

2.3 Further interpretation

Whilst most systems focus on identification, there is increasing interest in other
forms of interpretation. Automatic interpretation of expression may prove to be an
important part of improved human-computer interaction. Detailed understanding of
human emotion almost certainly requires video rather than static images, nevertheless

some systems, including ours, display a degree of success with still images.

Whilst perhaps not strictly face interpretation, machine vision has been applied to
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lip-reading, and in particular, combining lip-reading with speech recognition systems
[69] [14]. A complete face interpretation system ought to be able to perform lip-
reading as a sub-task. Other sub-tasks of face interpretation include gaze estimation

for machine interfaces [80] and blink detection for monitoring driver fatigue [91].

A successful system must be able to deal with many sources of face variation.
For example, even if we are not particularly interested in the pose of a face, an
identification system must still be able to understand the difference between image
variation caused by pose change, and that caused by differences between individuals’

appearance.

2.4 Tracking

In practical applications the source of face images will often be a video camera.
Ideally, we would analyse as much of the video stream as possible. Not only does
it inherently make sense to use as much evidence as possible, it may be essential in
certain cases to monitor the activity of a person over time. Tracking usual implies
using knowledge of previous locations to help find the current location - even if just
to provide a starting estimate - simply running a global face location algorithm on
each frame of a sequence is not strictly tracking. Most current approaches treat face
tracking and face interpretation separately - the interpretation is usually performed
on static images extracted from the sequence. In this thesis we present a system in

which the tracking and interpretation algorithms are unified.

2.5 Synthesis

Given that a good system must be able to ‘understand’ the variation present in face
images, it is reasonable to expect that given some parameters, the system should

be able to recreate an instance of a face image. This is a characteristic of generative
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models - models that are sufficiently complete to be able to generate realistic synthetic

images. In this thesis we describe several such models.

A system that understands not only the totality of variation in faces, but also
understands the sources of variation, such as expression, pose, and lighting should
be able to manipulate synthetic faces. Later in the thesis we will present examples

of synthetic reconstructions in which specific characteristics of a face are altered.

2.6 Types of approach

In most face-interpretation scenarios, the position of the face in an image is not
accurately known, thus a system must perform face location before interpretation
is possible. Many researchers treat face location as distinct from the interpretation
task. We believe that such approaches are fundamentally flawed; given the detailed
knowledge required for face interpretation, it seems natural, that once obtained, this

knowledge should be used for face detection.

The variability of faces from one image to the next makes reliable interpretation
difficult. One approach to this problem is to measure properties of the images that
are as invariant as possible such as edges. An alternative to reducing variability is to
build prior models of the variability. We review several model-based approaches in

this chapter.

An alternative to whole face interpretation is to concentrate on particular features
such as eyes or mouths. The motivation for this is the reduced amount of variability
in a small feature compared with a whole face; this is also the downside - there is less

information to constrain the interpretation task.

This thesis presents 2D view-based models of faces. The computational complex-
ity and storage requirements of 2D algorithms are likely to be smaller. There is an

extremely large amount of 2D training data available in the form of face images; real
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3D data is much more elusive, requiring special equipment. The practical applica-
tion of 3D-based systems is limited by the difficulty of making 3D measurements in
real applications, where the installation of specialist equipment may not be feasible
(or affordable). Indeed, we would like to take advantage of existing cameras in such
places as shopping centres, cash machines, etc. The human visual system provides a
compelling existence proof that 3D analysis is not required for successful interpreta-
tion - we can perform the task perfectly well on photographs and films. Despite these
reservations about the 3D approach, we provide a brief review. In particular, we are
interested in the use of 3D training data for analytically addressing the problem of

2D appearance change due to pose and lighting.

2.7 Model-based methods

In this section we outline a variety of model-based methods presented in recent liter-
ature. Some are techniques specifically intended for the interpretation of face images,
whilst others are more general methods in computer vision which have been applied

to face images. It is notable that the latter are usually more successful.

Model-based methods always involve a training stage, where the model itself is
configured. This may range from the simple definition of some ad-hoc constraints to
full statistical learning methods. For problems such as face interpretation - where a
large degree of variability is involved - the aim of training is usually to produce a
parameterised model. Given an image, the interpretation task is to find the optimal
set of model parameters that best ‘fit’ the image data in some sense. These parameters
usually become the input to a classifier or other interpretation mechanism. A typical

model-based scheme is illustrated in Figure 2.1

Model-based methods address the need in non-trivial applications to ‘understand’
face images. Given some set of image measurements, a model provides a frame

of reference in which to interpret those measurements. Model-based methods also
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Figure 2.1: Typical scheme for model-based image interpretation.

provide the means to deal with extremely complex and variable structures and with
noisy and incomplete image data. It is difficult to conceive of a system capable
of accurately measuring the positions of various facial features without some prior

knowledge of facial structure and variability.

2.7.1 Properties of models

A useful model must fulfil two main criteria: generality and specificity. General
models are those that account for all possible sources of appearance variation in the
class of objects of interest (in this case faces), and can thus represent any example
of the class. Specific models constrain the allowable variability so that only ‘legal’
examples can be generated. Specific models provide powerful image interpretation
constraints - the expected shapes of structures, their spatial relationships and their

grey-level (or colour) appearance can be used to restrict an automated system to
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plausible interpretations.

We are particularly interested in generative models, that is models which are ca-
pable of reconstructing realistic images of faces. Such models allow a straightforward
statement of the interpretation problem; given an image, adjust the parameters of
the model in such a way as to generate a synthetic image as close as possible to the
original. This statement only holds if the model is specific - it must not be capable of
‘explaining’ image regions that do not contain faces. At this point we note that the
requirement of specificity is much more difficult to attain than that of generality. A
completely general image model is the trivial null-model, i.e. no constraints on the

image. In this case any image pixel can take any value, and thus produce any image.

The following sections review existing model-based approaches to face interpreta-
tion. Some involve models of whole faces, others are feature-based. In each case we

discuss the specificity and generality of the approach.

2.8 Shape-based methods

Many researchers attempt to locate the outline of the whole face or of individual
facial features in face images. Some methods are purely data-driven such as the
‘snake’ of Kass et al [57], whilst others rely on prior models, taking advantage of the
constrained geometrical relationships between the positions of facial features. These

shape models are usually characterised by sets of key points, organised into contours.

2.8.1 Active Contours

A popular method of contour detection is the data-driven method of Kass et al [57],
often referred to in computer vision literature as ‘Active Contour Models’ or more
commonly ‘Snakes’. A Snake is a contour, usually represented as a spline curve, which

can be placed in an image, and is then ‘attracted’ to image features. For example,
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if one wished to locate the boundary of an object, the snake could be configured
to be attracted to edges in the image. The snake’s movement in the image is not
completely unconstrained; the algorithm attempts to minimise an overall ‘energy’
function which incorporates image data, elasticity and smoothness. Whilst seeking
suitable image features, the snake favours configurations in which its elastic energy
is minimised (i.e. the snake contracts as much as possible) and in which the snake is
as smooth as possible. Kass et al [57] used snakes to track the boundaries of lips in
face images, showing reasonable results in constrained situations. Waite and Welsh
[94] applied the same technique to location of complete head boundaries. Figure 2.2

illustrates the typical behaviour of an edge-attracted snake.

Figure 2.2: Typical example of a ‘snake’ attracted to edges in a face
image. Initial position shown on left, final solution on right.

Only the image-data, elasticity, and smoothness constraints affect the solution
found by a snake - there is no prior knowledge of the expected configuration. This
makes the algorithm broadly applicable, but is also its drawback. For example,
an edge-based snake is attracted to any edge, regardless of whether it belongs to the
object of interest; snakes are thus particularly bad at dealing with background clutter
in a scene. The snake can take any energy-minimising configuration, regardless of
whether the solution represents a plausible shape. Because the snake itself has no
prior knowledge of the scene, it is usually necessary to provide knowledge at run-time
- by placing the snake initially close to the desired solution. The behaviour of a snake

is highly dependent on the weights given to the data, elasticity and smoothness terms
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in the energy function. Practical image interpretation systems may require difficult

manual tuning of these parameters.

Despite the drawbacks of the method, some researchers are still attracted to the
data-driven nature of the solution - it requires virtually no training data. Okubo
et al [76] describe the application of snakes for lip-tracking; their success is possible
because of the highly constrained conditions of their application. Recently, Yokoyama
et al [95] describe a snake-based method for locating facial contours, adding an extra
energy term for deviation from symmetry. This appears to offer some improvement
over completely unconstrained snakes. The problem with this sort of approach is the
ah-hoc nature of the constraints: how do you set the weight of the symmetry term?
Too high and non-symmetric face images will be missed, too low and the constraint
offers nothing. This approach might work reasonably well for rigid objects, but it is
difficult to guess in advance the allowable variability of complex flexible objects such

as faces.

2.8.2 Deformable Shape Models

Yokoyama’'s symmetry-snake approach uses an extra, fairly weak constraint to im-
prove the robustness of image search. As a more constraints are introduced, the
approach begins to become more model-based, incorporating detailed prior knowl-
edge of shapes. A common approach is the use of ‘hand-crafted’ geometric templates
such as in the work of Yuille et al [97]. Yuille’s models are used to locate eyes and
mouths in images. A flexible model of eye shapes is built from primitive geometric
shapes such as circles and ellipses. The template is allowed to vary by varying pa-
rameters such as scale, rotation, circle radius, etc. In total, Yuille uses 11 parameters.
The search procedure is similar to that of snakes - the template is updated to min-
imise an image cost function. However, rather than allowing the contours to deform
arbitrarily, updates are performed on the model parameters. The parameter values

are constrained to restrict the solution to ‘plausible’ shapes. Brunelli and Poggio [16]
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introduce a larger model of the complete face, using the constrained geometrical rela-
tionships between facial features. This model performs a step-wise search, where an
initial feature is located and then the model constraints are used to limit the search
space for other features. Yow and Cipolla [96] describe the use of a probabilistic
belief network based on grouping hand-crafted models of facial parts such as eyes,

nose and mouth.

An alternative to handcrafting shape variability is to base deformations on the
physical properties of objects such as stiffness and elasticity. Pentland [77] describes
the use of Finite Element Analysis for generating flexible deformations of templates.
Similar work has been presented by Terzopoulos and Metaxas [89] and Nastar and
Ayache [74]. Terzopoulos and Waters [90] combined Finite-Element based deforma-

tions with hand-crafted anatomical constraints.

The difficulty of these approaches is the arbitrary definition of both the model
and ‘plausible’ variation. For example, using an ellipse to detect the eye region
can be neither general nor specific: No eyes are exact ellipses, and lots of things
are elliptical but are not eyes. A model must be handcrafted to achieve the best
trade-off. Physically based deformations offer no real solution - the generation of the
model parameters is automatic, but is no more likely to be specific than hand-crafted
parameters. This difficulty is partly addressed by Craw et al [32], who attempt to
derive the variability constraints from a large set of training shapes, using a model

similar to that of Brunelli and Poggio [16].

2.8.3 Active Shape Models

The problem of building general and specific models of object shape is addressed
by the Point Distribution Models (PDMs) of Cootes et al [27]. They model the
shapes of variable objects via a statistical analysis of landmark points located on
training images [12] [35]. New shapes belonging to the general class can be recon-

structed /parameterised using a weighted sum of basis functions derived during the

33



CHAPTER 2. MACHINE VISION FOR FACE INTERPRETATION

analysis. Active Shape Models(ASMs) combine the constrained variability of a PDM
with a search method driven by the image data. Lanitis et al [63] [62] describe the use
of ASMs for both modelling shape variation of faces and for locating facial features

in images. Active Shape Models are covered in more detail in Chapter 3.

Active Shape Models use a linear formulation to encapsulate shape variation.
Similar approaches have been attempted using non-linear formulations. Bregler et al
[14] describe a number of local linear shape models to produce a global non-linear
model of lips. Edwards et al [36]* describe the extension of PDMs to non-linear
shape models using a Multi-Layer Perceptron. When using a non-linear model, it
was found that the shape variability of the training images could be explained with
as few as half the number of parameters, indicating that the representation was more
specific. More recently, Cootes et al [21] and Heap and Hogg [49] have described
methods which combine multiple linear models of variation to produce a non-linear

representation.

Of the contour-based approaches discussed, only ASMs offer a plausible means
of achieving both generality and specificity. This comes from the fact that both the
mean shape of the model and allowed variability associated with human faces are
derived through a statistical analysis of the training set, rather than by generating

arbitrary shape variations and imposing arbitrary constraints.

2.9 2D appearance-based models

An alternative to modelling shape is to model grey-level appearance. Kirby and
Sirovich [58] first proposed a Principal Component Analysis, or Karhunen-Loeve De-
composition of face images. The analysis is performed on a set of roughly aligned
training images. Exploiting the fact that there is correlation between pixel values

across the training set, they seek a set of basis images that represent the train-

*These experiments were conducted primarily by Andreas Lanitis
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ing data as compactly as possible. Each training image can be reconstructed as a
weighted sum of basis images. Although this type of analysis can be applied to many
types of images, face analysis is the most well-known application - the approach is
often referred to as the eigenface method - the space in which the basis images lie

referred to as the eigenspace.

Turk and Pentland [92] first used the eigenface method to design an automatic
face identification system; the decomposition weights of a particular face are used
for recognition. The formulation of the eigenface decomposition also provides a fast
method of performing correlation-based matching. Moghaddam and Pentland [71]
also showed how the representation can be used to model and locate individual facial

features, such as eyes and mouths.

The strength of the eigenface approach is its use of statistical training; it does
not rely on ad-hoc models or detailed anatomical knowledge. Unfortunately, as a
model-based approach, it suffers from poor specificity. Other than an initial rough
alignment of the images, there is no explicit correspondence between pixels across
the training set, for example, in a set of face images the positions of the eyes will
vary considerably. A specific model must simultaneously represent both shape and
intensity changes across the training set; the eigenface approach does not achieve
this. As a result, the basis images can be combined to produce illegal examples
of faces. Craw et al [31] attempted to remedy this problem by first normalising
the training images by warping a set of hand-placed control points to an average
shape before performing the decomposition. This important step ensures that the
eigenface decomposition reflects only the variation in grey-level appearance and not
variation in shape. Warping to a reference shape greatly reduces the within-class
variation - i.e. the variation between images of the same individual, thus making
person identification easier. Lanitis et al [67] adopt a similar approach, which forms
a starting point for the work in this thesis. The method is described in detail in

Chapter 3.
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There are other alternatives and extensions to the Karhunen-Loeve expansion.
Akamatsu et al [2] propose a method using a Karhunen-Loeve decomposition of the
power spectrum after applying a Fourier transform to the basis images. They rea-
son that the power spectra may vary in a more linear fashion than the raw images,
though there is no obvious reason why this should be so. Cottrel and Fleming [29]
train an eigenface-type model using a multi-layer perceptron. Such a non-linear ap-
proach could simultaneously represent shape and texture changes using a single set
of model parameters. However, with such a high-dimensional input, and large degree
of variability, training this model effectively is prohibitively difficult. Belhumeur et
al [7] begin with a Karhunen-Loeve expansion before performing a further statistical
analysis on the expansion coefficients of the training set. By using Linear Discrimi-
nant Analysis (LDA), a set of basis functions are generated which best describe the
differences between the identity of individuals at the expense of other variation, such
as expression and lighting. A similar analysis was performed by Zhao et al [98], test-
ing several combinations of Principal Component Analysis and Linear Discriminant
Analysis; like Belhumeur et al [7] they report that PCA followed by LDA improves

classification performance.

Moghaddam et al [72] model two mutually exclusive classes of variation: intra-
personal (pose, expression, lighting, etc.) and extra-personal (difference between
individuals). They use a Bayesian classifier for recognition; the likelihood for each
class of variation is learned from the training data by performing density estimation
in the eigenspace. They note that in the eigenface representation, intra-personal
differences are swamped by extra-personal differences. This is to be expected in a

representation that is not shape-normalised.

Gong et al [45] use a Gabor Wavelet Transform (GWT) to build a representation
for classifying head pose. By using only the magnitude of the frequency responses,

the representation is less sensitive to image plane translations.
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2.10 Combined shape and texture models

Clearly, face images are characterised by variation in shape and grey-level (or colour)
texture’. A truly general and specific model of appearance must account for both
factors. The method of Lanitis et al [67] uses a combination of Active Shape Models
and shape-normalised texture decomposition. Faces are described and reconstructed
using a combination of the shape and texture models; however, since there are no
constraints on the models’ combination, it is possible to produce implausible shape
and texture combinations. A similar representation is described by Vetter [93] and
used to generate synthetic views of faces from different viewing angles to that of the

input image.

Cootes and Taylor [22] and Nastar et al [75] attempt to build a unified model
of the grey-level surface by combining the point co-ordinates at key points with the
grey-level intensity at those points. Unfortunately, no effective method of matching

these models to image data exists.

Lades et al [60] describe a combined shape and intensity face model of a different
form. During training, they overlay a rectangular grid on a training image from each
individual in the database. They measure the responses at each of the grid points for
a set of two-dimensional Gabor filters tuned to different orientations and scales. This
provides a model-based description of the shape and texture of a given face. When
a new image is presented to the system, the grid is overlaid and allowed to deform.
A similarity measure between the new image and each training image is computed,

based on the responses of the same set of Gabor filters and the grid distortion.

Jones and Poggio [55] describe a combined shape and texture model built from
100 prototype images. In this approach, an image is represented as a sum of warped

prototypes. A matching scheme is described but it is both slow ( 1 minute per image)

tUnless stated otherwise, in this thesis we use the term ‘texture’ to describe the grey-level
appearance remaining after shape normalisation.
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and unreliable, working only when accurately hand-initialised. Rikert and Jones [80]
have used such models to train a neural-network to estimate gaze direction based on

extracted model parameters.

This thesis describes the use of a new type of combined shape and texture model,
which can be viewed as an extension of the approach of Lanitis et al [67], and is related
to the approach of Jones and Poggio [55]. This method, described by Edwards et al.
[38], begins with a Point Distribution Model and uses this same set of points to build
the shape-normalised texture model. By learning about the correlation between the
parameters of the two models, a single unified model is built which is both general
and specific. The model is also generative - capable of synthesising realistic images

of faces. This approach is explained in detail in Chapters 3 and 4.

2.11 3D models

Some researchers have attempted to use 3D models for interpretation. The obvious
attraction is the prospect of accurate analysis and reconstruction of faces under any
viewing angle. Further analytical methods such as ray tracing can be used to deal
with lighting variation. The drawback of 3D models is the large increase in complexity

and storage, as well as the difficulty of obtaining suitable training data.

DeCarlo and Metaxas [34] describe a 3D mesh representing the surface of a face.
The mesh deformations are controlled by a small set of parameters that are hand-
crafted, but based on observed face anthropometry. The model is used to track faces
in images, using an optical-flow based algorithm. The system must be initialised by
accurately fitting the model by hand to the first frame of the sequence. Clark and
Kokeur [18] and Li et al [68] use variations of a 3D model known as CANDICE [82],
a 3D wire frame model derived using a triangulation algorithm. Again, these models

are used to track faces, but require very good initialisation.
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A common use of 3D models is to interpret pose from 2D images. A example is
the work by Shakunaga et al [85] who use a standard 3D head model to back-project
located 2D features, thus obtaining an estimate of pose. This single, fixed model does
not represent the different 3D face shapes of individuals and is thus prone to error
- although the system can be calibrated for a particular individual. It is not clear,
however, that using such a model offers any benefit over raw, data driven calibration
from the 2D features; the model provides only fixzed geometric projections of the
image data. This 2D-3D mapping might only be achieved with proper knowledge
of 3D variability. Shimizu et al. [86] use a large number! of training images along
with 3D range data captured at the same time. This data is used to build a generic
model of 2D-3D variability. The 2D data is represented as a number of edges extracted
from the original images, thus providing some degree of normalisation against texture
variation; at the expense, of course, of the texture information itself. They propose

a model-matching scheme based on closest-curve matching.

2.12 Anatomical models

Anatomical models are motivated by the need for generality and specificity, acknowl-
edging the fact that appropriate variability constraints are unlikely to be found in an
ad-hoc manner or by using physics-based deformations such as vibrational modes. In
particular, the finite and fixed (assuming healthy individuals) number of facial mus-
cles place constraints on the allowable deformations. However, this type of modelling
does not lead to reliable estimates of the variability between different individuals, nor
does it automatically deal with pose and lighting variation. Anatomical Models of
the face, incorporating tissue and muscles have been described by Terzopoulos and
Waters [90] and Essa and Pentland [43] [42]. Aoki and Hashimoto [3] describe a
highly detailed physical model based on data obtained from 3D CT scans of heads.

In this approach, the model consists of three layers, skull, muscle and skin, as in real

!The actual number of training examples is unspecified.
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faces. Motion is synthesised by spring-like deformations of muscle and skin, together
with rigid movements of the jawbone. The computational expense of this approach
is high, and while useful for synthesis of facial expressions, the model is not used for
interpretation. Like the 3D models discussed above, anatomical models are useful for
tracking a particular face once initialised, but are not good for generalising to new

individuals.

2.13 Discussion of model-based approaches

In the previous sections we have outlined some recent model-based approaches to
face interpretation. The papers cited represent a small selection from the extensive

literature in the field, but were chosen to illustrate all of the major approaches.

Generally, the more information a model uses, the higher will be its dimensionality
(the number of parameters required to control it), and the more difficult it becomes
to learn about the allowable variability (and thus achieve specificity). The aim of
good modelling is the representation of all the image information in the lowest pos-
sible dimensionality. ASMs are an example of a compromise approach using limited
image information (typically the shape of boundaries). This naturally compromises
the information content of the model, but makes generality and specificity realistic
objectives. Strictly though, the fact that the ASM only uses boundary information
limits its specificity - as long as the boundary region makes sense, other areas are
ignored. Cootes et al [27] point out the benefit of this, that ASM are robust to occlu-
sion, since typical occlusions might only cross a few boundary points and thus have
little effect. Although a useful property in many circumstances, ASMs do not deal
with occlusion directly, it just happens that their lack of specificity with regard to
large internal regions allows the model to fit when most of the boundary points are

visible.

The eigenface approach is an attempt to model the grey-level information in
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face images. The linear schemes proposed by Kirby and Sirovich [58] and Turk
and Pentland [92] fall short of the requirement of specificity. However, the method
does provide some reduction in dimensionality and provides a fast alternative to
correlation-based matching schemes. We do not favour the direct non-linear extension
of eigenface methods - why invent complex algorithms when the main source of non-
linearity (lack of correspondence) can be easily removed? Both Craw et al [31] and
Lanitis et al [67] have demonstrated that a shape-normalised representation displays
superior specificity. Until recently, the application of such models has been limited

by the lack of an algorithm for rapid image interpretation.

The most promising approaches involve the use of both shape and texture infor-
mation. Indeed, these summarise all the useful information available in the image
(including the possibility of coloured texture.) The reasoning is straightforward -
only by interpreting shape variation correctly can we build a specific model of tex-
ture, and only by combining shape and texture variation can we generalise to new
faces with different shapes and textures. Such a model must also understand the

inevitable correlation between shape and texture, in order to retain specificity.

The use of 3D models and physical models may offer alternative methods for
learning about variability in face images. However, Lanitis et al [67] showed that, at
least for limited pose angles, view-based learning from training images is sufficient.
In Chapter 9 we show how view-based learning can deal with full pose range from
frontal to profile. The added complexity of 3D and anatomical models makes them
difficult to train and configure; as yet there are no successful face interpretation
algorithms which use such models. We regard it in the same way as we regard the
use of colour images: humans do not require colour images, 3D images, or anatomical
knowledge of facial muscles in order to interpret face images. Moreover, most useful
applications of face recognition would currently have to take their input from 2D
monochrome cameras. Anatomical and 3D models may, however, provide a means of
approximating change in 2D appearance due to pose and lighting in the absence of

suitable training images.
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In addition to the approaches we have discussed here, the Face Recognition lit-
erature contains many papers describing rather arbitrary schemes for specific inter-
pretation tasks. Most of these can be regarded as one-off engineering attempts that
contribute very little to the overall understanding of the face interpretation problem.

It is hoped that the work presented in this thesis is of a more generic nature.

2.14 Measuring face interpretation performance

Often the evidence presented concerning the effectiveness of a given computer vision
technique consists of a few successful images printed in a scientific paper®. Face
interpretation is an area of research characterised by lack of comparative evidence.
In most cases, this is not so much the result of bad scientific practice, but rather
due to the lack of standardisation across task definitions and test data. The range
of problems addressed is large - it is hard, for instance, to compare the merits of a

head-pose estimation algorithm with those of an expression classifier.

Many research groups use their own test data to evaluate algorithms - this is often
a necessity, due to the lack of publicly available data. It would be in the interest of
the research community to ensure that local data is made publicly available for other

groups to use in algorithmic testing.

In an ideal world, algorithms themselves would be available for public evaluation¥
This is hindered by the lack of any common framework for the interchange of code.
Within the C+4 community, there exists a common environment for machine-vision
programming - the Image Understanding Environment (IUE). It remains to be seen

whether it will become extensively used.

$Indeed, in many cases, even this is enough to dismiss a given method!
IMany of the algorithms described in this thesis are available in cross-platform MATLAB code
through the web-site of the Wolfson Image Analysis Unit - http://www.wiau.man.ac.uk/
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2.14.1 Recognition tasks

The only area in which there exists enough data to compare face interpretation al-
gorithms is identity recognition. Even this can encompass a range of tasks and test

conditions. There are two main criteria that characterise the recognition phase:

1. Interpretation requirement - identification or verification?

2. Input constraints - is the head position fixed/given in advance?

In addition to these criteria we could add a list of other constraints concerning image
capture, such as lighting, camera calibration, etc. Most current algorithms are tested
on static images, although the source of the static image may well be a frame taken

from a video camera.

The first type of interpretation, identification involves comparing the unseen input
image against a database of known individuals and labelling the identity of the unseen
image. A suitably advanced system should also recognise when a face is not part of
the database and perform an appropriate action. Verification is a slightly different
task; in this case, the system is told in advance which person to expect, and it must
return a yes/no verification for the input image. In most literature, and in this thesis,

the phrase ‘Face Recognition’ is often used to refer to either of these tasks.

Some systems work only when given the position of the face in the image. These
rely on the assumption that either the user will be constrained or that future devel-
opment will yield a reliable location algorithm. More advanced systems can perform
location, either given a reasonable initial approximation, or completely unprompted.
Many systems use completely separate technologies for location and interpretation

tasks - the leading model-based techniques tend to use the same technology for each.

Almost every paper concerning face recognition contains some measure of recog-

nition /verification rate. These can only be assessed in the context of the particular
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task the experimenters set for themselves. In order to directly compare recognition
algorithms they must be tested on the same task. Section 2.14.3 describes a recent

attempt to provide a standard test framework.

2.14.2 Measuring performance

Most performance measuring algorithms involve splitting a set of images into a train-
ing set and test set. It is essential that the test set plays no part in the training
procedure. In face recognition experiments this is a necessary but not sufficient con-
dition that must be satisfied in order to avoid bias. Unfortunately, there often exists
other bias in the data - for example, all the images of a particular person, X, might be
captured against the same background. Without careful thought, one cannot be sure
whether the algorithm is recognising person X or simply the background. Where it is
not possible to eliminate bias in the image set, experimental protocol must account

for it.

In full recognition experiments the commonly used performance measure is simply
the recognition rate - the percentage of the inputs correctly identified. Care must be
taken when interpreting this statistic; how many possible answers are there? If there
are only two people in the test then 50% recognition is the same as chance. In tests
on larger databases, ranked recognition is often used. In this case, the algorithm will
return, say, the 3 closest matches in the database. The reasoning is that security
systems would probably be happy to allow passage if the individual was ranked 3rd
out of a possibility of thousands. Lanitis et al [67] performed this type of recognition
experiment on a database of images gathered in-house. The full set of results is given

in Table 3.1.

Another measure of performance is the Receiver Operating Characteristic curve
(ROC). An ROC curve can be used to predict a system’s expected performance on
a variety of tasks. Given a test image and a database of N images, we ask the

question, how far is the test image from each database image? In this case we allow
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the situation where the test image has no match in the database. Since almost
all algorithms return some normalised scalar measure of ‘distance’ between images,
classification performance will depend on the choice of ‘matching’ threshold, 7. Let
dq4 be the distance between a pair of images, I, and I; (a database and a test image).

We define the identification decision rule as:

if dy <T person is the same (2.1)

dg > T person is not the same (2.2)

Given a test image, I;, the decision rule is evaluated for each of the N database images,
I;. This will result in a certain number of accepted matches, n,, and rejections, n,.

Clearly, the following relationships are true:

Ng+n, =N (2.3)
0 ifT =0,

Ng = (2.4)
N ifT =00

This states the obvious result, that given an threshold of zero, all potential matches
will be rejected, whereas with an infinite threshold, all potential matches will be

accepted.

The average number of accepted matches and rejections can be calculated over all
the images in the test set, thus giving a means of evaluating an algorithm’s perfor-
mance. As the threshold level, T', is varied the ratio of n, to n, will change. At any
particular threshold level, we can calculate how many of the test images are correctly
matched against training images. This figure is known as the True Positive Fraction
(TPF). As the threshold becomes very large the TPF will approach a value of unity.
We can also calculate the ratio of the number of matches that were returned incor-
rectly, over the total number of database images. This is often called the False Alarm

Rate (FAR). As the threshold becomes large the FAR will also approach unity.

An ROC curve plots the value of TPF against FAR for varying threshold level,
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T. Some example of ROC curves are shown in Figure 2.3. The key points are these:

e the diagonal line from bottom-left to top-right is the performance to be expected

by chance alone;

e curves which pass close to the top-left of the plot generally indicate better

performance

1.0

Better Performance Chan'ge“"'"
Performance

True Positive Fraction (TPF)

=
o

00 False Acceptance Rate (FAR) 10

Figure 2.3: Example of ROC curves. ‘Chance’ curve shown as straight
line. Increasing performance as curves move towards top-left.

Whilst a useful measure of a systems performance, the ROC curve itself does not
provide a single, definitive statistic indicating a systems usefulness. In some systems
the actual cost of a false acceptance might be greater than in others. The ROC curve
allows a choice of where the threshold ought to be set for a given level of performance.
The ROC approach uses a suitably normalised measure of distance to reject images
that do not match any of the database images. However, in the situation where it

is known that all test images occur somewhere in the database, nearest-neighbour
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matching schemes, where a different threshold is effectively used for each image, may

give better performance than indicated by the ROC curve.

2.14.3 The FERET programme

The Face Recognition Technology (FERET) programme [78] was initiated in Septem-
ber 1993 by the U.S. Department of Defense, Defense Advanced Research Projects
Agency(DARPA) and the U.S Army Research Laboratory. The major aim of the
programme was the collection of a large database of face images, and subsequent
testing and evaluation of leading face recognition systems. The first test phase took
place in August 1994. In this test, the image database was split into a training
set (known as the gallery) of 316 individuals and test set (known as probes). The
main test assessed the verification rate of the algorithms on the probe images. In
March 1995 the test was extended, with a gallery of 817 individuals. This second
phase introduced duplicate images in the probe set; these are images of the same
person taken on a different date. The significance of duplicate probe images is that
the image capture conditions were quite different. By September 1996 the database
had been extended to a gallery of 3323 images and probe set of 3816 images. The
FERET test procedure requires each entrant to supply a distance measure for each
of the probe/gallery pairs. From these figures, the test administrators calculate ROC
performance characteristics. Details of the test procedure and latest results can be

found in Rizvi et al [81].

The 1996 test compared 10 algorithms from 7 different institutions. There was
found an enormous difference in performance between the normal probes (captured
on the same day) and the duplicate probes (captured on a different day). For the
normal probes, given a 10% FAR, the TPF varied from 0.95 to 0.995 across the
algorithms. For the duplicate probes, the range was 0.58 to 0.80.

Naturally, most researchers and commercial companies are keen to quote the re-

sults achieved on the normal probes. Far more revealing, however, is the huge drop in
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performance observed for the duplicate images. To relate this to real numbers, imag-
ine a security system based on the best of the algorithms. If the system registered
1000 individuals, it could be set to allow 800 people to correctly enter the building,
with the proviso that 100 people would get past the gate anyway, incorrectly veri-
fied. Obviously there is significant variability between images of individuals taken
at different sittings; the algorithms tested under FERET do not deal well with this

variation.

The FERET test data is not publicly available. Groups must apply to take
part in the programme, which involves testing under the supervision of a FERET
administrator, who personally brings the data to the test site. Unfortunately, we
are not yet part of the FERET programme, though we are keen to take part in the
planned next phase. The normal probe set is not particularly interesting since it
does not provide the sort of realistic data a working system would have to deal with.
We regard any claims made by third parties based on the normal probe images with

scepticism.

2.14.4 Advanced interpretation

The system we present in this thesis can be used for a range of interpretation tasks.
We present results of both identity and expression recognition experiments. A ma-
jor part of the work is the extension of the algorithms to perform interpretation of
video sequences. This involves making optimal use of dynamic information as well
as individual frames. There are currently no standard test databases of such video
data - instead we have produced an internal database of training and test sequences
captured in sessions separated by a 5-month period. It is intended that this data be
made publicly available (see Appendix B) in order that other researchers can compare

their results with ours.
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2.15 Summary

In this chapter we have reviewed some of the leading approaches to face interpretation.
The majority of algorithms are concerned primarily with face identification. We have
concentrated mainly on model-based techniques, particularly those related to the

methods presented in this thesis.

The key requirements of a successful model are generality and specificity. Several
models exist which are specific within their own frame of reference. The best example
is the Active Shape Model (ASM) approach. ASMs are only capable of generating
plausible face shapes and are thus specific in one respect. However, by not using
all the image information they remain capable of fitting to image regions that are
not faces, but simply satisfy some of the shape requirements of a face. ASMs are
therefore not completely specific. Ideally a model should use all the available image
information and be generative, that is, capable of reconstructing a synthetic example

of a face, only in this way can we be assured of specificity.

A popular approach to using grey-level image information is the eigenface method.
Unfortunately the simple linear analysis of training images is not sufficient to build
specific models. The main problem is the lack of pixel correspondence - eigenfaces
attempt to explain both shape and texture variation with a single texture model.
Lanitis’ shape-free region models first account for shape variation by warping all the
images to common shape, thus producing a more specific representation of texture
variation. The shape-free region models can be combined with Active Shape Models
to account for both shape and texture variation. The drawback of this approach is
that correlation between shape and texture is not accounted for. This thesis presents

a new method of combining shape and texture variation.

Despite the large number of researchers engaged in automatic face interpretation,
there exist few satisfactory methods of comparing the performance of algorithms.

The FERET programme has attempted to provide a unified test framework for face
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recognition/verification. The results obtained by the 7 research groups involved in
the latest phase of the FERET programme are generally poor; identification proves
very difficult on images taken under different conditions. All the algorithms perform
extremely well on the images captured on the same day - the suspicion is that this
test is biased. We believe that understanding the variation between images of the

same individual is the key to accurate recognition.

We describe later a recognition scheme that can use video sequences as well as
static images. The dynamic information may help the system understand the varia-
tion present in images of the same person. Unfortunately there is no standard test
data on which to test such algorithms. The experiments presented in this thesis were
performed on especially collected test sequences. We took care to capture the se-
quences with a 5 month break between sittings, in different conditions. This allows
an experiment similar to the duplicate problem in the static FERET test, on which
existing algorithms performed badly. It is hoped that other research groups will test

their algorithms on our video database.
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Chapter 3

Shape and grey-level Appearance
Models

The work described in this thesis builds on existing methods developed in the Wolfson
Image Analysis Unit. This chapter describes Point Distribution Models (PDMs) of
object shape as introduced by Cootes et al [23], followed by an overview of Active
Shape Models (ASMs) [27] which use PDMs in image search. ASMs are a good
example of the effective use of prior models in computer vision. They offer a robust
solution to the interpretation of shapes in images, and are based on models learnt
from training sets of example objects. ASMs have been used successfully in many
applications, from medical image analysis [25] [24] [41] [59] [87] [88] to industrial
inspection [52]. It is the ability of the ASM approach to adapt to a wide range of tasks
which makes them suitable for interpreting images of humans, which are typically
extremely variable. ASMs have been used succesfully to track whole individuals
in scenes [5], and to interpret hand gestures [1]. In this chapter we will describe
primarily the work of Lanitis et al [66] [67] [65] who describe the use of ASMs for the

interpretation of face images.
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3.1 Modelling shapes

An Active Shape Model is intended to locate and interpret a particular class of shapes
in images. In most non-trivial applications, the shapes of interest will exhibit a range
of variabilty. A good model of object shape will encapsulate this variability, but
not allow variability that produces non-legal shapes, that is shapes which are not
valid examples of the chosen class of objects. Faces are a good example; there are
many possible configurations for the outlines of the lips, but none in which the lips
appear above the nose. For any complex object, the only practical way of establishing
allowable variation is by learning from a set of examples. ASMs contain a statistical
model of shape variability, learnt by analysing a training set. This model is known as
a Point Distribution Model, or PDM. The following sections outline the construction

of a PDM.

3.1.1 Labelling the training shapes

The first step in building a PDM is to annotate (usually manually) the structures
of interest in each of a set of training images. This involves defining a set of ‘land-
mark’ points, corresponding to specific image features. Each training shape can be

represented by a vector x:

T = (271,1'2,- s Ty Y1,Y2, - - 7yn)T (31)

where (z;,y;) is the position of the i landmark point.

The landmarks are usually placed on the boundaries of structures of interest and
other points that appear consistently in different images of the same class of objects.
It is important that landmarks are placed consistently throughout the set of training
images, in order to achieve a standardised representation. To achieve this, certain

landmarks are placed at easily identifiable positions, such as the corners of the eyes
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and lips, whilst others are evenly distributed along the boundaries between these. In
our experiments with shape models, we use 122 landmark points to define the shape
of a face. Figure 3.1 shows examples of face images annotated with their landmark

points.

Figure 3.1: Face images with 122 key landmark points placed by hand
annotation.

3.1.2 Aligning the training shapes

The aim of the PDM is to capture the variation in shape across a class of objects. In
most applications of PDMs there is no desire to model variation due to translation,
in-plane rotation or change of scale - indeed, it is necessary to ensure that any such
variation is, as far as possible, removed from the model. In order to achieve this, the
training shapes are aligned before training begins so as to minimise the total-squared

distance between the landmarks and their mean positions over the whole training set.
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This is achieved using a Generalised Procrustes Analysis method [46]. Each shape is
aligned with the average shape using a weighted least-squares method. The weights
are chosen to give more significance to the points that tend to be most ‘stable’ over
the training set. Further details of the alignment procedure are given by Cootes et

al [27].

3.1.3 Principal Component Analysis of training set

The Procustes Analysis results in a set of aligned training shape vectors, x;. The
dimensionality, 2n, of « is typically larger than the number of independent ways in
which the shapes can vary. This is because the points do not move independently of
each other. For example, the movement of two nearby points at the tip of the chin
will be very highly correlated. The PDM uses a parameterised representation of the
shape variation that captures this correlation between points and can thus represent
the variation present in the training set by a much smaller number of parameters than
2n. This is achieved by performing Principal Component Analysis [70], as follows:

The mean training shape, &, is given by:

m

T = % > (3.2)

=1

Each shape’s deviation from the mean, &, is given by dx;:

The 2n X 2n covariance matrix, S, is then calculated:
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m
S=> éwidx] (3.4)
i=1
By calculating the eigenvectors, p, (k =1,...,2n), of the covariance matrix, the

cloud of shape examples in the 2n-dimensional space can be represented by a set of

mutually orthogonal axes defined by the eigenvectors of S.

where ), is the k' eigenvalue of S, A\, > A\pi1.

The largest eigenvalues correspond to the axes that describe the most significant
modes of variation of the shapes. Most of the variation can usually be described by

a relatively small number, ¢ (< 2n), of these axes.

Any shape, «, in the training set can then be approximated by a weighted sum

of the first ¢ eigenvectors and the mean shape,
x~x+ Pb (3.6)

where P = (py, Py, ...p,) is the matrix of the first ¢ eigenvectors, and b is a vector

of weights, normally referred to as shape parameters.

The value of t is usually chosen so that the sum of the variances of the first ¢

modes, describes a given proportion of the total variance, Ay, where,

2n
Ar =\ (3.7)
k=1
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The number of modes in the model can also be chosen in such a way as to ensure

the model is able to reconstruct its training examples with a given level of accuracy.

By varying the values of the shape parameters, b, in equation 3.6, representations
of new examples can be constructed. It is important to define limits on the range
of values that the shape parameters can take. Assuming a uni-modal distribution of

each paramter, by, each one is chosen to be within the limits,

/A < b <V (3.8)

where 7 is chosen such that any shapes generated are plausible instances of the class

of objects to be represented.

Each element of the vector b controls a mode of variation of the shape model.
If we vary a single element of b and fix all the others, equation 3.6 can be used to
reconstruct a set of example shapes corresponding to the variation encapsulated by
that element of the shape vector. Figure 3.2 illustrates the three most significant
modes of variation for a PDM of the human face - that is the effect of varying the
first three model parameters. The model shown was built from a training set of 768
images and is represented by 30 eigenvectors. These eigenvectors represent 98% of

the variance observed in the set of training examples.

3.2 Searching images for plausible shapes

A PDM is specific, that is, capable of generating only ‘legal’ shapes. This property
is critical for robust image interpretation, in which we seek image shapes that can
be represented by the model. Although there exist various methods of searching for
plausible shapes (see for example, Hill and Taylor [51]), the most successful algorithm

is the Active Shape Model (ASM). A detailed description of this method can be found
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Figure 3.2: Effect of varying each of first three face shape parameters
between +3 s.d.

in Cootes et al [26]; here we give a brief overview.

3.2.1 Matching local grey-level models

The approach taken in the Active Shape Model algorithm is to combine PDM model
constraints with a local search for each of the landmark points. In order to do this,
factor models [54] are built of the local grey-level appearance around each point [26].
Each model is usually of a region aligned normally to the curve on which the landmark
point lies. This is illustrated in figure 3.3.*. A statistically defined ‘fit’ function allows
the similarity between a local model and any image patch of the same dimensions to

be assessed. Fitting the factor model to an image patch, yields a set of local model

*This illustration was kindly provided by Dr. Stuart Solloway
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parameters - these are sometimes used for further analysis, such as recognition.

Object
Boundary

® = Llandmark Point

<= =Normal to Curve

Figure 3.3: Grey-Level sample patches aligned along normals to curve.

The ASM algorithm combines search for matches to local grey-level models with
the global shape constraints provided by the PDM. The algorithm is similar to the
‘snakes’ of Kass et al [56] in that image data is used to ‘attract’ control points; the
crucial difference is the application of global a priori shape constraints, in fact ASMs

are sometimes referred to as ‘smart snakes’.

To begin ASM search, an instance of a PDM is initialised in an image. The aim
is to then iteratively refine the PDM. This is achieved by searching the image around
the current location of each landmark point, seeking better matches for its local grey-
level model. Usually the search is along normals to the curve on which the point lies.

This is illustrated in figure 3.4

This results in a set of suggested adjustments to the landmark points, given by a
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Model
Fit

Search along
normal to curve

Figure 3.4: ASM Search. At each model point a better location is
sought by searching along the normal at the current location.

displacement vector, dx:

de = (dzy,dxs, ...  de,,dy;, dys, ... ,dy,) (3.9)

Given the vector of required adjustments, de, the model is updated in two stages:

1. the pose, scale, and orientation of the model are updated.

2. the shape parameters, b are updated.

The pose, scale and orientation of the model are adjusted in such a way as to make
the points move as near as possible to their desired locations in a least-squares sense.
The remaining differences between the model points and their desired locations are
known as the residual displacements, dx’. The residual displacements are reduced by
updating the shape parameters of the model. The model parameters, b, are allowed to

vary within limits learnt from the training set. Cootes et al [27] show that by applying
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a least squares approach, the optimum adjustments, db, to the shape parameters, b,

are given by:

db = PTdz' (3.10)

By ensuring that the model points are only moved by changing the model param-
eters within limits learnt during training, the new shape will always represent a legal
example. The search procedure is repeated until further iterations do not result in
any change in the model. At this point, the search is said to have converged. Figure

3.5 shows an example of ASM search.

After 6 iterations After 18 iterations

Figure 3.5: Locating a face using the Active Shape Model search algo-
rithm.
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3.3 Modelling shape-free texture

Modelling shape alone only encapsulates a limited amount of information. Models of
the grey-level appearance attempt to capture information from all the pixels in the
region of the image containing the face. A well-known grey-level modelling technique
is the ‘eigenface’ method used by Turk and Pentland [92]. In the eigenface approach,
a set of training images containing faces are represented as vectors of pixels, and Prin-
cipal Component Analysis is performed, yielding a low-dimensional representation of

the image data.

The main drawback of the eigenface method is the lack of pixel correspondence
across the training set. Even if the training images are normalised for the position,
scale and in-plane rotation of the face, the natural variability in face shape means
that corresponding facial features occur at different image locations. This occurs
in images of the same person (due to factors such as pose change and expression)
and images of different individuals (due to variation in face shape). We follow the
approach of Lanitis et al [64] and address this problem by deforming face images to
a standard shape. In this procedure, the training images are deformed so that key
landmark points are made to coincide. Details of the warping algorithm are given in
Appendix A. The landmark points are those defined in the PDM, and each image is
deformed to the average shape of the training set. Figure 3.6 shows some example

faces and extracted ‘shape-free’ patches.

Each shape-free patch can be represented by a vector of grey-level values, g:

g="(91.92,---, ) (3.11)

where g; is the intensity of the i*" pixel in the shape-free patch. Principal Component
Analysis of the shape-free grey-level vectors for the training images produces a model

of the form:
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Figure 3.6: Example faces with extracted ‘shape-free’ patches.

g~g+Pb, (3.12)

where g is the mean grey-level vector, P, is a set of orthogonal modes of variation
and b, is a vector of grey-level parameters. Since the columns of P, are orthogonal,

the set of model parameters for a given vector, g, can be calculated by:

b, =P (g —9) (3.13)

Variation encapsulated by this model is representative of ‘real’ grey-level variation

in face images, rather than variation caused by lack of alignment in the training set.
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Such a grey-level model is an important component of the combined appearance
models we present in Chapter 4. Figure 3.7 shows the first three modes of variation

of a typical shape-free face model.

3sd - p +3sd

-

Mode 1

)

Mode 2

Mode 3

Figure 3.7: First three modes of variation of a typical shape-free face

model.

3.4 Interpreting faces using ASMs

A PDM provides a parameterised description of object shape, given by the shape
vector, b. Once an ASM search has located a plausible shape in an image, the shape
vector can be used to interpret the meaning of the shape found. As has been pointed
out by several authors [16] [31], using shape alone limits the accuracy of interpretation

for face images; better interpretation must use grey-level information. Both local
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grey-level models, and ‘shape-free’ grey-level models can be used for interpretation

[64].

3.4.1 Classification

A simple and important type of face interpretation is classification, most often to
decide the identity of the face. A typical task is to assign a previously unseen image
to one of several possible identities. For each identity the system is previously pre-
sented with several examples of that person. If, for example, the classifier uses shape
information, the vector of shape parameters, b, extracted from the unseen images
is used to measure the ‘distance’ between the image and each training group. The
simplest measure of identity is given by the Euclidean distance between the model
parameters of the located face and the centre of each class in the training set. This
measure is, however, not satisfactory due to the confounding effect of other types of
variation on face shape. It is essential to take account of the variation present in
the training examples. A simple 2D illustration of this is shown in Figure 3.8. The
squares and circles represent training examples plotted in shape parameter space.
The unseen face lies closer to the centre of ‘Brian’ than ‘Ann’, yet an observation of
the variability in the two classes shows that it is far more likely to be ‘Ann’ than

‘Brian’.

This problem can be overcome by using the Mahalanobis Distance [70]. This is a
measure of the distance to class centroids, but which takes into account the spread of
the individual classes and correlation between variables. Let b; be the mean model
parameter vector of class i. The Mahalanobis Distance, D; between an observation

b and the class i is given by:
D= (b—b,)"C; (b~ by) (3.14)

where C) is the covariance matrix for the training examples of class 7. In order to
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Figure 3.8: Illustration of the effect of training-class variability. Un-
known example is more likely to be Ann than Brian, even though it lies
closer to the centroid of Brian.

classify a new example, the Mahalanobis Distance between the observation and each

class centre is calculated. The observation is assigned to the ‘nearest’ class.

3.4.2 Identification using shape and texture

Lanitis [61] [65] used an ASM algorithm to locate faces in images. Several clas-
sification experiments were performed using shape, local grey-level models, global

shape-free grey-level models, and combinations of the three.

The experiments used a training set consisting of 160 images, 8 each for 20 indi-
viduals. This training set was used to build a PDM, a set of local grey-level models,
and a shape-free grey-level model. Identification trials were performed on 2 test sets,
a so-called ‘normal’ set containing 200 images without occlusions, and a ‘difficult’ test
set of 60 images in which occlusions were present. Figure 3.9 shows some example

images from the three sets.

The system was shown a test image and ASM search was performed, given a
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Figure 3.9: Examples from the three image sets used by Lanitis to
evaluate ASM-based recognition.
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reasonable starting approximationf. ASM search produced shape and local grey-
level model parameters. The resulting shape was used to warp the face into the
shape-free reference frame, and the shape-free grey-level model parameters computed
using equation 3.13. The face was then classified using the smallest Mahalonobis
distance from the centre of each training class. Lanitis [61] recorded correct matches
and occasions when the correct match was returned as one of the three most likely
faces. Table 3.1 gives the classification results reported. It should be noted that
these classification results do not allow for rejection, that is, when the test face is
not recognised at all. Since the entire set of test faces are known to be in the gallery,
this forced-choice method is not an entirely fair test, and can produce over optimistic

results.

tSince all the faces occur in roughly the centre of the image, the ASM could simply be started
from a central position each time.
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Normal test set Difficult test set

Correct Within 3 Correct  Within 3

Shape model 50.3% 66.6% 15.6% 31.1%

Shape-free grey

model 78.7% 87.3% 31.1% 53.3%
Local grey-
level models 77.3% 89.7% 28.9% 57.8%
Shape + shape-
free models 85.3% 93.3% 34.4% 56.7%
Shape + local
models 80.0% 90.3% 34.4% 66.7%

All methods 92.0% 97.0% 48.9% 77.4%

Table 3.1: Classification results reported by Lanitis [61].

3.5 Discussion of the ASM-based approach

Table 3.1 shows encouraging results using the ASM approach. In particular, combin-
ing all the shape and grey-level information appears to give better performance than

using any of the models alone.

Unfortunately, the combination of the models occurs only at the final classifica-
tion stage; until then, the system uses 3 completely separate models. This has several
drawbacks. Firstly, there is considerable overlap between the information encapsu-
lated by the models. Local grey-level models contain some variation explained in the
shape-free grey-level model, and some of the change in shape-free grey-level variation
is correlated with variation in the shape model. Not only does this mean the rep-
resentation is redundant, but also, since the models are treated as independent, the

representation is not specific - it is possible to generate illegal combinations of shape
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and grey-level appearance, such as a shape which represents a closed mouth, but a
shape-free patch showing teeth. This lack of specificity can only serve to degrade

both location and classification performance.

The ASM search algorithm does not make full use of the information modelled,
the shape-free grey-level model is sometimes used to give an overall final fit measure,
but otherwise plays no part in image search. Moreover, the information used in
ASM search is not used optimally - again because the algorithm does not account for
correlation in the data. Not only are local grey-level models correlated with the shape
model, but individual local models are correlated with each other; this is particularly
obvious for say, two nearby edge points. Haslam [48] describes a method in which
the local models are concatenated to produce a single model, accounting for the
correlations between individual models, however, the ASM search algorithm cannot
be used with this model. Alternative search strategies such as Genetic Algorithms
must be used, which can be successful as Hill and Taylor [50] have shown, but cannot

approach the speed of ASMs.

In this thesis we develop a unified approach to modelling which addresses all
these problems. We describe the construction of a complete model of appearance,
controlled by a single set of uncorrelated parameters. Further, we describe a search
algorithm that makes use of all the information in the model, both shape and global
grey-level appearance. The new method uses a more specific representation, and all

the image data, whilst achieving the speed of the ASM method.

3.6 Summary

This chapter has introduced Point Distribution Models (PDMs), which are used as
part of the unified appearance model we describe later in the thesis. A PDM is
built from a training set, using Principal Component Analysis (PCA), a technique

we have described and will use again. By using a training set, the PDM comes close to
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achieving the twin goals of generality and specificity; however only a limited amount
of the information present in face images is represented. We have also described
the construction of shape-free grey-level models of the full-face region, which capture

additional information that is assumed to be independent of shape.

We have given a brief overview of the Active Shape Model algorithm, which uses a
PDM in conjunction with local grey-level models to drive image search. ASM search
was used by Lanitis [61] as the basis for several face recognition experiments. In
summary, the results showed that, having located the face with an ASM, the best
results were achieved by using a combination of shape, local grey-level, and shape-free

grey-level models for classification.

Finally, we have discussed the shortcomings of the ASM approach. In particular
the combination of shape and grey-level models introduces a lack of specificity because

the assumption of independence is invalid.
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Chapter 4

Appearance Models

In this chapter we describe a new approach to face modeling using Appearance Mod-
els*. These are statistical models of the appearance of faces in images, learnt from
a set of training images. Unlike Point Distribution Models and Shape-Free Region
Models, the approach encapsulates both shape and grey-level variation in a single
model. The method of constructing an Appearance Model is described and illustra-

tive results are given.

4.1 Motivation

The model-based methods presented in the previous chapter do not unify the full
shape and texture information in face images. In order to encapsulate the information
required for both location and interpretation, three separate models are used. Since
the models are not completely independent there is inevitably some redundancy and

lack of specificity in the representation. The aim is to produce a single representation

*This type of model was introduced by Edwards et al [38] and referred to as a Combined Ap-
pearance Model; since then we have adopted the shorter version of the name. This should not be
confused with the earlier work of Lanitis [64] who used the term Appearance Model to describe the
coupling of a PDM and Shape Free Grey-Level Model. Unless explicitly stated otherwise, the term
is used to refer to the new type of combined model.
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that encapsulates all the variation of face images in a single model.

Particularly desirable is a generative model - a model capable of reconstructing
synthetic examples of face images. The ability to synthesise complete, photo-realistic
faces is itself a desirable property, but it is in the analysis of face images that a
complete representation is important. In fact, this requirement can be taken as a
necessary (but not sufficient) condition that must be fulfilled by a specific and general
model. If the system claims to understand face images then it ought to be able to

reproduce them.

In many machine vision applications, images are analysed by making a limited
set of measurements - edges for example. The Active Shape Model method relies
upon a relatively small number of measurements around landmark points. Although
a reduced number of measurements makes for efficient processing, it inevitably re-
duces the power of further analysis. In any measurement system, a reduction in
measurement dimensionality risks losing discriminatory power. If we begin by choos-
ing arbitrary features such as edges at the start of the analysis it is very difficult
to quantify how much interpretation power we lose by ignoring other features. By
starting with a complete representation of face appearance, we have the opportunity
to reduce the dimensionality at a later stage if required, but with analysis of and

control over the loss of discriminatory power.

4.2 Formulation

An Appearance Model is generated by combining a Point Distribution Model with
a Shape-Free Region Model. The PDM explains variation in face shape, whilst the
region model explains intensity variation, but with the important step of shape nor-
malisation - the warping of the training images to an average shape is important in

establishing correspondence.
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We begin, as previously, with a training set of labelled images, where key land-
marks are marked on each face. Given such a training set, we can generate a Point
Distribution Model as described previously. Recall that all the training shapes are
aligned into a common frame before applying Principal Component Analysis (PCA)

to the data as described in section 3.1. Any example can then be approximated using:

x~ T+ P,b, (4.1)

where & is the mean shape, P, is a set of orthogonal modes of shape variation

and b, is a set of shape parameters.

To build a statistical model of the grey-level appearance we use the method de-
scribed in section 3.3, warping each example image so that its control points match
the mean shape (using the triangulation algorithm given in Appendix A). We then
sample the grey-level information g;,, from the shape-free image patch. The warping
stage ensures that there is correspondence between grey-level values of pixels over

the training set.

Most naturally acquired training sets will contain considerable variation due to
large-scale properties of the lighting and camera configuration. We account for this
by extending the approach given in section 3.3. The effect of variation in image
brightness and contrast across the training set can be removed in advance by apply-
ing normalisation to the shape-free patches. This prevents the model encapsulating
such variation as a natural part of face variation. This is desirable from a both re-
construction and analysis point of view; the effects of global lighting change can be
extracted or synthesised separately. To minimise the effect of global lighting variation,

we normalise each training sample by applying a scaling, «, and offset, f3,

9= (9im — F1)/a (4.2)
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The values of o and 3 are chosen to best match the vector to the normalised mean
sample of the whole training set. Let g be the mean of the normalised data, scaled
and offset so that the sum of the elements is zero and the variance of the elements is

unity. The values of a and /3 required to normalise g;,,, are then given by:

®=8;ng , B=(9im1)/n (4.3)

where n is the number of elements in the vectors.

Obtaining the mean of the normalised data is then a recursive process, as the
normalisation is defined in terms of the mean. A stable solution can be found by
using one of the examples as the first estimate of the mean, aligning the others to it

(using 4.2 and 4.3), re-estimating the mean and iterating.

By applying PCA to the normalised data we obtain a linear model of the form:

g~ g+ P,b, (4.4)

where g is the mean normalised grey-level vector, P, is a set of orthogonal modes
of grey-level variation and by = (by1,by2,...,by) is a set of grey-level appearance

parametersf.

The shape and appearance of any example can thus be summarised by the vectors
bs and b,. Since we expect some correlation between the shape and grey-level varia-
tion, we apply a further PCA to the data as follows. For each example we generate
the concatenated vector b,

W b, W, PT(x — x)
b= = (4.5)

b P;(g -39

tFor simplicity of notation we always use t to signify the number of elements in a particular
parameter vector, although the actual number of elements in the shape and grey-level parameter
vectors is usually different.
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where W is a diagonal matrix of weights, wg, wyo, ..., ws, one for each shape
parameter, allowing for the difference in units between the shape and grey models

(see below). We apply PCA to these vectors, giving a further model
b~ Qc (4.6)

where @ are the eigenvectors of the covariance of b over the training set and c is a
vector of appearance parameters, ¢y, cs, ..., ¢, controlling both the shape and grey-
level appearance of the model. Since the shape and grey-model parameters have zero

mean, ¢ does too.

Since the columns of @ are orthogonal, we can obtain ¢ for a given b simply:
c=Q"b (4.7)

Note that the linear nature of the model allows us to express the shape and grey-levels

directly as functions of ¢
r ~ 3_3 + PSWSQSC ) g ~ g + PgQgc (48)

where

o-| @ (1.9)
Q,

An example image can be synthesised for a given ¢ by generating the shape-free
grey-level image from the vector g and warping it using the control points described

by x.
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4.2.1 Choice of shape parameter weights

The elements of by have units of distance, those of b, have units of intensity, so they
cannot be combined directly. Because P, has orthogonal columns, varying b, by
one unit moves g by one unit. To make by and b, commensurate, we must estimate
the effect of varying b, on the sample g. To do this we systematically displace each
element of b, from its optimum value on each training example, and sample the image
given the displaced shape. The RMS change in g per unit change in shape parameter
bsi gives the weight ws; to be applied to that parameter in equation (4.5).

4.3 Example of a face model

In this section we present the face model used in this thesis, built using the technique
outlined above. The model was built using a training set of 768 images (details of
the training images used are given in Appendix B). For each of these images the
shape landmark points were located by hand. Figure 4.1 shows a selection of typical
images taken from the training set. Most of the training images were greyscale, with
a small number also available in colour. The model used for the most of the work
in this thesis was built by first converting all the images to grey-scale, although we

later show how colour images can be used to build colour models.

A key feature of the set of training images is the range of variability. If we are to
build a model capable of generalising to new faces, the training set must contain a
wide range of variation in identity, lighting, expression and pose (at least up to the

range of pose we intend the model to work with).

The resulting model contained 85 modes of variation, each controlling a particular
combination of shape and texture variation. This was sufficient to capture 98% of

the variation in the training set.
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Figure 4.1: Selection of typical face images from the training set.

4.3.1 Visualisation

Recall from equation 4.8 that we can reconstruct an example face by choosing suitable
values of the model vector ¢. The range of allowable values for each element of c,
¢; can be estimated by noting that the eigenvalues obtained in the PCA give the
variance of the training data in the direction of the corresponding eigenvector. We
can visualise the modes of variation of the appearance model in the same way as the
Point Distribution Model (see Figure 3.2), by varying each of the model parameters
separately. The effect of varying the first three parameters of the Appearance Model

is shown in Figure 4.2.

At this point we can note some characteristics of the model. Each mode of varia-

tion describes a combination of effects. The first mode shows pose change, and there
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Figure 4.2: The effect of varying the first three parameters of the ap-
pearance model between +/- 3 s.d’s.

is clearly change in the identity of the face, as well as the expression and lighting
conditions. This is to be expected, since no distinctions are made between images
during training - equal weight is given to each face regardless of its characteristics.
This compounding of several ‘real’ sources of variation into single modes of variation
is not ideal for some interpretation and synthesis tasks. Ideally, the model would
have distinct sets of parameters with which we could control and analyse properties
such as pose and expression, independently of other types of variation. This problem

is addressed later in the thesis.
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4.3.2 Fitting the model by hand

Given a new image, with a set of hand annotated landmark points, we can generate
the model’s closest possible representation of the data, the so called, ‘best-fit’. This
is a two-step process: first we calculate the parameters of the shape and shape-free
grey-level models using equation 4.5. Applying the appropriate shape parameter
weights and concatenating the parameter vectors, we then use equation 4.7 to find
the parameter vector, ¢, for the Appearance Model. We then reconstruct the image
using equation 4.8. Figure 4.3 shows the result of fitting the model to images from

the training set and to unseen test images (which have also been hand-landmarked).

Trainin, ..
& Trainin;

—

Training Training

Figure 4.3: Reconstruction of images from training set and unseen im-
ages.
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4.3.3 Limitations of the reconstruction method

Ideally, the perfect model would be able to reconstruct any new face presented to the
system. This assumes that the training procedure has captured sufficient variation
to generalise to unseen faces. Observation of the reconstructions in Figure 4.3 shows
that the reconstruction error is generally less satisfactory for the unseen images. A
major limitation in the method used to compute the reconstruction is that it is shape-
dominated - any error in the face shape causes the wrong set of pixels to be projected
into the region model, which can have a serious effect on the model parameters and
subsequent reconstruction. This is not only a problem if the landmarks are badly
placed, but is a limitation of the model itself. Even a slight inability of the shape
part of the model to represent the given landmarks of the unseen image can cause a

large sampling error in the region model.

We believe this to be a limitation of the face interpretation scheme presented by
Lanitis et al [61]. In Lanitis’ method, faces are located using an Active Shape Model.
The located region is then sampled and interpreted using a grey-level model. As
Figure 4.3 shows, even with careful hand placement of the landmark points, shape

dominated model fitting leads to reconstruction errors.

In Chapter 6 we introduce a unified image interpretation scheme which fits both
shape and texture simultaneously. At this point we simply present an example of
the result obtainable. The method allows the same model to reconstruct unseen
data more satisfactorily. The given landmark points do not dominate matching - the
shape is allowed to vary slightly in order to produce a better texture reconstruction

as illustrated in Figure 4.4.

4.3.4 Specificity

The key requirement of a successful face model is that it should not be able to generate

implausible examples of faces. We can qualitatively assess the specificity of the model
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Figure 4.4: Reconstruction using unified fitting method. Left - original
image, Centre - fitting with shape-dominated scheme, Right - unified
fitting scheme.

by generating faces using random values of the model vector. Whilst not proving that
all images the model could ever generate are legal, this is an efficient test when faced
with the 80 plus dimensions of the model. We define the model’s scope as the images

that can be produced by choosing any values of the parameter vector ¢ such that:
—rs; < ¢ < T18; (4.10)

where r is the number of standard deviations of variation allowed. Typically we set
r = 2, restricting all generated faces to be within 2 standard deviations of the average
of the training set. For normally distributed parameters this choice should include
over 95% of plausible model instances. Figure 4.5 shows a range of images randomly
generated by the model. Most of the faces appear plausible - the white specks seen
in some images are created when the shape varies so much as to cause triangles in

the warping algorithm to overlap.

4.4 Summary

In this chapter we have described the construction of Appearance Models. An Ap-
pearance Model combines a Point Distribution Model with a Shape-Free Grey-Level

Model to produce a unified representation of facial appearance.

80



CHAPTER 4. APPEARANCE MODELS

The model is controlled by a compact set of parameters. By varying these pa-
rameters we can visualise the space represented by the model. The model is general
and specific, capable of representing unseen faces, but not of generating implausible
examples. The drawback of the approach is the compounding of real-world sources
of variation into single model parameters. We address this issue in the following

chapters.

At this point we have introduced Appearance Models as a representation, and
shown how they can be used to generate synthetic face images. In Chapter 6 we will

describe a method that uses Appearance Models for face location and interpretation.
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Figure 4.5: A selection of random faces generated by the model.
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Chapter 5

Partitioned Models

This chapter describes methods of improving the specificity of the face Appearance
Model. We introduce methods of partitioning a model into separate subspaces, pro-
ducing representations that encapsulate specific sources of variation such as identity
and expression. We demonstrate how face images can be projected onto these sub-

spaces and manipulated.

5.1 Motivation

A vital part of the model-based approach to face understanding is the ability of the
model to generalise to as wide a range of faces as possible. We have shown how
the Appearance Model representation achieves this, representing a wide range of
individuals’ faces, with various expressions in a range of pose and lighting conditions.
Unfortunately, the price of this generality is the confounding of the separate sources
of variation. A single parameter of the Appearance Model can affect the face in many
ways - for example, changing both identity and expression. A more source-specific
representation would provide advantages for interpretation, synthesis and tracking

applications and may also simplify model building.
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5.1.1 Interpretation

Face interpretation tasks involve, by definition, the extraction of information that has
meaning in human terms. The information content of a face image can be naturally

divided into 3 categories:

e inter-face variation (identity)
e intrinsic intra-face variation (expression/speech)

e extrinsic intra-face variation (pose/lighting)

In model-based face interpretation, information is obtained by analysing the model
parameters extracted by matching to a face image. The analysis of this multivariate
data is much more tractable if a representation can be found in which the measured
variables behave orthogonally. Whilst the model parameters are orthogonal over the
whole training set, they turn out to be correlated over particular types of variation,
such as identity, expression or pose. The aim of model partitioning presented here is
to produce orthogonal sets of parameters that encapsulate particular aspects of the

appearance of faces in images.

5.1.2 Synthesis

Appearance Models can generate realistic reconstructions of faces. By varying the
model parameters we can manipulate these reconstructions, producing new, novel
images which remain convincing faces, but are nevertheless very different from the
original image. Without any correspondence between real-world variation and the in-
dividual model parameters, it is difficult, however, to achieve any useful manipulation
of face images, such as simulated speech or expression change. Partitioning the model

aims to allow the manipulation of particular facial affects, for example, changing the
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expression of a face from sad to happy, without affecting other properties such as

identity.

5.1.3 Tracking

One of the key aims of this project is reliable face tracking. A useful system ought
to deal with a wide range of individuals, and should not need priming with prior
information about the identity of person being tracked. All analysis, including iden-
tification should be automatic. The model used must be capable of representing
different identities. In a tracking scenario, however, this generality becomes a handi-
cap. Once the tracker has a confident ‘lock’ on the face, there ought to be an extra
powerful constraint - the identity of the face must remain fixed. A model that allows
the identity to change throughout tracking clearly lacks specificity, and thus robust-
ness. Eliminating identity variation completely (by modelling a single individual, say)
would, however, prevent the model from fitting to unknown faces. Ideally we would
like independent control of the identity part of the model, so that the variability can

be controlled as required.

5.1.4 Model building

One problem with simple Appearance Models is selecting a sufficiently large training
set to account for all sources of variation. As well as providing the raw training images,
additional information is available - for example, many images are multiple shots of
the same individual and many images are labelled with expression. By focusing on
describing each type of real-world variation separately it may be possible to reduce
the number of training images required. This idea is the basis of an iterative model

building approach developed by Costen et al [28].

85



CHAPTER 5. PARTITIONED MODELS

5.2 Modelling subspaces

The Appearance Model defines allowable modes of variation by Principal Component
Analysis of a large training set. This produces a parameterised model capable of
generating new, unseen (but always plausible) examples of faces. In this chapter we
attempt to find modes of variation which can only produce plausible examples of
certain types of variation. For example, we would like to encapsulate face variation

due to expression change only.

The full Appearance Model can be thought of as encapsulating face variation in a
high dimensional vector space defined by the model parameters, ¢, given in equation
4.7. We seek projections of the data onto lower dimensional subspaces controlling

particular types of variation.

Although we might attempt to build Subspace Models by analysis of the original
shape and grey-level data, we choose to perform the analysis in the space defined by
the Appearance Model. The methods described in this chapter require the calculation
of within-class covariance matrices. If these are built using the original data they will
usually be singular, since the dimensionality of the raw data is usually greater than the
number of training examples. Calculating the within-class covariance matrix in the
frame of the Appearance Model avoids this problem. A further benefit arises, since
the mapping from raw points and pixel values into Appearance Model parameters
constitutes a reduction in dimensionality from several thousand dimensions to a few
tens. In many applications we will need to perform analysis on multiple subspaces
such as pose, expression, identity and lighting at the same time. By building these
subspaces in the Appearance Model space, the large dimensionality reduction (and
correspondingly large matrix multiplication) is only performed once and the mapping

from Appearance Model parameters to subspace parameters is comparatively cheap.

A potential danger of this method is that of encapsulating too little variation in

the original Appearance Model. For example, it may be that subtle movement of
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the eyebrows is statistically insignificant over the whole training set, but might be
important for interpreting expressions. This effectively means that the Appearance
Model has rejected real variation as noise. The results presented in this chapter show

that this problem can be avoided in practise.

We have investigated several methods of estimating suitable subspaces using still
images as training data. Each of these involves extra knowledge about specific images,
such as the identity or expression of the individual. In each type of analysis we have
adopted a linear approach to the problem of isolating real-world sources of variation.
Initially, we assume that there exists a representation in which sources of variation
are linearly independent. Thus, we assume one can, for example, manipulate the
expression of a face without changing its identity or pose. This turns out to be a
useful approximation. In Chapter 7 we introduce an improved approximation based

on analysing video sequences.

5.3 Linear Discriminant Analysis

Given that an Appearance Model provides a compact description of the training data,
we seek a further analysis of the data that yields a description of specific sources of
variation. A natural approach is to seek a description of the data that maximises
separation of subclasses related to that particular source. For example, to build a
model of expression variation, one might try to define a set of modes of variation
which give the maximum separation between the classes, happy, sad, etc., whilst
minimising other types of variation. A common technique for this addressing this
type of problem is Linear Discriminant Analysis(LDA). For a detailed background
to discrimination and classification techniques, the reader is referred to books by
Hand [47], and Johnson and Wichern [54]. LDA has been applied to face analysis in

an eigenface formulation by Belhumeur et al [7].

The basic requirement for LDA is a set of training data to which class labels have
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been attached. Usually there exist many training examples per class. Discriminant
analysis can be applied naturally to the problem of calculating an identity subspace;
it is easy to apply class labels to the training images. Calculating an expression
subspace using this technique is more difficult, requiring a rather arbitrary choice of

labelling scheme.

5.3.1 Formulation

We build a Discriminant Subspace by taking an existing Appearance Model, and
attempting to find linear transformations of the modes of variation which yield new
modes describing specific attributes such as identity or expression. For each of the
examples in the original Appearance Model training set, we attach a class label, such
as the identity or expression of the face. We then calculate the vector of Appearance
Model parameters, ¢, for each example, k, using equation 4.7 (given the known
locations of the landmarks). This produces a training set of N vectors each uniquely
assigned to one of [ classes, {C1,Cy, ..., C;}. We define a between-class scatter matrix

B= Z Ni(¢; —¢&)(e; —e)” (5.1)

where ¢ is the mean of all the examples, ¢; is the mean of class i, and N; is the

number of examples in class i. A within-class scatter matrix is defined as

W = Z Z (Ck — éi)(ck — éi)T (52)

=1 Ck eCi

We seek an orthogonal mapping between the model parameters, ¢, and a lower-

dimensional space, defined by a new vector of model parameters, d, according to:

c~ Dd (5.3)
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where D is a matrix of orthogonal eigenvectors. Since D is orthogonal, given a set

of parameters, d, the projection back into the original space will be given by:

d=D'c (5.4)

The optimal choice of D is the orthonormal matrix which maximises the ratio of

the determinants of the within-class and between-class covariance matrices.

D |D"BD|
opt = Arg MaxX-—————
P S Y D"W D)
= [617627---76771] (55)
where the columns of D,,, {e;[i = 1,2,...,m} are the m generalised eigenvec-

tors of B and W corresponding to the m largest generalised eigenvalues, {)\;|i =

1,2,...,m}:

Bei :)\iWei, 1= 1,2,...,m (56)

The eigenvectors corresponding to non-zero eigenvalues represent the basis vectors of
the space in which between-class variation is maximised at the expense of within-class
variation. There are a maximum of (I — 1) non-zero eigenvalues. The corresponding
eigenvalues reflect the amount of separation achieved by each basis vector. The eigen-
vector corresponding to the largest eigenvalues represents the greatest separation, the
second represents the next most separation, and so on up to m. The analysis is per-
formed on the Appearance Model parameters rather than the raw data (points and
grey-level samples), since the rank of W is at most (N —1[). Since the dimensionality
of the raw data is likely to be much greater than N, W would always be singular,
meaning that it would be possible to choose axes such that the within-class spread
was zero. By performing LDA in the much lower dimensionality of the Appearance

Model space we avoid this problem.

Figure 5.1 illustrates 2D discriminant analysis for a synthetically generated two-
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class problem. Here the circles represent objects from one class, the triangles objects
from a second class. The dashed line shows the first Discriminant Axis. This axis

gives the principal direction of group separation.

12 N R

10F AN . Object Class 1 4
N A Object Class 2

gl First Discriminégt Axis i

Feature 2

Feature 1

Figure 5.1: Linear Discriminant Analysis in two dimensions. Examples
from each class are shown scattered in 2D - each is also shown projected
onto the single discriminant axis. This projection yields the optimum
group separation.

5.4 Residual subspaces

As well as the directions describing a particular type of variation, we are also in-
terested in the remaining orthogonal directions not spanned by the Discriminant
Subspace. For example, in the case of identity variation we could use LDA to build
an identity subspace. The residual subspace will represent that variation which is

not related to the identity of faces.
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In order to get a reliable estimate of the variation in the residual space we calculate
a Residual Subspace by projecting out of the full Appearance Model any variation that
is explained by an existing subspace model. Given the Appearance Model parameters
of a training example, ¢, we can combine equation 5.4 and 5.3 to give a estimate ¢’
of the model parameters that result if the variation is explained by only the subspace

model:
¢ =DD"¢c (5.7)

We can then calculate a vector of residual variation de, that was not explained by

the Subspace Model:
de=c—c (5.8)

We calculate dc for each training image, and perform PCA on these to find the
eigenvectors which describes the residual variation. Variation in the residual sub-
space is parameterised by a vector of eigenvector weights, ». The mapping between

Appearance Model parameters, ¢ and the Residual Model parameters, r, is given by:

c~ Rr (5.9)

r=R'c (5.10)

where R is a matrix of orthogonal eigenvectors. Since the mean of de¢ will be zero

over the training set, there is no constant term in equations 5.9 or 5.10.

Since dc contains no variation in the space defined by D, the spaces defined by
D and R are mutually orthogonal; any change to the Discriminant Parameters, d,
has no effect on the Residual Parameters, ». Moreover, the dimensionality of D and

R sum to the dimensionality of the original space.
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5.5 Identity model using LDA

A large number of the training examples used to build the original Appearance Model
were multiple images of the same person. In total, we labelled between 5 and 10
images of each of 50 individuals. We used these images and labels to perform Linear
Discriminant Analysis on the Appearance Model. The resulting Discriminant Model
had 49 modes of variation. We can visualise the effect of varying the value of d;gentity
by using equation 5.3 to compute ¢ and then reconstructing the image using equation

4.8. The effect of varying the first 3 parameters of d;gensity is shown in Figure 5.2.

3sd < » +3sd
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//
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Figure 5.2: Effect of varying the first 3 parameters of the ‘identity’
subspace model built using LDA.

The modes show considerable variation in the nose, eyes, eyebrows and mouth,
as well as some variation in the overall shape of the face. There appears to remain a

small amount of expression and lighting variation, but little variation in pose.
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5.5.1 Non-identity model

Given the identity model illustrated in Figure 5.2, we can compute a residual model
which describes non-identity variation as described in Section 5.4. This analysis
results in a subspace defined by 36 parameters. The effect of varying the first 3

parameters of r,,,_;q is shown in Figure 5.3.

Mode 1

Mode 2

Figure 5.3: Effect of varying the first 3 parameters of the ‘non-identity’
subspace model built by analysis of data after ‘projecting-out’ identity
variation.

5.5.2 Projecting images onto subspaces

Using equations 5.4 and 5.10, we can visualise the effect of projecting an image
onto either of the subspaces calculated above. We can think of this as visualising

the ‘identity’ and ‘non-identity’ components of the image separately. The identity
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and non-identity spaces are mutually orthogonal and together encapsulate all the
information in the Appearance Model. Figure 5.4 shows some original images together

with their respective projections onto the identity and non-identity subspaces.

Original Identity Non-Identity

Figure 5.4: Original images projected onto identity and non-identity
subspaces respectively.

Figure 5.4 illustrates how Discriminant Analysis breaks down the original space
into spaces which approximate identity and non-identity variation. It is particularly
obvious that the pose of the faces is encapsulated in the non-identity space. The
limitation of the partitioning is seen in the two lower images. For an ideal partitioning,
we would expect the ‘identity’ images to be identical, since the images are of the same
person. However, the large change in expression appears to have some affect on the

system’s estimate of identity.

A further interesting effect is observed in the top two images (woman and old

man). The narrow eyes of the old man are regarded as part of the identity, whilst

94



CHAPTER 5. PARTITIONED MODELS

the wide eyes of the woman are regarded as part of the non-identity space. In fact,
the old man’s eyes do appear narrow in all the training images, whereas the woman

shows a variety of eyelid positions.

These remaining interactions between the identity and non-identity spaces can
be addressed further during tracking; we present techniques for dealing with these

effects in Chapters 7 and 8.

5.6 Expression model

As well as interpreting identity, we are interested in the automatic interpretation of
expression. To this end, we have attempted to derive a subspace corresponding to
variation in the facial expression. Moreover, in synthesis applications, one of the most
useful ways to manipulate a face is to change its expression. We seek a subspace that

allows the manipulation of expression independently of other types of variation.

A large subset of the images used to train the Appearance Model is provided with
expression labels. The labels were provided by a panel of 25 observers who were
asked to classify the faces into one of seven expressions, (happy, sad, neutral, afraid,
disgusted, surprised, angry)*. Naturally, such classification will result in a model of
no greater than 6 dimensions. Figure 5.5 shows some typical examples from the set

of images used for expression analysis.

Linear Discriminant Analysis produced a subspace model with 6 parameters. The
effect of varying the first 3 parameters of the subspace vector for expression, dezpression
is shown in Figure 5.6. We can also visualise the corresponding ‘non-expression’
model. Figure 5.7 shows the effect of varying the first 3 parameters of the non-

expression vector, Tpon—expression-

The non-expression modes show obvious change in pose and identity, whilst the

*For this data we are grateful to Dr. Jane Whittaker, North Manchester Children’s Hospital
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Afraid Disgusted Neutral

Angry Sad Surprised

Figure 5.5: Training examples marked with expression labels.
expression appears fairly constant.

Discriminant Analysis is harder to apply to expression modelling than identity
modelling, since there is a greater uncertainty in the subjective labels (we assume the
identity labels are all perfect). By building an expression model in exactly the same
way as the identity model (in other words, just changing the labelling scheme) mis-
classifications cause problems. Consider the calculation of a within-class covariance
matrix for expression, where we try to encapsulate the ‘non-expression’ variation.
Because of misclassification, there is bound to be some observed within-class varia-
tion which is due to expression. The effect of these problems can be seen in Figure
5.6 where there is noticeable identity variation encapsulated by the ‘expression’ pa-

rameters.
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Mode 1

Mode 2

Mode 3

Figure 5.6: Effect of varying the first 3 parameters of the ‘expression’
subspace model built using LDA.

5.6.1 Projection onto expression subspaces

We can visualise the effect of projecting images onto the expression and non-expression
subspaces calculated above. Figure 5.8 shows some original images with their re-
constructions in the two spaces. This separation of expression and non-expression,
whilst providing a reasonable first approximation is less effective than the separation
of identity and non-identity. In particular, there appears to be some remaining iden-
tity variation in the expression space. This is probably due to the effect of subjective
classification of the images. Particularly interesting is the apparent correlation of
expression with pose as seen in the lower image. In fact, most of the people in the

training set who show the expression ‘disgusted’, do tend to look downwards.
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Figure 5.7: Effect of varying the first 3 parameters of the ‘non-
expression’ subspace model built using LDA.

5.7 Face manipulation

An important property of Appearance Models is their generative nature. An Appear-
ance Model is capable of generating synthetic images with close to photo-realistic
quality. By varying the model parameters it is possible to change the appearance
of a reconstructed face; the partitioned model parameters allow the manipulation of
specific aspects of appearance. This is of potential value in animationf, and other

forms of manipulation, for example, ‘photo-fit’ style forensic applications.

Given an input face, the first stage is to calculate the Appearance Model param-
eters, ¢. These may be derived by analysis of images with hand-placed landmarks,
or alternatively, automatically derived using Active Appearance Model search which

is described in Chapter 6. The example is then projected onto the appropriate sub-

tThis technology has recently been exploited by Createc Ltd., a special effects media company
connected to the National Film and Television School.
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Original Expression Non-Expression

Figure 5.8: Original images projected onto expression and non-
expression subspaces respectively.

spaces to calculate the subspace parameters, d and r:
d=D"c (5.11)
r=R'c (5.12)
We can manipulate either the Discriminant Parameters or the Residual Parameters

by the addition of a vector of required perturbations, dd or 7 respectively. We can

then regenerate a set of Appearance Model parameters, ¢’ according to:

¢ = D(d+dd) + R(r + or) (5.13)
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Usually one of either dd or 7 will be set to zero, in order to restrict the manipula-
tion to one type of variation. Given the new parameter vector, ¢/, the new image can
be reconstructed as described in Section 4.2. This procedure is shown schematically

in Figure 5.9.
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Figure 5.9: Schematic diagram of face manipulation method.
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5.7.1 Retaining the integrity of fine texture

Principal Component Analysis captures the major sources of variation in the training
set. Since small-scale details (such as freckles) occur in fairly random positions in
different faces, their statistical significance can be indistinguishable from noise over
the training set, and thus they are not captured by PCA. This tends to lead to a loss
of fine texture in image reconstructions. Figure 5.10 illustrates this effect; we show
reconstructions of training images, using progressively fewer model parameters. As
we use less of the parameters that correspond to small eigenvalues, the faces retain

their global characteristics but become less textured.

Figure 5.10: Images lose texture as they are reconstructed using fewer

model parameters.

Whilst we can use the model to manipulate the appearance of faces, the synthetic
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reconstructions lack fine texture. Visually, the fine texture is important, particularly
for features such as facial hair. We have addressed this problem in reconstruction by
treating the texture as a separate component that can be added or removed from a

face in any configuration.

Recall from Chapter 4 that the linear nature of the model allows us to express

the shape and grey-levels directly as functions of ¢

T~ i + PsWstc ) g ~ g + PgQgc (5]‘4)

where

Q= (5.15)

After fitting the model to the image, the reconstructed grey-level vector g will
differ from the actual grey-levels in the image, g’ by a quantity dg. This vector
is stored as the ‘fine-texture’ of the face. After manipulating the image and thus

generating a new grey-level vector, we then add back the fine-texture vector, dg.

Figure 5.11 shows the effect of changing the expressions of faces, without the
texture retaining step. In Figure 5.12 we show the same manipulation using the
texture retaining step. The manipulation with added texture preserves the detail in

the image.
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Original Manipulated

Figure 5.11: Manipulating expression without retaining image texture.

Original Manipulated

Figure 5.12: Manipulating expression whilst retaining fine texture.
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5.8 Alternatives to LDA

Linear Discriminant Analysis (LDA) requires that the training data falls into separate
classes, and that the training data be accurately labelled. Whilst this is straightfor-
ward for identity, it is not obvious how the same approach could be used to build,

for example, a lighting subspace.

Even in situations where labelling is natural, limited training data can introduce

bias. Figure 5.13 illustrates this schematically.

We consider a hypothetical two-dimensional case in which we have just two people
and one type of lighting variation. Unfortunately, although we have several training
images of each individual, under various lighting conditions, the range of lighting
observed for each face is very different, and does not even overlap. If we apply LDA
in this case, the resulting discriminant function, although optimal for the training
data, is clearly not correct. This is basically a problem of missing data. There is a
smaller than correct contribution to the part of the within-class covariance matrix
responsible for lighting and thus lighting would be interpreted as part of between-class

variation.

‘Real’ lighting variation

A Incorrect estimate of ID space
o
e
oNe
O
O
O
o O Person A
o U Person B
i
e O
0

(.
»

‘Real’ identity variation

Figure 5.13: Bias caused by poor training data.
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Unfortunately it is very difficult to eliminate such bias from the training data,
since we would have to ensure that each person was represented in an equal spread
of conditions. This would be difficult even in principal and almost impossible in

practice.

An alternative formulation is to build a model of purely within-class variation.
In the case of identity, we know for certain that observed-within class spread is
genuine; we can confidently label the identity of the training images, hence there is
no other explanation of within-class spread. We might further hope that over all
the training groups, we will observe many types of within-class variation, all making
a contribution to the covariance matrix. The only assumption we make is that any
within-class spread observed for a particular individual could be mapped onto another
individual, i.e. that the space is co-linear. By this method we can produce a subspace

which describes non-identity variation.

An important property of this method is that it gives a means of building models of
lighting and pose without having to label the training data with such attributes. We
take training data in which the pose and expressions of the images are fixed, with only
the lighting varied. We could use the identity labels (which are known to be reliable)
to estimate within-class spread. This within-class spread would represent lighting
variation. The same analysis could be applied to calculate a subspace describing

pose variation.

This method may be explored in the future to build explicit models of pose and
lighting; currently we are restricted to a combination of pose and lighting encapsu-
lated by the non-identity model. Other researchers [8] have shown that it is possible

to model variation due to lighting change using a small number (<10) of dimensions.
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5.9 Summary

In this chapter we have described models which isolate specific sources of real-world
variation. We have shown that Linear Discriminant Analysis leads to approximate
solutions for identity and expression models. Approaches based on the analysis of

within-class variation could be used to construct models of pose and lighting variation.

Given a discriminant model, it is possible to describe the residual subspace in a
residual model. This is particularly useful in the case of identity, where we can create
a model of all variation except identity. We show in later chapters how this proves

useful for tracking.

Both the discriminant and residual models can be fitted to landmarked faces.
By manipulating the model parameters, we can vary particular characteristics of the
faces. For example, expression can be modified without changing identity. This
provides a more useful image synthesis and manipulation tool than the Appearance

Model alone.

The approach is limited by the assumption that the possible variation of individual
faces is identical, and that factors such as pose and identity are linearly independent.
A further limiting factor is the large amount of training data required for each type
of variation to be modelled. More efficient and reliable methods for estimating the

correct partitioning of the models are the subject of ongoing research [28].

In many applications, simply requiring that an image be a legal face is not enough,
we must apply further rules. Subspace models are essentially a refinement of the

Appearance Model’s specificity, tailored for particular tasks.
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Active Appearance Models

In this chapter we introduce a new technique in model-based vision known as the
Active Appearance Model or AAM. The AAM approach provides a means of using
Appearance Models directly for image interpretation. The method was first intro-

duced by Edwards et al [37] and described in more detail by Cootes et al [20].

We describe the motivation behind using Appearance Models for image search
and discuss related approaches. The Active Appearance Model algorithm is then
presented with demonstrations of its application. The recognition experiments de-
scribed by Lanitis [61] are repeated using an AAM, and we show that the performance
surpasses that obtained using the Active Shape Model approach, for images without

occlusion. However, the AAM approach performs badly when there is occlusion.

6.1 Motivation

In Chapter 3 we described the method of Cootes et al [27] who used models of
shape and local grey-level appearance in ASM search, to locate variable objects in
new images. Lanitis at al [65] used this approach to interpret face images. First,

face shapes were located using an ASM. The located face was then warped into a
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normalised ‘shape-free’ frame. Parameters of the shape model and of a shape-free

intensity model were used for interpretation.

In Chapter 4 we described how Edwards at al [39] extended this work to produce
a combined model of shape and grey-level appearance. This model is more complete
and specific than the separate models of shape and grey-level appearance, but there
is no obvious way to use it directly to interpret images. Until recently, the only
approach available was to use an ASM to locate face shapes in new images, and then
to calculate the best-fit of the Appearance Model to the image region found. If the
fit was found to be outside the legal range of the Appearance Model, the solution

was rejected.

Ideally, having produced a full model of shape and grey-level appearance we should
use this model directly for the interpretation task, achieving interpretation by syn-

thesis. An outline of the approach is as follows:

1. Given an image, find any region(s) of the image that the model can plausibly

represent.

2. If such a plausible representation exists, use the model parameters to interpret

the meaning of the region(s)

The first point above emphasises the importance of the Appearance Model de-
scribed in previous chapters. Because the model is general, we can be confident that
if a face is present, the model can represent it. Crucially though, because the model
is specific, we can be confident that if the model cannot represent a region, then that

region is not a face.
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6.2 Background

The task of model fitting can be regarded as a high-dimensional optimisation problem,
in which we seek a set of model parameters that minimise the difference between the
reconstructed image and the image data itself. Given that an effective model needs

around 80 parameters, the task appears daunting.

6.2.1 Global optimisation

Jones and Poggio [55] have constructed models which are similar in principle to Ap-
pearance Models; they too have addressed the problem of matching high-dimensional
models to images. Their experiments were based on a face model of effectively 63
dimensions. Using a stochastic gradient descent method they attempted to calculate
the best values of the 63 parameters required to match unseen image data. The task
was made easier by giving the model very good starting conditions in terms of pose,
angle and scale. The results given were not particularly encouraging: The algorithm
required 9 minutes to converge for a single image using fast SGI hardware - the reso-
lution of the image was not reported, but appeared to be fairly low. A comprehensive
assessment of the reliability was not given, although the authors suggest that local
minima occasionally caused problems. We have also attempted to fit Appearance
Models to images using similar optimisation techniques. We observed reasonable re-
liability given very good starting conditions but found, like Jones and Poggio, that

the time required to find solutions was unacceptable.

6.2.2 Directed optimisation
The Active Shape Model algorithm provides a good example of a large optimisation

problem made tractable by a directed search method. In the ASM case, a high-

dimensional shape model is fitted to image data. Rather than repeatedly trying new
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configurations driven by a scalar fit value, as in standard optimisation algorithms,
the ASM algorithm uses measurements made at the current configuration to predict
a better configuration. For a particular placement of the model, each landmark point
actively searches a local region of the image for a better location. Active Appearance

Models also attempt to solve Appearance Model fitting in a directed way.

6.2.3 Related work

The development of our new approach has benefited from insights provided by two
earlier papers. Covell [30] uses a non-iterative technique for locating landmark points
in images. In this approach, local region models around key landmark points are used
to direct landmarks to the correct place. The AAM described here can be viewed in

some respects as an extension of this idea for a full model of appearance.

Black and Yacoob [9] use local, hand crafted models of image flow to track facial
features, but do not attempt to model the whole face. The AAM can be thought of as
a generalisation of this method, in which the image difference patterns corresponding

to changes in each model parameter are learnt and used to modify a model estimate.

In a parallel development, Sclaroff and Isidoro [83] have demonstrated ‘Active
Blobs’ for tracking. They use image differences to drive tracking, learning the re-
lationship between image error and parameter offset in an off-line processing stage.
Active Blobs are derived from a single example, allowing deformations consistent with
low energy mesh deformations (derived using a Finite Element method). A simple
polynomial model is used to allow changes in intensity across the object. In contrast
(see below), AAMs learn what are valid shape and intensity variations from their

training set.
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6.3 Active Appearance Model search

We now address the problem of matching an Appearance Model to image data. Given
an image to be interpreted, an Appearance Model, and a reasonable starting approx-
imation, we present an efficient scheme for adjusting the model location and model
parameters, so that a new synthetic example is generated, which matches the im-
age more closely. We begin by outlining the basic idea, before giving details of the

algorithm.

6.3.1 Overview of AAM search

We wish to treat interpretation as an optimisation problem in which we minimise
the difference between a new image and one synthesised by the appearance model.

A difference vector dg can be defined:

0g = gi — gm (6.1)

where g; is the vector of grey-level values sampled from the image, and g,,,, is the

vector of grey-level values generated using the current model parameters.

To locate the best match between model and image, we wish to minimise the
magnitude of the difference vector, |6g|?, by varying the model parameters, ¢ as de-
fined in equation 4.7. For simplicity of notation we will assume that scale, translation
and rotation parameters are included as elements of the vector ¢. Since an Appear-
ance Model typically has many parameters, this appears at first to be a difficult
high-dimensional optimisation problem. We note, however, that since each attempt
to match the model to a new image is actually a similar optimisation problem it is
possible to learn something about how to solve this class of problems in advance. By
providing a-priori knowledge of how to adjust the model parameters during image

search, we arrive at an efficient run-time algorithm. In particular, the spatial pat-
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tern in g encodes information about how the model parameters should be changed
in order to achieve a better fit. There are two parts to the problem: learning the
relationship between dg and the error in the model parameters, dc, and using this

knowledge in an iterative algorithm for minimising |dg|?. This approach is illustrated

in Figure 6.1.

Place model in
image

Observe pattern
in difference, [

&

Iterate to
convergence

Update model

Figure 6.1: Overview of AAM search scheme.

6.3.2 Learning to correct the model parameters

The simplest model we could choose for the relationship between dg and the error

in the model parameters, d¢, (and thus the correction which needs to be made) is

linear:

113




CHAPTER 6. ACTIVE APPEARANCE MODELS

dc = Adg (6.2)

This linear model turns out to be a good enough approximation. To find A, we
perform multivariate linear regression [54] on a sample of known model displacements,
dc, and corresponding difference images, dg. We generate these sets of corresponding
model and image errors by randomly perturbing the ‘true’ model parameters for
images in which they are known. These can either be the original training images
- or as in all the experiments described in this thesis - synthetic images generated
by the Appearance Model itself. In the case of synthetic images the parameters are
exactly known, and the images are not corrupted by noise. The only issue is what
background to use - we have obtained good results using a white noise background
with an intensity range matching that of the modelled image patch, though it would

be worth investigating other possibilities.

As well as perturbations in the model parameters, we also model small displace-
ments in 2D position, scale, and orientation. These four extra parameters are included
in the regression, but for simplicity of notation, they can be regarded simply as extra
elements of the vector dc. To retain linearity we represent the pose using (s, sy, tz, t)
where s, = scos(f), s, = ssin(f). In order to obtain a well-behaved relationship it
is important to choose carefully the frame of reference in which the image difference
is calculated. The most suitable frame of reference is the shape-normalised patch

described in Chapter 4.

We calculate a difference thus. Let ¢y be the known appearance model parameters
for the current image. We displace the parameters by a known amount, de, to obtain
new parameters ¢ = dc + ¢y. For these parameters we generate the shape, &, and
normalised grey-levels, g,,, using (4.8). We sample from the image, warped using the

points, , to obtain a new sample vector g,. The sample error is then g = g, — g,,,-
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This process is repeated for many values of dc and many images. Multivariate
regression is performed to obtain A, the matrix of coefficients expressing the approx-

imate linear relationship between dg and de.

The best range of values of dc to use during training is determined experimentally.
Ideally we seek to model a relationship that holds over as large a range of errors, dc, as
possible. However, the real relationship is found to be linear only over a limited range
of values. Our experiments on the face model suggest that the optimum perturbation
is around 0.5 standard deviations (over the training set) for each model parameter,

about 10% in scale, 15 degrees in angle, and 10 pixels in x and y translation.

A key difference between Active Appearance Models and the Active Blob approach
of Sclaroff and Isidoro [83] is the way in which the relationship between displacement
and image difference is estimated. In the Active Blob approach the relationship is
estimated by assuming that orthogonal displacements will produce orthogonal image
differences. In our approach we do not make this assumption, replacing a pseudo-

inverse calculation with a full linear regression method using generated training data.

6.3.3 Regression results for the face model

We applied the method described above to the face Appearance Model described in
Section 4.3. After performing linear regression, we calculated the R? statistic [54]
for each parameter perturbation, d¢; to measure how well the displacement dc was
‘predicted’ by the error vector dg. The average R? value for the 80 parameters was
0.82, with a maximum of 0.98 (the 1st parameter) and a minimum of 0.48. This

suggests a reasonably linear relationship.
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6.3.4 Iterative model refinement

Given a method for predicting the correction that needs to be made in the model
parameters we can straightforwardly construct an iterative method for solving our

optimisation problem.

Given the current estimate of model parameters, ¢, and the image sample at the
current estimate, g,, one step of the iterative procedure is as follows:

e evaluate the error vector g =g, — g,,

e evaluate the current error E = |dg|?

e Compute the predicted displacement, dc = Adg

e set k=1

e let ¢ =c—kic

e sample the image at this new prediction, and calculate a new error vector, dg’

e if |0g’'|? < F then accept the new estimate, ¢,

e otherwise try at £ = 0.5, k = 0.25 etc.

This procedure is repeated until no improvement is made to the error, |dg|?, and

convergence is declared.

6.4 Examples

The AAM algorithm works well if given a reasonably good starting approximation.
Figure 6.2 illustrates several examples of AAM search. Figure 6.3 shows a graph of
the RMS value of grey-level error per pixel versus iteration during a typical search.
Our current implementation takes approximately 150ms per iteration on a Pentium

IT 450 MHz processor.
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Original Start 1 iteration 5 iterations

Figure 6.2: Examples of AAM search. Original image on left. Iterations
1,2,5 shown on right.

6.5 AAM search versus hand-fitting

As is shown in Figure 4.3 in Chapter 4 the ‘best-fit’ of an Appearance Model to
unseen data can be unsatisfactory. This can be caused by an over-dependence on
the shape as given by the landmark points. If the landmarks are badly placed, or if
the shape model does not fit the landmarks very well, the resulting grey-level sample
vector can fall outside the range of variability learnt by the model. As a result the
‘best-fit’ of the grey-level model can appear poor. The Active Appearance Model on
the other hand, is concerned only with minimising the grey-scale difference between
pixels of the model and pixels in the image. In order to do this, we expect that the
shape should be similar to the positions of the hand-placed landmarks, but they are

not forced to be as near as possible, as in direct reconstruction. By allowing the
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Figure 6.3: Typical search performance. RMS value of grey-level error
per pixel is shown as a function of iteration number. Image grey-levels
are in the range 0-255.

shape to ‘relax’ the perceived fit can be improved. This effect was shown in Figure
4.4. In some cases, the Active Appearance Model can be used to find a ‘better’ set
of landmark points than a human operator. We show an example of this in Section

9.2.

6.6 Comparison with ASM-based recognition

As a preliminary assessment of Active Appearance Models, we performed the same
recognition tests as described by Lanitis [61] and summarised in Section 3.4.2. We
performed AAM search on the training set and test images, recording the resulting
model parameters for each image. A human operator initialised the search in each
image by locating the centre of the left eye. Using the recovered model parameters

we calculated recognition rates in the same way as Lanitis [61]. The results, along
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with those of Lanitis are given in Table 6.1.

Normal test set Difficult test set

Correct Within 3 Correct Within 3

Shape model 50.3% 66.6% 15.6% 31.1%

Shape-free grey

model 78.7% 87.3% 31.1% 53.3%
Local grey-
level models 77.3% 89.7% 28.9% 57.8%
Shape + shape-
free models 85.3% 93.3% 34.4% 56.7%
Shape + local
models 80.0% 90.3% 34.4% 66.7%

All methods 92.0% 97.0% 48.9% 77.4%

Active
Appearance 97.5% 97.5% 12.9% 25.2%
Model

Table 6.1: Classification results using Active Appearance Model versus
Active Shape Model.

The results show that the AAM method performs better than any of the ASM-
based methods for the ‘easy’ test images, but performs very badly on the ‘difficult’
set. This is because, unlike the ASM, the AAM currently has no means of dealing
with occlusion and the search failed to converge in almost all cases where significant

occlusion was present.

We present a more extensive evaluation of recognition performance in Chapter 8.
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6.7 Summary

In this chapter we have described a novel approach to fitting high-dimensional models
to image data. The Active Appearance Model is an iterative, directed search method
that uses measurements made at each current estimated solution to drive the model
towards better solutions. The training algorithm uses multivariate regression to learn
the relationship between offsets in the model parameters (and pose) and the patterns

in the grey-level difference vector between model and image.

AAM search is fast, converging in a few iterations, typically taking less than 1
second. This compares well with standard optimisation techniques which can take
several minutes (even without any pose offset). The iterative nature of the search
method makes AAMs ideal for tracking; at each frame in a sequence the AAM is
likely to be close to the new solution, and should converge extremely quickly, perhaps

requiring only one iteration.

A key limitation of the Active Appearance Model is the need for good positional
initialisation; in our experiments we found that the centre of the model needed to
be placed within about 20 pixels of the correct location for reliable convergence. A

further drawback to the AAM method is the inability to deal with occlusion.
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Tracking Faces

This chapter presents a novel scheme for tracking faces, based on Active Appearance
Models. We begin by reviewing model-based tracking of objects using Active Shape
Models, describing the ASM tracking scheme of Lanitis [61], and Kalman filter-based
schemes such as those described by Baumberg et al [6] [5] and Blake and Isard [11].
Our tracking scheme is based on decoupling the sources of appearance variation into
identity and non-identity parts. In particular, we utilise the fact that identity should
remain fixed whilst tracking a given individual. Using this knowledge, we develop a
method capable of refining the identity /non-identity decoupling automatically during
tracking. We demonstrate that this refinement allows a stable estimate of identity to

be obtained without significant degradation in tracking accuracy.

7.1 Simple tracking using ASMs

Since ASMs can be used to locate objects rapidly in individual images, tracking
objects through video sequences is a natural application. The iterative nature of
ASMs makes them ideal for this task, given that there are usually only small image

changes between frames. Once tracking is underway, the ASM can be initialised in
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each frame at the position found in the previous frame. Usually very few iterations

are then required to reach convergence in the new frame.

This scheme was used by Cootes et al [26] for tracking sequences of the left
ventricle in echo-cardiograms. Lanitis [61] used the same scheme for tracking faces
in video sequences. Multi-resolution search is used to initialise the model in the first
frame, after which the search is performed at only the highest resolution level. This

is illustrated in Figure 7.1.

First frame

-l ——— Multi-resolution
ASM search

A

Initialise

. . Next frames
High-resolution P I
ASM search | @
R <"/
A

Re-initialise T

Figure 7.1: Illustration of Lanitis’ simple tracking scheme.

7.2 Kalman filtering

Kalman filtering is an established technique for optimal tracking of discrete processes,
and is often used in computer vision where measurements on video data are made
at discrete time intervals. Baumberg et al [6] have applied Kalman filtering to ASM
tracking and Blake et al [10] to similar contour tracking methods. We do not intend to

give a full description of Kalman Filter theory, but an overview of the most important
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points will be necessary. The reader is referred to the reference texts by Gelb [44]

and Brown and Huang [15] for more detail.

7.2.1 Basic theory

Tracking involves estimating the state of a system at a series of time steps based
on measurements made on the system. In most tracking applications there exists
some prior knowledge of the system dynamics - though there is always at least one
non-deterministic term (otherwise the dynamic model would completely define the
track in advance). The key components of a Kalman filter are a vector model of
the pseudo-random dynamic process and a recursive algorithm for processing noisy
measurements of the state of the system. The Kalman Filter provides a least-squares
optimal estimate of the state of a dynamic system given a discrete process model and

noisy measurements.

The Kalman Filter models the system in terms of a state vector, . Regardless
of how time discretisation arises in the physical world, the following formulation is

adopted:

Zp = HkQBk + v (72)

where

x, = (n x 1) state vector at time ¢
¢, = (n X n) process update matrix relating @y, to xy.
wy, = (n x 1) vector of white process noise.

2 = (m x 1) measurement vector at time t.

H, = (m x n) matrix giving the relationship between measured vector and the state
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vector at time ;.

vr = (m x 1) vector of measurements errors.

It is assumed that the covariance matrices for the vectors w; and v, are known
(or can be estimated). It is also assumed that the vectors, wy and vy are temporally

uncorrelated. The covariance matrices are given by:

.
Qy, 1=k
\0, 1 £k
.
Rk, 1=k
Elv,vl] = ¢ (7.4)
0, 1 £k
\
Elw,v]] =0 (7.5)

7.2.2 Example model

Imagine a 1-D process in which a scalar value, z, follows an integrated random walk.
In this model, x moves between frames with a velocity, . The velocity itself changes

between frames by the addition of white Gaussian noise.

The state vector, x, and the state transition matrix, ¢, for this process are given

by:
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thus, Equation 7.1 becomes:

Tkt1 11 Tk 0
= + (7.8)
Tpy1 01 Ty, Up,
where u;, is a Gaussian white noise sequence. Let us assume that the only measure-

ment, zz, we can make on the system is of the position, x, corrupted by Gaussian

noise, vx. Equation 7.2 thus becomes:

2 = T + U (79)

An example of an integrated random walk sequence is shown in Figure 7.2. Notice

how the position changes direction as the velocity crosses zero.

—_— Position
Velocity

x,dx\dt

Time

Figure 7.2: Example of a 1-dimensional integrated random-walk.
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7.2.3 Kalman update procedure

A full derivation of the Kalman Filter update equations is given by Brown and Huang
[15]; here we give the important results. The Kalman filter aims to provide an
estimate @, of the state vector at time t;. At time ¢, we already have an a prior:
estimate of the state vector, &, . We also have an estimate of the error covariance,

P, associated with &, , where:
Py = Bl(a — @) (@ — &) (7.10)

Given a new measurement, z;, the new estimate, &, is calculated as a linear combi-

nation of the noisy measurement and the a prior: estimate according to:

where K, gives a weighting between the measurement and a priori estimate, and
is known as the Kalman Gain. The Kalman Gain is the optimal weighting factor in

the least-squares sense, and can be calculated by:
K, =P H}(H,P_H + R;)"" (7.12)
The current best estimate of the estimation error covariance, Py, is given by:
P,=(I-K.H;)P, (7.13)

The Kalman filter procedure is completed by projecting the estimates of @, and Py

forward to give a priori estimates at time ¢, according to:

T, = P (7.14)

P, =& Pro; +Q, (7.15)
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The full Kalman filter algorithm can be summarised thus:

1. Initialise with a priori estimates of &, and P, .

2. Compute Kalman gain, K, = P, Hf (H,P, H} + Ry) "

3. Update with new measurement: &, = @, + K (2 — HyZ},)

4. Update error covariance, Py = (I — K, H;)P,

5. Project ahead to tyy1: x| = @&y, and P, | = b Prody + Q,

6. Return to step 2.

Figure 7.3 illustrates the Kalman filter algorithm schematically.

Measurement
Compute > Update —» Current estimate
Kalman gain estimate
Y
A
Project to next |« Update
frame covariance

Figure 7.3: Schematic diagram of Kalman filter algorithm.

7.3 Filtered ASM tracking

Baumberg [5] describes the use of ASMs with Kalman filtering to track sequences of
moving people. An ASM is built from training images of moving people, from which
the moving ‘blob’ representing the walking individual is first extracted using simple

image processing. Recall the analysis of Section 3.1 in which the vector & of N points
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defining the shape is given by:
=&+ Pb (7.16)

where b is vector of model parameters and P a matrix of orthogonal eigenvectors.

A shape, @, is projected into the image by scaling, rotation and translation using:
=M + (7.17)

where X; and Y; are the projection of the control points, z; and y; into the the image.
The transformation consists of a translation by ¢, and ¢, and scaling/rotation given
by M:
Ay —0ay scosf —ssinf
M = = (7.18)
ay Gy ssinf?  scosf

In this formulation, the shape vector, when projected into the image frame, is given

by:

X = Q(ty, ty) (T + Pb) +t (7.19)
where
t= (tuty, - torty) (1 x2N) (7.20)
M 0
Q= (2N x 2N) (7.21)
0 M

The ASM tracking system must track the shape parameters, b, the alignment param-

eters, (ay, ay), and the translation parameters, (¢,,t,). These are incorporated into a
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Kalman filter framework using suitable dynamic models.

7.3.1 Dynamic models

The person-tracking system proposed by Baumberg [5] is primarily concerned with
tracking individuals walking across a scene. Baumberg’s system regarded the origin
of the model as undergoing uniform 2D motion with additive random noise in both
velocity and acceleration. The alignment parameters were assumed to be constant

with added noise.

Baumberg’s tracking system assumes that the shape parameters, b;, vary inde-

pendently in time. This assumption was made because over the training set:

This allows the shape-parameters to be tracked with a bank of independent 1-D
Kalman filters with the state update equation taking the simple form:

b = P ™ (7.23)

7

(k)

where w;"’ is taken from a Gaussian noise sequence of zero mean and variance .

7.3.2 Discussion

Baumberg’s person tracking system works on the assumption that the shape pa-
rameters vary independently. Baumberg [5] and Baumberg and Hogg [4] describe
automatic methods for building models for which this assumption is valid. Their mo-
tivation is similar to ours - to build specific models capable only of generating legal
variation. They address the problem of generating models with legal spatiotemporal

dynamics by training the system on image sequences. In this thesis, we describe face
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tracking using an Active Appearance Model. We propose a method that does not rely
on image sequences during training, but instead uses the prior knowledge provided

by the Partitioned Model.

In our face Appearance Model, each model parameter represents a combination
of inter-personal and intra-personal variation. Indeed, we showed in Chapter 5 that
ID and non-ID variation could be represented as linear combinations of the original
model parameters. With this knowledge, we see that, in our case, the assumption of
dynamic independence of the model parameters is invalid. We know that, in order to
produce a pure non-ID variation (i.e. the variation needed to track a single person),

we must manipulate several model parameters simultaneously.

The independent one-dimensional filters used by Baumberg are highly attractive
due their computational efficiency and the prior knowledge of variance available from
training. In the absence of decoupled dynamics, setting up an appropriate state-space
model would be extremely difficult. Fortunately, the partitioned appearance model
described in Chapter 5 provides a framework in which we can justifiably use a set
of independent one-dimensional filters. Varying the parameters of the non-ID model
should not change identity. So, whilst in any particular sequence we might observe
incidental correlation between the non-ID parameters, we know that correlated vari-
ation is not essential in order to track an individual, as would be the case with the

raw Appearance Model parameters.

7.4 Tracking using a Partitioned AAM

In this section we introduce the use of Active Appearance Models and Partitioned
Models for face tracking, demonstrating a method of using the knowledge that identity
must be fixed during a sequence. This approach was first proposed by Edwards et
al [39] in an ASM framework [39] [40] [37]. Here the work is extended to the Active

Appearance Model framework.
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7.4.1 Motivation

This thesis has repeatedly argued the need for models with high specificity. We
note that during tracking, the basic Active Appearance Model lacks specificity due
to its ability to change the apparent identity. The problem lies in the fact that
we wish to use the same model to fit to any person, which means that it must
be able to represent inter-personal variation. However, once tracking a particular
individual, inter-personal variation should be forbidden. Fortunately, the Kalman
Filter framework provides a means of representing this knowledge in terms of simple
dynamic models, by applying separate models to the identity and non-identity parts
of the Partitioned Active Appearance Model.

7.4.2 Overview

Active Appearance Models, like ASMs, are attractive for tracking due to their iter-
ative nature. Given a reasonable starting position, just one iteration of an AAM is
often sufficient to make reasonable parameter adjustments to match the image. By
incorporating Kalman filtering, we attempt to make optimal use of the data available

from an image sequence.

In order to use independent parameter filters, we must first find a basis in which
the assumption of independence is valid. To a first approximation, partitioning the
Appearance Model into identity and non-identity subspaces provides this basis. We
can use the AAM to provide a measurement of the full model parameter vector, c.
This vector is then used to estimate the identity parameters, d, and the non-identity
parameters, . In addition we also track the scale, rotation and translation similarly

to Baumberg [5].

The set of parameters we wish to track is thus:

1. Alignment parameters, (a, a,)
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2. Translation parameters, (t,,1,)

3. Identity parameters, d;

4. Non-identity parameters, r;

The basic idea of the filtered tracking scheme is shown diagrammatically in Figure

7.4. Two separate banks of one-dimensional Kalman filters are used - the dynamic

structure of the identity filters is different to that of the non-identity filters.

New Image
Perforr£ AAM measured ¢
Search <
measured ¢
A
Partitioned
Model
measured d l measured r
A
Kalman Filters Kalman Filters
(Identity) (Non-ldentity)
updated d l updated r
A
Combine

Figure 7.4: Schematic diagram of decoupled and filtered tracking algo-
rithm.

7.4.3 Tracking translation, scale and orientation

The dynamic model used by Baumberg [5] for tracking the translation parameters,

was appropriate in a system where the usual type of motion was a fairly smooth path
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across the image. The test sequences we have used for evaluating face tracking are of
people talking to a camera whilst moving their heads in a quasi-random fashion. This
choice of test sequence was made to reflect the type of variation expected in many
application situations; e.g. a person interacting with a computer screen, standing at
an ATM, or acting in front of a camera. This type of random motion means we cannot
apply a dynamic model with significant deterministic components. The integrated
random walk model effectively says that, in the default situation, the velocity will
be unchanged between frames, unless altered by a stochastic acceleration. A simple
random-walk model says that by default, the position remains fixed, unless altered
by a stochastic velocity. The random-walk model is a first order model or position
model, the integrated random walk a second order model or position-velocity(PV)
model. Generally, the higher the order of a model the more susceptible it becomes
to instability and divergence, due the effect of the higher-derivative components. In
the experiments presented in this thesis, a second-order model was applied to the

translation parameters, giving the following update equations:

th+t 11\ [t 0
_ = O+ (7.24)
th+t 0 1) \¢ Uy
tht! 11\ [ 0
= LT (7.25)
tyt 01 ty Uy

These equations can be written as a single state update equation:

th+t 1100\ [t 0

th+t 010 0f]¢t Uy

| = T (7.26)
+

th 001 1][ 0

k+1 ik

it 000 1) \é u,
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The process noise covariance matrix for a position-velocity model is given by (see

Brown and Huang [15]):

S % 0 0
205, 0 0 )
Q_OOﬁﬁ (7.27)
3 2
Sy
0 0 2 8,

where S, and S, are the respective spectral amplitudes of the white noise functions,
u, and u,. In the equations given, all distances are assumed to be measured in pixels,
and time measured in number of frames. The estimated values for S, and S, must

be chosen to scale along with image size and frame rate.

The alignment parameters, a, and a, are assumed to move between frames with
a random velocity, in other words, to follow a random-walk. The two parameters are

grouped to give the combined update equation:

ak+1 10 a¥ u
: = 2 + " (7.28)
+
a, 0 1 a, Uqy
The process noise covariance matrix is simply:
S, 0
Q=" (7.29)
0 Say

where S,; and S, are the respective spectral amplitudes of the white noise functions,

Ugy and Ugy.

7.4.4 Tracking the model parameters

In the tracking scheme illustrated in Figure 7.4 we treat the identity parameters as

essentially fixed; the AAM is regarded as making noisy measurements of a system
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with constant value. The model parameters are treated independently and tracked
with individual 1-D filters. The update equation for a particular identity parameter,

d; is simply:
d; = constant (7.30)
The initial filter parameters, @; and Py are given by:
Qi=0 By =V (7.31)

where Vj is the estimated initial measurement noise in the identity parameter d;.
Typically, we chose the initial value of V;;, to be 3 times the standard deviation of the

corresponding model parameter, a value which was found to give good performance.

We treat the residual, non-identity parameters as following a random-walk. The

update equation is thus:
rEt =k o, (7.32)
with the filter parameters, @Q; and Fy. given by:
Qi=S,, P, =V (7.33)

where S, is the estimate spectral noise amplitude of the random component. This
quantity can be estimated by observation of typical sequences. When estimating
process noise amplitudes, a generous estimate will usually result in a more stable

tracking system, at the expense of absolute tracking accuracy.
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7.5 Limitations of decoupled AAM tracking

The success of Kalman filtering depends on the appropriateness of the model used. If
the dynamic model is not appropriate for the actual data, there is a danger of making
things worse rather than better. The tracking scheme described above depends on the
assumption that decoupling into identity and non-identity models is possible. Before
we can apply it, we must first establish that the decoupling is producing identity
and non-identity signals for which the tracking filters are appropriate. The constant
filter used to track identity is only valid in a signal processing sense if the identity
measurement is truly constant. We know that in a physical sense, the true measure
of identity must be constant - this means that any observed systematic variation
in the identity parameters during a sequence must be due to the inadequacy of the

partitioned model.

We begin by examining some example tracks of identity and non-identity parame-
ters for a typical sequence. These are the unfiltered measured parameters taken from
a typical sequence of a person speaking whilst varying pose and expression (a more
detailed description of the database from which this sequence is taken is given in Sec-
tion 8.2). Figure 7.5 shows the paths of d; and rq, the first identity and non-identity
parameters. There are two obvious features: firstly, the identity parameter does not
appear to be a simple constant corrupted by noise, there is clearly some systematic
drift, and secondly, this drift appears to be (anti-)correlated in some way with drift
in the non-identity parameter. These observations suggest that the assumption of

constant identity used in the design of the Kalman filtering scheme is not valid.

7.6 Dynamically updating the partitioned model

Whilst the tracking scheme shown in Figure 7.4 is attractive, we have seen that the

partitioned model does not give sufficient separation of identity and non-identity
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Figure 7.5: First 2 identity and non-identity parameters for a typical
sequence.

components for it to be workable. Observation of the parameters suggests, however,
that there may be a simple relationship between the two that might be used to remove
the correlated variation leaving an identity signal that behaved as a noisy constant
value. Since we know the real identity must be fixed, we use this knowledge to remove

unwanted correlation between the parameters.

7.6.1 Motivation

The unwanted correlation illustrated in Figure 7.5 is caused by the inability of the
partitioned model to deal with individuals who exhibit different within-class variabil-
ity. We reason that by observing the behaviour of the model during a sequence, a
refined estimate of the within-class and between-class spaces can be made. This in
turn will lead to a more stable estimate of the identity parameters, and finally, the

true identity.
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The partitioned models are built using a global analysis of the pooled within-class
variation, for all individuals. This does not take into account possible differences
in the way particular individual faces vary. For example, the way a face image
changes with variation in pose will, to some extent, be dependent on the length of
the individual’s nose. We present a scheme that effectively performs a correction of

the global partitioning on-line during tracking.

To illustrate how the problem arises, we consider a simplified example in which
appearance is described in a 2-dimensional space as shown in Figure 7.6. We imagine
a large number of representative training examples for two individuals, person X and
person Y, projected into this space. The optimum direction of identity variation,

d, and the direction of within-class variation 7, are shown. A perfect discriminant

Non-identity variation, r

A

Person X Person Y

!

Test, 4‘Z
\

! >
Identity, d

Sub-optimal
spread

Figure 7.6: Limitation of Linear Discriminant Analysis: Best identifi-
cation possible for single example, Z, is the projection, A. But if Z is an
individual who behaves like X or Y, the optimum projections should be
C or B respectively.
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analysis of identity would allow two faces of different pose, lighting and expression
to be normalised to a reference view, and thus the identity compared. It is clear
from the diagram that an orthogonal projection onto the identity subspace is not
ideal for either person X or person Y, but gives the best compromise. Given a fully
representative set of training images for X and Y, we could work out in advance the
ideal projection. We do not, however, wish (or need) to restrict ourselves to acquiring
training data in advance. If we wish to identify an example of person Z, for whom we
have only one example image, the best estimate possible is the orthogonal projection,
A, in Figure 7.6. We cannot know from a single example whether Z behaves like X (in
which case C would be the correct identity) or like Y (when B would be correct) or
indeed, neither. The discriminant analysis produces only a first order approximation

to class-specific variation.

7.6.2 Formulation

We seek to calculate class-specific corrections from image sequences. The framework
used is the Appearance Model, in which faces are represented by a parameter vector c.
Partitioning yields a first order global approximation of the linear subspace describing
identity, given by an identity vector, d, and the residual linear variation, given by a

vector r. A vector of appearance parameters, ¢ can thus be described by
c= Dd+ Rr (7.34)

where D and R are matrices of orthogonal eigenvectors describing identity and resid-
ual subspaces respectively. D and R are orthogonal with respect to each other and
the dimensions of d and r sum to the dimension of ¢. Recall that the projection from

a vector, ¢ onto d and r is given by

d=D"¢c (7.35)
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and
r=R'c (7.36)

Equation 7.35 gives the orthogonal projection, d, onto the identity subspace - the
best available basis for classification given a single example. We assume that this pro-
jection is not ideal, since it is not class-specific. Given further examples, in particular,
from a sequence, we seek to apply a class-specific correction to this projection. It
is assumed that the correction of identity required has a linear relationship with the
residual parameters, but that this relationship is different for each individual. For-
mally, if d. is the true projection onto the identity subspace for a given individual, d

is the orthogonal projection and 7 is the projection onto the residual subspace, then,
d=d.+ Ar (7.37)

where A is a matrix giving the correction of the identity, for the observed residual

parameters.

During a sequence, many examples of the same face are seen. At any point in the
sequence we use all the measurements from the previous frames to solve Equation
7.37 using standard multivariate linear regression, thus obtaining matrix A. At frame

1, the estimated corrected identity, d! is given by:

di =d — Api (7.38)

C

where i is the value of the residual vector at frame .

7.6.3 An adaptive tracking scheme

Updating the estimate of the class-specific variation allows us to improve upon the

tracking scheme of Figure 7.4. In each frame of a video sequence, an Active Appear-
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ance Model can be used to locate the face. The iterative search procedure returns
a set of parameters describing the best found match of the model to the data. The
combined model parameters are projected into the identity and residual subspaces
by equations 7.35 and 7.36. At each frame, i, the identity vector, d', and residual
vector, ' are recorded. The correction matrix A is estimated using all the previously
stored values of the identity and residual vectors. The corrected ID parameters, d.
are calculated using equation 7.38. Until enough frames have been recorded to allow
the matrix A to be calculated, A is set to contain all zeros, so that the corrected

estimate of identity, d. is the same as the orthogonally projected estimate, d.

Three sets of Kalman filters are used to track 2D-pose, corrected ID variation, d.,
and non-ID variation, r, using the models described in Sections 7.4.3 and 7.4.4. The
full, adaptive tracking scheme with ID-space refinement is shown diagrammatically

in Figure 7.7.

7.7 Initial evaluation

As a preliminary investigation of the tracking schemes we applied the methods to 24
video sequences (each of different individual). Each sequence was 240 frames long
(approximately 10 seconds) and was tracked for the full duration using three different
schemes - simple, decoupled and adaptive. The filtered schemes were only ‘switched-
on’ after 100 frames, thus up to that point all the methods were identical. After frame
100, the decoupled scheme was used to track identity and non-identity parameters
separately. Likewise, the adaptive scheme was used to track the separate components

but using the complete ID-correction scheme illustrated in Figure 7.7.
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Figure 7.7: Schematic diagram of full, refined tracking algorithm.

7.7.1 Stability of identity measurement

We first illustrate the effects of the various schemes on the estimated identity pa-
rameters, showing corresponding plots for a typical test sequence. Figure 7.8 shows
the variation of the first 6 identity parameters extracted from a sequence using the
simple tracking method. Figure 7.9 shows the variation using decoupled tracking,
and Figure 7.10 the variation using the full adaptive scheme. The latter two schemes
are only ‘switched-on’ after frame 100. In principle, up to frame 100 the parameters
should be identical, however, the starting position in each trial was not guaranteed

to be identical, so some difference is expected.
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Figure 7.8: Typical values of first 6 identity parameters versus frame

number, using simple tracking scheme.
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Figure 7.9: Typical values of first 6 identity parameters versus frame

number, using decoupled tracking scheme.
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Figure 7.10: Typical values of first 6 identity parameters versus frame

number, using full, adaptive tracking scheme.

Figures 7.9 and 7.10 show that decoupled and adaptive filtering of the identity
parameters have the effect of reducing the observed variation in identity. We derived
a quantitative measure of the variation by computing the covariance matrix C; of the
identity parameters from the last 50 frames for each sequence, ¢. Since the identity
parameters are mutually orthogonal the trace of C; gives an estimate of the stability
of the identity estimate. By computing C; for each of the 24 sequences we compared
the stability of the identity estimate for the different schemes. The average values
of Trace(C;) for the three tracking schemes are shown in the first column of Table
7.1. This shows that the decoupled scheme gives more stable estimates than the
simple scheme but that significantly better results are obtained using the adaptive
scheme. Both filtered schemes will, of course, always tend towards smaller variance in
ID the more examples they see, due to the averaging property of the simple Kalman
filters used, however, in these experiments, the adaptive scheme was found to reduce

variance more quickly.
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Average Relative Fit
Trace (C110°) Error (%)
Simple 4.80 00.16 0
Decoupled 4.08 00.75 11.72 00.17
Adaptive 2.67 00.35 2.5700.16

Table 7.1: Measure of ‘stability’ of identity estimates for 3 tracking
methods compared with the average percentage difference in reconstruc-
tion error.

7.7.2 Reconstruction error

A key aim of filtered tracking is to provide a stable estimate of the identity parame-
ters (and thus the estimated identity) of the face in the sequence. Both the decoupled
scheme and the adaptive scheme will tend to produce stable estimates of the iden-
tity parameters after many frames, however, since decoupling alone is not sufficient
to remove systematic variation in identity parameters, the Kalman filter model is
inappropriate for this scheme. An expected consequence is degradation of track-
ing accuracy. By using the adaptive scheme we expect less degradation in tracking

accuracy.

Using the same set of 24 sequences, we measured the average reconstruction error,
R, for each frame of each sequence, using the three tracking schemes. R is defined
as the RMS difference in grey-level values over each of the N sample points in the

shape-free model framework, given by:

(g — g9)I?

R = N

(7.39)

where g is the vector of grey-level samples from the image and g,, is the vector

of samples from the current instance of the model.
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As in the experiments above, the filtered schemes were only activated after the
first 100 frames. Figure 7.11 plots the average value of R obtained by tracking the

sequences using the simple, unfiltered scheme.
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Figure 7.11: Reconstruction error during tracking using simple, unfil-
tered scheme.

To compare the filtered tracking schemes with the simple scheme we computed
the difference between the respective reconstruction errors for each sequence. Figure
7.12 shows the average percentage difference in reconstruction error (compared with

the simple tracking scheme) for the simply decoupled and adaptive tracking schemes.

The second column of Table 7.1 shows the average reconstruction error for the
last 50 frames of the 24 test sequences using the three tracking methods, alongside

the corresponding estimate of stability in ID parameters.

The results presented in Figure 7.12 show that decoupled tracking produces a
significantly worse reconstruction error than simple tracking, whilst the degradation
using adaptive tracking is only slight. Since we hypothesise that the adaptive method
should increase robustness by preventing the system changing the identity inappro-

priately, one might expect the adaptive tracking scheme to perform better than raw
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Figure 7.12: Average percentage difference in reconstruction error
(compared with the simple tracking scheme) for the simply decoupled
and adaptive tracking schemes.

tracking, a result which was not observed. When assessing these results it is impor-
tant, however, to note that the simple tracking scheme uses a search method which
drives the model in order to directly minimise reconstruction error. The adaptive
scheme adds extra requirements of consistency in the identity, requirements which
are applied after the search in each frame is complete. If the simple tracking is itself
very good, there is no guarantee that this adjustment will improve reconstruction
error. We expect that the adaptive tracking scheme will prove more robust than sim-
ple tracking in more difficult, noisy images, when the extra constraints on identity

provide an increase in the specificity of the system.

At this point we have demonstrated that it is possible to apply tracking schemes
which yield stable estimates of identity. We have shown that an adaptive scheme
shows less degradation in reconstruction error and an increase in the stability of the
measured identity parameters. In the following chapter we present results from more
extensive tracking experiments which show that the stable estimate of identity can be
used to achieve higher recognition performance than can be achieved using individual

frames from sequences.
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7.7.3 Linear relationship between parameters

The adaptive tracking scheme is based on multivariate linear regression. The matrix,
A is used to ‘predict’ a correction to the identity parameters based on the non-identity
parameters. We estimated the quality of the prediction by measuring the R-squared
statistic [54] for each parameter, obtained from the linear regression. An R-squared
value of unity corresponds to a perfect linear relationship. We computed the R-
squared values for each identity parameter at the end of each of the 24 sequences.
Figure 7.13 shows the average value for each parameter. These results suggest that

the required identity correction is well approximated by a linear model.
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Figure 7.13: Average value of R-squared statistic for each identity pa-
rameter, indicating a strong linear relationship between the identity and
non-identity parameters.
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7.8 Summary

In this chapter we have introduced a novel tracking scheme using Active Appear-
ance Models. The approach was motivated by previous successful demonstrations of

model-based tracking using Active Shape Models combined with Kalman filtering.

Kalman filtering with an ASM is realised through the assumption of independence
of the model parameters. For our full appearance-based face model, we know this
assumption is invalid: changing a parameter of the full model can change both identity
and non-identity components, whereas during tracking identity should be fixed. A
partitioned model provides a framework in which identity variation is decoupled from
other variation. Unfortunately, the decoupling is not sufficiently good as to result in

constant identity parameters over a sequence.

We have described a method that applies a further correction to the original
decoupling, taking into account variation which is specific to the individual being
tracked. The method exploits the fact that the true identity must be fixed during a

sequence.

We have shown that the minimum reconstruction error is achieved with simple
tracking, but that there is considerable instability in the estimate of identity. The
decoupled scheme produces a slightly more stable estimate of identity, but shows a
significant increase in reconstruction error. The adaptive tracking scheme provides a
large improvement in the stability of ID measurement whilst showing a much smaller

degradation in reconstruction accuracy.

In the following chapter we present further experiments, which show how the

scheme can be used for improved dynamic identity recognition.
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Chapter 8

Interpreting Sequences

This chapter presents the results of experiments in video sequence interpretation,
concentrating particularly on person identification. Using a database of video se-
quences, we show that dynamic interpretation offers improved recognition compared
to the analysis of static images. In order to achieve this improvement it is necessary
to use the measurement framework described in Chapter 7, which accounts for the

different types of variation present in sequences of different individuals.

8.1 Interpretation by tracking

The tracking scheme shown in Figure 7.4 represents a holistic approach: robust track-
ing is achieved through interpretation. It happens that the key feature to isolate for
adaptive tracking, identity, is the feature in which we are often most interested for
interpretation. Partitioning the Appearance Model using static images gives us a
first-order approximation to the subspace that defines identity. The on-line refine-
ment in the adaptive tracking scheme provides a further class-specific linear correction
to the first-order estimate, using a video sequence of an individual. Thus, we might

expect to achieve better identity recognition when analysing video.
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Whilst some systems might be confounded by variability in sequences of a given
individual, our system actually requires variability in order to learn the extra on-
line correction. This makes intuitive sense: multiple views of an individual ought to
increase the amount of useful information - for example, the length of the nose is

better estimated from a profile than a frontal image.

In this chapter, we demonstrate the use of the adaptive tracking scheme presented
in Chapter 7 for enhanced identification from sequences. We compare the recognition
performance of the dynamic scheme with that obtained by static analysis of single

frames from sequences.

8.2 Experimental framework

In this section we describe the experimental framework used to evaluate the iden-
tification performance of adaptive tracking system and to compare the results with
simpler schemes. The experiments are based on matching unseen probe images and

sequences to pre-registered gallery images and sequences.

8.2.1 The interpretation task

We present an assessment of verification performance - the key requirement in many
access control applications. Given an probe face and a claimed identity, the system
must determine if the claim is correct by comparing the probe with a gallery of known
faces. A fair test should not allow the classifier to assume that all the probes exist

within the gallery.

In our experiments we cross-compared every probe face with every gallery face,
by measuring the Euclidean distance between the identity vectors, d, (probe) and d,

(gallery) obtained from the images or sequences:
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D =\/(d, — dy)(dy — d,)" (8.1)
We evaluated performance in three scenarios:

e Static-Static - Probe and Gallery identity vectors are obtained from static im-

ages
e Dynamic-Static - Probe identity vectors are obtained by adaptive tracking

e Dynamic-Dynamic - Probe and Gallery identity vectors are obtained by adap-

tive tracking

The system was asked to return a ‘hit’ every time the distance between a gallery
face and a probe face was below a certain threshold, 1. The verification decision rule

is:
if D <T person is the same (8.2)

D > T person is not the same (8.3)

We calculated both the True Positive Fraction (TPF) and False Acceptance Rate
(FAR) for various levels of T', thus producing an ROC-curve as described in Section

2.14.2.

8.2.2 Test data

In order to test the system it was necessary to collect a database of test sequences.
We have observed previously, particularly in results from the FERET test described
in Chapter 2, that most systems are poor at identification when there is a time

delay between the capture of ‘gallery’ and ‘probe’ images. The discrepancy between
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time-separated and same-day recognition is almost certainly due to lack of variability
between the same-day image pairs. Often the person is filmed in the same position,
with the same lighting conditions, etc. To address this, we captured two sets of

sequences with an interval of 4 months between sessions.

The ‘gallery’ set consists of one sequence each of 24 different individuals. The set
covers an age range of 21 to 50 years, and contains both men and women, although
there is, at present, only a single example of a non-Caucasian face. Each sequence is
20 seconds long, during which the individual was asked to recite a paragraph of text.
Pose variation was obtained by asking the person to follow a moving target whilst
reciting. The maximum pose deviation from the fronto-parallel view was typically 30

degrees laterally and 20 degrees vertically.

The ‘probe’ set consists of 7 sequences of each individual in the training set.
Unfortunately, 2 of the individuals in the gallery were unavailable 4 months later, thus
the probe set consists of a total of 7x22 = 154 sequences. Each of these sequences
is approximately 10 seconds long. For each sequence, the individual was asked to
repeat the same piece of text, but was instructed to do so in one of seven ‘styles’ -
happy, sad, afraid, angry, surprised, disgusted or neutral. Pose variation was again
obtained by asking the individual to follow a target whilst reciting. The aim was to
capture a range of both pose and expression in the probe set. Whilst no effort was
made to ‘fix’ the lighting conditions, neither did we have the resources to deliberately
generate lighting variation. These results must be viewed in the context of fairly fixed
lighting conditions, although it is important to note that the lighting conditions are

different between the gallery and probe set.

The data in both gallery and probe sets was digitally captured at 24 frames per
second. The images are 24-bit colour, subsequently reduced to 8-bit greyscale at a
resolution of 640x482 pixels. Figures 8.1 and 8.2 show some typical data from the

probe and gallery sequences respectively.
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Figure 8.1: Some examples frames from sequences of individuals in the
‘probe’ set.

8.3 Static-Static recognition

We wish to compare the performance of the dynamic interpretation scheme with
straightforward static recognition. A typical static recognition scenario might consist
of a single gallery image used to register the individual. Indeed, this is the minimum
possible data with which recognition can be performed - in the ideal case this is all
we should need. For the purpose of this experiment we extracted just one frame (the
first) from each of the gallery sequences. This would correspond to the user having

his/her photograph taken to register on the system.

Each gallery image was registered by performing Active Appearance Model search.
A human operator initialised the search by locating the centre of the left eye. The
search was supervised to check that the AAM converged, ensuring that the measure-
ment was sensible. It took approximately 7 seconds for the operator to register each

image. The gallery of 24 images was registered in less than 3 minutes.

The test images consisted of random frames taken from the probe sequences. For
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Figure 8.2: Some examples frames from sequences of individuals in the
‘gallery’ set.

each individual we chose 10 random images. These images were then interpreted using
Active Appearance Model search, again with hand initialisation. It was essential to
supervise the initialisation, in order to make a fair comparison with the sequence
recognition algorithm; searches which did not converge would lead to an unfairly (in

this context) low score for the static recognition system.

Each set of measured parameters for the gallery and probe images was first pro-
jected into the identity subspace using equation 5.4 as described in Chapter 5, re-

sulting in identity vectors, d, and d, for probe and gallery images respectively.

Table 8.1 at the end of this chapter shows the average distance between gallery
and probe images of the same person (same-person distance) and compares this with
the average distance between the gallery images and all the probe images (all-person
distance). The differences between the two cases are not great, indeed the same-
person distance is not always less than the all-person distance. This apparently poor
separation of the individuals is reflected in the verification ROC plot for static-static
recognition shown as the dashed line in Figure 8.4. The curve shows that a True
Positive Fraction of only 63% is obtained for a False Acceptance Rate of 20%. For
the same FAR, the participants in the time-separated part of the FERET test [81]
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reported TPF’s of between 72% and 86%. Without a common data set, it is difficult
to directly compare our static-static results with the FERET results, however, in both

cases, the level of performance is inadequate for an effective access-control system.

8.4 Dynamic-Static recognition

We evaluated the dynamic-static recognition system in a similar way to the static-
static recognition scheme, using the same registration of the gallery images. Recall
that, rather than a straight projection onto the identity subspace, the identity vector
for a probe sequence is estimated recursively using the Kalman Filter and correc-
tion scheme illustrated in Figure 7.7. When comparing the distance between gallery
sequences and probe images, we used the same corrected projection observed in the
sequence to project the gallery image onto the identity subspace. When we compared
the distance between a specific probe sequence and a gallery image, we calculated the
distance that would be measured if the gallery behaved like the probe sequence. This
is illustrated in Figure 8.3.

We tested the dynamic recognition system on each of the 168 probe sequences.
A human operator gave the system the position of the left eye in the first frame of
each sequence. The tracker was then run over the whole sequence. The final filtered,
corrected estimate of the identity parameters along with the probe correction matrix,
A was returned. This correction matrix was also used to adjust the estimates of
the gallery identity parameters using equation 7.38. We then compared distances
between the probe sequences and gallery images. These distances are referred to as

dynamic-static distances.

The dynamic-static distances are given in Table 8.2 at the end of this chapter.
There is, on average, a slightly greater difference between the same-person and all-
person distances, and every same-person distance is less than the corresponding all-

person distance. This small improvement is only slightly reflected in the ROC curve.
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Figure 8.3: Distance between probe sequence and gallery image is cal-
culated by projecting the image in the same way as the sequence.

Figure 8.4 shows the ROC curve for the dynamic-static system as a solid line. The
curves for this and the static-static system are very similar, although the dynamic-
static system achieves a True Positive Fraction of 100% for a False Acceptance Rate
of 60%. For the same TPF, the static-static system displays an FAR of 93%. The
performance of the dynamic-static system remains inadequate for an effective access

control system.
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Figure 8.4: ROC curves for verification system. Dynamic-static system

compared with static-static system.

8.5 Dynamic-Dynamic recognition

The dynamic recognition system is limited by using a single gallery image for each
individual. In this database we have sequences of the gallery as well as the probes.
We performed a further experiment in which the gallery sequences were also tracked
(with hand initialisation). Correction matrices, A, and A,, were obtained for each
gallery and probe sequence respectively. The adaptive tracking system described in
Section 7.6.3 was used to obtain corrected estimates of identity for both the gallery
and probe sequences. The distances between corrected gallery and corrected probe

identity vectors were measured and are referred to as dynamic-dynamic distances.
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We tested the dynamic-dynamic recognition system on each of the 168 probe
sequences. The same-person and all-person distances are given in Table 8.3. There
is a significantly larger difference between the average same-person and all-person
distances than was the case in either of the two previous experiments. This increase
in performance is clearly reflected by a large improvement in the corresponding ROC
curve. Figure 8.5 compares the ROC curve for the dynamic recognition system with
that of the static system. A TPF of 98% is achieved for an FAR of 20%. At an FAR
of 22% the TPF is 100%.

y - == Static System
g ——  Full Dynamic System :

o
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True Positive Fraction
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Figure 8.5: ROC curves for verification system. Dynamic-dynamic sys-
tem compared with static-static system.
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8.6 Discussion of results

The obvious feature of the results shown in Figures 8.4 and 8.5 is the dramatic

improvement obtained by using both a dynamic gallery and dynamic probes.

For both systems using the static gallery, a 20% False Acceptance Rate, corre-
sponds to a True Positive Fraction of around 60% with little difference between using
dynamic or static probes. This means that even if we turned away 4 in 10 genuine
candidates, 2 in every 10 illegal entry attempts would succeed. It is difficult to imag-
ine the practical application of a system exhibiting this level of performance. The
poor ROC curves reflect the relatively small differences between the same-person and

all-person differences.

If we use both a dynamic gallery and dynamic probes the situation improves con-
siderably. It is possible to achieve 100% True Positive Fraction for a False Acceptance
Rate of just 22%. This sort of performance would be acceptable in many types of
application, particularly access control. One of the key requirements of a practical
access control system is the ability to achieve a very high True Positive Fraction -
it is usually better to allow a few bogus entries than to regularly turn genuine peo-
ple away. If the TPF is high, the ‘alarm’ raised by a detected intruder can be very

dramatic, since it is unlikely to ever be triggered by a genuine person.

Given this large improvement when using a dynamic gallery, it is slightly surpris-
ing that when using a static gallery, it appears to make little difference whether the
probes are static or dynamic. One possible explanation is that the variation seen in
a probe sequence is only sufficient to correct that sequence. The configuration of the
face in a static gallery image may not correspond to variation seen in the probe se-
quence. It appears that, in order to obtain a reliable estimate of the gallery identity,

the system needs see the gallery image move.

The suggestion that the system needs to see a face move before it can be reliably

identified has an interesting parallel in human psychological studies performed at
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The University of Glasgow by Burton et al [17]. They evaluated the performance of
human subjects when asked to identify individuals in poor quality video sequences.
They found that the performance for familiar faces - those known to the subject
before the experiments, was much greater than when the face was unfamiliar - only
seen before in still photographs. By using a dynamic gallery, our system ‘learns’
in advance something about the dynamic behaviour of faces to be identified. Such
dynamically tracked gallery faces are the system’s equivalent of familiar faces. This

relationship is an interesting area for future research.

8.7 Summary

In this chapter we have presented an experimental evaluation of the various recogni-
tion methods described in this thesis. As other experimenters have shown, static
recognition across large changes in image appearance with a time-delay between
gallery and probe images is difficult. We address this problem by learning further in-
formation about the gallery and probe images by observing their movement through
sequences. This can be done using the adaptive tracking scheme described in Chap-
ter 7. It is important to note that this extra information does not need to be stored
with the gallery images, it is simply used to ‘correct’ an initial estimate of the low-
dimensional identity vector. This is then compared with the corrected version of the

gallery identity vector.

The results indicate that it is important to observe variation in both the probe
and gallery images. The performance obtained using a static gallery is not sufficient
for access control systems - however, by adopting the dynamic-dynamic scheme we
have demonstrated much improved performance which would allow practical access
control. The need to learn about the gallery sequences in advance has interesting
parallels in studies of human recognition performance from video, in which the prior-

familiarity of the face appears important.
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These results are based on a fairly small sample of individuals, at least compared
with common static recognition experiments such as the FERET test. This is due
to the vastly increased difficulty of obtaining, storing and processing video data. It
is hoped that further increases in the size of database used for these tests will be
achieved by pooling resources across research establishments. We intend to make our

test data publicly available (see Appendix B).
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Distance between Distance between
gallery/probe gallery/probe
Person Same Identity All Person Same Identity All
Individuals Individuals
=
o 3.84 5.14 4.68 5.11
4.09 4.97 3.47 4.90
H 4.54 5.45 4.63 5.04
- 5.83 5.35 4.07 5.25
3.66 6.24 4.19 5.40
-
L= 4.05 5.10 5.30 5.87
e 4.08 5.46 4.63 531
H 4.32 5.59 4.58 4.79
- 4.04 5.15 3.58 5.01
H 4.00 4.54 5.04 5.04
- 4.39 5.09 3.81 495
Average distance between matches: 4.31
Average distance between all pairs: 5.22

Table 8.1: Average distance between gallery and probe images using

static-static recognition scheme.
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Distance between Distance between
gallery/probe gallery/probe
Person Same Identity All Person Same Identity All
Individuals Individuals
=
= 427 5.81 422 8.59
5.07 6.87 7.00 7.92
H 7.27 8.36 7.00 8.48
- 3.60 7.94 5.53 5.91
6.67 8.37 597 7.18
-
L= 5.41 7.04 5.79 7.03
e 5.74 8.08 5.36 5.48
H 6.13 7.89 6.45 7.48
- 5.28 7.06 4.88 6.07
H 5.73 8.08 8.18 8.72
- 5.93 797 5.42 6.34
Average distance between matches: 5.77
Average distance between all pairs: 7.39

Table 8.2: Average distance between gallery and probe images using

dynamic-static recognition scheme.
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Distance between Distance between
gallery/probe gallery/probe
Person Same Identity All Person Same Identity All
Individuals Individuals
=
o 3.99 7.01 3.11 6.91
4.13 6.82 4.29 7.46
H 4.54 6.93 431 6.44
- 3.91 7.22 2.99 7.42
5.78 8.17 5.38 9.00
-
L= 4.36 6.98 4.49 6.73
v 521 734 3.66 7.01
H 3.46 7.56 4.90 6.84
- 391 6.94 4.57 8.02
H 3.09 691 3.29 7.37
- 4.20 7.99 2.27 7.38
Average distance between matches: 4.08
Average distance between all pairs: 7.29

Table 8.3: Average distance between gallery and probe images using

dynamic-dynamic recognition scheme.
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Chapter 9

Extensions and Future Work

In this chapter we describe initial work on extensions to the techniques presented and

discuss directions for future research.

9.1 General applicability of AAMs.

Active Appearance Models provide a general approach to image analysis, useful in
any situation where 2D view-based models can be constructed. To demonstrate this,
we have recently applied the method to images of the brain produced by magnetic
resonance imaging (MRI). Figure 9.1 shows some typical images. As can be seen,
the original images are quite complex and noisy and thus not suitable for data-driven

segmentation.
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Figure 9.1: Example images of MRI brain slices with landmarks over-

layed.

We used a set of 73 training images to build an Active Appearance Model. Figure
9.2 shows the first three modes of variation of the resulting model. Note that the
resolution is apparently higher than that of the original images. This occurs because
the shape-free grey-level part of the model was built by interpolating over a more
closely spaced grid than the original data. The shape-normalisation step ensures

that the interpolated measurements are valid.
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Figure 9.2: First 3 modes of variation of brain model.

Figure 9.3 shows some stages of Active Appearance Model search on a previously
unseen example image. Despite the noisy nature of the image, the search is successful,

even from a fairly poor starting approximation.

9.2 Automatic landmarking

One of the main difficulties of Appearance Models is the need to hand-landmark a
large set of training images. An automatic or semi-automatic scheme would confer
obvious benefits. A clue to how this might be achieved is found by analysing some
examples of brain segmentation using the above model. To test the Active Appear-
ance Model we reapply it to the training data and measure its performance. In fact,

a true performance measure is not easy to find. In Active Shape Model search, a
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Figure 9.3: AAM search appied to a previously unseen brain image.

common measure of performance is the distance between the hand-placed landmark
points and the points found by Active Shape Model search. This does not, however,
account for the fact that the original landmarks may be badly placed, and therefore
the automatically located points might actually be better placed. When analysing
the performance of an Active Appearance Model, the problem is even more acute,

since the AAM’s performance includes its ability to match to the texture of the image.

A particularly attractive property of AAMs is their ability, under certain cir-
cumstances to find better landmarks than the original hand-placed landmarks. The
following example of AAM search using the brain model shows this clearly. Figure
9.4 shows a small detail of a brain image from the training set, together with the
hand-placed landmarks for that feature, which are indicated by circles. Clearly, the
landmarks ought to have been placed around the dark shape, and on average, over
the whole training set, that is where they were placed, whereas in this particular
image the mark-up has been done badly. If we run the AAM on this image (remem-
bering that this is one of the training set) the result is extremely interesting. The
position of the model points after performing AAM search are shown as triangles.
In this case, the model has placed the landmark points where the operator ought to
have placed them. By learning over the whole training set, roughly what the various

regions ought to look like, the model is able to reinterpret the training images and
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correct errors made by the operator who marked the images.

Figure 9.4: Detail of training image - in this particular case, the land-
marks (circles) are badly placed whilst the result of AAM search (trian-
gles) is closer to the desired position.

This then presents the possibility of an iterative mark-up scheme - we can use the
re-estimated positions of the landmark points to rebuild the Appearance Model, with
fewer mark-up errors than in the original. This sort of iterated scheme may form
the basis of an automatic landmarking method. The principle by which it works
is the noise reduction obtained by Principal Component Analysis. Variation due
to random misplacements of the landmarks is interpreted as noise and thrown out

during modelling. This will only work in the case of randomly misplaced landmarks;
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systematic misplacements will be interpreted as valid landmark positions.

9.3 Extending models to colour

This thesis has concentrated on the analysis and synthesis of grey-scale face images.
We would also like to extend the method to analyse colour images. In general,
we would always like to use as much image information as possible. If three input
channels (red, green, and blue) are available, we should use them all. The more
information is used, the greater the likelihood of building a specific model. There is
only a limited range of colour variation that is legally allowed in human faces. If we
correctly encapsulate the variation then we have an even more specific model than
our grey-scale model. In fact it has been shown that colour provides a very powerful
specificity constraint when applied to face images. Raja et al [79] have built detailed
models of skin colour distribution and used them to detect skin coloured regions
in images, as part of a face analysis system. We propose a more powerful model;
by incorporating colour into an Appearance Model, we not only model the global
colour variation, but the legal range of spatial distribution of skin colour for faces.
For example, a single global colour model would include both black and white skin
colours. However, a Colour Appearance Model goes further by rejecting potential
face-like regions in which the distribution of colours is illegal, for example a black

forehead and white cheeks (perhaps missing the odd chimney sweep).

Since Appearance Models can be used for synthesis and animation, it is essential
that they can be produced in colour - grey-scale images would not suffice for most
modern media applications. By correctly encapsulating colour variation in train-
ing images, we can ensure that synthetic reconstructions show plausible colours and

spatial distributions of colours.

We have built an experimental colour model with a small set of training data,

consisting of 24 images of different individuals captured in different conditions using
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a colour camera. The formulation is identical to that of the Appearance Model
described in Chapter 4, with the exception that the extracted vector of grey-scale
values is replaced with a combined vector of red, green and blue values. Thus, instead
of the grey-level sample vector, g,,,, we have a colour sample vector, g,,,(rgb), given

by:

Gim(Tgb) = (11,79, .. "0, G1,G2, - -+ > Gy b1, b2y oo by) (9.1)

where r;, g; and b; are the pixel values extracted from the red, green and blue
channels after warping. All the remaining stages are as in Section 4.2, including
the normalisation step. The shape-free region model should encapsulate correlation
between the colour channels. Reconstruction using colour models is exactly the same
as for grey-scale models, except that the reconstructed vector, g,,,(rgb), is separated
into its three channels to display the image. In this way we can visualise the modes
of variation of the Colour Appearance Model in the same way as for the grey-scale
model. Figure 9.5 shows the first three modes of variation of the Colour Appearance

Model.

At this stage we have not included colour in the Active framework, mainly due to a
shortage of appropriate data. We anticipate the performance to be at least as good,
and possibly better than grey-scale models, due the further increase in specificity
provided by colour. In particular, we expect greater accuracy around regions such as

the eye, where the contrast in colour images is greater than in grey-scale images.

9.4 Recognising expression

Although many applications of face interpretation are concerned with identity recog-
nition we are also interested in the ability of interpretation systems to recognise ex-

pressions. Expression recognition is a more difficult problem to define than identity
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Figure 9.5: First 3 modes of variation of a colour face model.

recognition. Firstly, a ‘ground truth’ is harder to define - how many types of ex-
pression are there? What does it mean to talk about ‘distance’ between expressions?
Moreover, expression is a dynamic phenomenon, there are probably limitations to hu-
man expression recognition performance from photographs (there was certainly con-
fusion amongst the 25 observers who classified the images for the expression model).
Despite these problems we devised a preliminary expression recognition experiment
based on 400 images especially captured for psychological expression recognition ex-
periments. We then attempted to use the Active Appearance Model to assign ex-
pression labels to each of the 400 images. Some typical examples from the set of

‘expression’ images are shown in Figure 9.6.

In order to evaluate the performance of the Active Appearance Model, we tested
the system against 25 human observers. Each observer was shown the set of 400

face images, and asked to classify the expression of each as one of: happy, sad,
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Figure 9.6: Typical examples of face images used to evaluate expression
recognition performance.

afraid, angry, surprised, disqusted, neutral. We then divided the results into two
separate blocks of 200 images each, one used for training the expression classifier and
the other used for testing. Since there was considerable disagreement amongst the
human observers as to the correct expression, it was necessary to devise an objective
measure of performance for both the humans and the model. A leave-one-out based
scheme was devised thus: Taking the 200 test images, the human observers attached a
label to each. This label was then compared with the label attached to that image by
the 24 other observers. One point was scored for every agreement. In principle this
could mean a maximum score of 24x200 = 4800 points, however, there were very few

cases in which all the human observers agreed, so the actual maximum is much less.
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In order to give a performance baseline for this data, a score was calculated several
times by generating random choices. The other 200 images were used to train an
expression classifier based on the model parameters. This classifier was then tested

on the same 200 images as the human observers. The results were as follows:

Random choices score 660 +/- 150
Human observer score 2621 +/- 300
Machine score 1950

Although the machine did not perform as well as any of the human observers, the
results encourage further exploration. The AAM search results were accurate, and
we have demonstrated that ID recognition performance is good. This suggests that
the simple linear classifier we used limited performance. Further work will need to

address a more sophisticated model of human expression characterisation.

9.5 Extending the representation

The full face models we have shown are limited to a pose range of around +/- 20
degrees. The limitation is caused by the need to place consistent landmarks on key
features over the training set. As pose change increases, correspondence is harder
to establish and becomes impossible as features are occluded. This in turn makes
the shape normalisation impossible and thus prevents the construction of a specific
shape-free region model. Since typical sequences will involve pose changes beyond 20

degrees, this represents a serious limitation.

There are several possible ways to address this problem. The most obvious, but
potentially most difficult is to use a 3D model of the face surface. Encapsulating all
possible 3D variation would require a large amount of training data that would be
more difficult to gather than the existing 2D images. Publicly available 3D data for

faces is slowly becoming available and might be used in the future to provide some
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degree of flexibility to a rigid 3D template. This 3D model could be used to estimate
the 2D projection of faces into images under large pose changes. The key point is
that the Active Appearance Model algorithm ought still to work, as long as there
exists a method of relating displacements of the 3D model parameters to differences

between the model projection and the target image.

A second method of dealing with larger pose variation would be to use multiple 2D
models. A first model would represent up to say 20 degrees of variation from frontal,
with a further one or maybe two models taking the head all the way to 90 degrees
and possibly slightly beyond. For these purposes it is probably sufficient to assume
that faces are on average symmetrical and build only one model for say, left handed
rotation using the reflected version for right handed rotation. This method would
require more sets of training images for the different models, and the major difficulty is
the integration of the models into a single framework. Ideally the interpretation would
deal with images in a smooth manner, rather than constantly switching between

models.

The third method we have considered also addresses another problem with the
representation, that of missing features, even in frontal images. The most common
features whose existence in the image is not certain are the teeth and nostrils, al-
though we also need to deal with the opening and closing of eyes. Rather than
attempt to explain the teeth, nose and eyes in 3D we would rather build the con-
cept of ‘visibility’ into the model. This is a similar idea to the ‘z-buffer’ method in
computer graphics. It is possible that such a representation could also deal with the

variation in visibility due to head rotation.

9.6 A half-face model

The problems in dealing with a full pose range occur because establishing correspon-

dence is impossible once features have disappeared. We note however, that it is only
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features on one half of the face that tend to disappear with pose changes. Corre-
spondence can still be established for points on the visible half of the face. Using this
observation, we have constructed a small model by placing landmarks on just one
side (the person’s right) of face images. The training set consists of 23 images in a
full range of pose angles. Figure 9.7 shows a selection of images from the training set
along with hand-placed landmarks*. We have used this small set of images to investi-
gate the feasibility of a model displaying full pose variation; the result is encouraging.
Figure 9.8 shows the first three modes of variation of this model. The same model,

reflected through 90 degrees would account for the other side of the face.

Figure 9.7: Examples of face images used to build a half face model.

*These images and landmarks were kindly provided by Dr. Nicholas Costen, also of the Wolfson
Image Analysis Unit.
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Figure 9.8: First three modes of variation of half face model.

9.6.1 Detecting faces

For AAM image search to be successful the model must first be placed reasonably close
to the object of interest. Given a particular application, there exist several techniques
for generating such initial hypotheses. For example, in a face tracking application, we
might initialise the system by detecting regions of the image containing skin coloured
pixels, or where motion is detected. Clearly, not all of these cues will be faces, but
the system might have the capacity to check many hypotheses. A more satisfactory
solution would be to use the Active Appearance Model itself to detect face regions
in images. As is shown in Figures 6.2 and 6.3, if the model is close to a solution,
the first iteration of the AAM shows a large reduction in reconstruction error from
that of the initial placement. By applying one iteration of AAM search initialised
over a grid of image locations, it should be possible to rapidly analyse the image for

the presence of faces. The grid spacing should be such that any actual face would
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be within the capture range of the model for at least one starting position. An extra
consideration is the need to search at a range of scales and possibly angles. The
use of a lower resolution model would improve the speed at which this detection
could take place, although the reduced specificity is likely to increase the number of
false-positive hypotheses returned. In a typical system, we envisage such a detection
scheme running as a background task, with a full, high-resolution model used to

further analyse suggested hypotheses.

9.6.2 Dealing with occlusion

Unlike Active Shape Models, Active Appearance Models are not robust to occlusion.
This is due to their specific representation; a face with a piece missing is not, according
to the model, strictly a face. In any scheme, missing data will reduce the probability
that a region is a face, but it would be desirable if image search was still possible
in occluded images. In particular, the ideal model would still return the best fit to
all the face-like data. Dealing with occlusion is an area where further research is

necessary.

9.6.3 Efficiency of AAMs

Whilst AAMs are an extremely efficient method of high dimensional optimisation,
the fastest current implementation only allows face tracking at around 4 frames per
second. This is not fast enough for practical tracking applications, thus we seek
methods of speeding up the AAM algorithm still further. One possibility is to use
sparse sampling of the image to predict the model correction, rather than every pixel
in the model. This sounds like simply using a lower resolution model; the difference
is, however, that we can choose the set of pixels to sample at each iteration - using
those with the most predictive power. The addition of a small element of random

sampling would ensure that over a sequence, all the pixels play a part in the error
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correction. Cootes et al [19] have published preliminary results indicating that sub-
sampling can yield a 3-fold increase in speed, although the search proves less reliable

in certaln circumstances.

9.6.4 Dynamic models

Specificity is the key requirement of models; this is the property that makes AAMs so
powerful. During tracking we have demonstrated how specificity can be further im-
proved by partitioning the model into identity and non-identity components. Despite
the improvement, this remains a fairly limited dynamic constraint. There certainly
exist a larger number of dynamic constraints for face movement in sequences; the
laws of Physics limit the movement of muscles in the face. A specific dynamic model
would not only be restricted to plausible faces, but plausible face dynamics. Extend-
ing the work in this thesis to develop more sophisticated models of dynamics such as

those used by Baumberg and Hogg [4] is an area for future research.

9.7 Summary

This chapter has given a brief overview of ongoing extensions to the methods pre-
sented in this thesis. We have shown an example of the general applicability of AAMs
to other types of image. An analysis of the results of AAMs applied to brain images
indicates that the model’s performance can surpass that of a human operator. This
in turn suggests the possibility of semi-automatic methods of placing image land-
marks. Appearance Models can be extended to colour in a straightforward manner.
We anticipate enhanced performance of colour AAMs due to the further increase in

specificity.

We have also shown the application of AAMs to a different type of face interpre-

tation, expression recognition. Whilst the AAM did not perform as well as typical
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human observers, the limited experiments provide encouraging results.

Areas for future research include the issue of representation in Appearance Models,
seeking in particular a method that allows the representation of parts which may
disappear due to large pose changes or occlusion by the lips, etc. Further possible
enhancements to the AAM algorithm will include robustness to external occlusion

and improvements to the search speed.

Finally, it may be possible to extend our simple dynamic models to build sophis-
ticated, specific models of facial dynamics. The AAM itself could be used to gather
the large amount of dynamic training data that would undoubtedly be required to

build such models.
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Chapter 10

Conclusions

This thesis has described the development of unified model-based techniques for the
interpretation and synthesis of face images and sequences. In this chapter we sum-

marise the main achievements of the research.

10.1 AAMs in machine vision

In Chapter 2 we reviewed several types of models used in face interpretation. Whilst
some researchers have concentrated on 3D models, the reduced complexity of 2D
models has made their use in face interpretation more common. There exist several
commercial face recognition systems based on 2D, view-based models. Most existing
techniques have concentrated on either the analysis of shape or of global texture.
An early successful attempt to unify the analysis of shape and texture was made
by Lanitis et al [63], combining Active Shape Models with Shape-Free Grey-Level
Models. Lanitis’ method only partially addresses the goal of unified interpretation;
only the final classifier takes account of the full texture, the initial image analysis
seeks to fit a shape model based on small, local region models. Active Appearance

Models complete the unification of shape and texture models and provide a single

182



CHAPTER 10. CONCLUSIONS

interpretation method. At the time of writing no other existing technique can pro-
vide such fully detailed interpretation with comparable speed. On a typical modern
desktop computer, an AAM will converge in typically half a second. The most similar
method, Jones and Poggio’s Multidimensional Morphable Models [55] takes several

minutes to fit a model to image data.

10.1.1 Appearance Models

The Active Appearance Model is built on the concept of an Appearance Model. In
Chapter 4 we explained the construction of these combined models which encapsulate
both the shape and texture variation of faces. We demonstrated the ability of a model
to generate faces not seen in the training set and importantly, we showed that the
model could only generate plausible examples of faces. In a recent extension we have

shown how the framework can be easily modified to incorporate colour.

Appearance Models are currently limited to representations where a continuous
correspondence field can be specified by hand placed landmarks. This is not possible
for a full face beyond a certain range of pose, or for features that may or may not
be visible, such as teeth. Furthermore, even in suitable images, the manual location
of the landmarks is a laborious task. In Chapter 9 we showed encouraging results
which may lead to a workable method of automatic landmark placement. We also
suggested various schemes for dealing with large pose ranges and missing features. It
is hoped that further development, will allow Appearance Models to deal with such

images, and require minimal human effort during model building.

10.1.2 Active Appearance Models

The invention of a fast technique for fitting Appearance Models to image data is the
key to other developments in this thesis. In our approach, modelling and analysis

use a complete representation in a unified framework. Active Shape Models do not
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use a complete representation and ASMs plus shape-free texture analysis is not a
fully unified approach. The specific nature of an Appearance Model means that if an
AAM can be fitted to image data with a small grey-scale (or colour) residual, then

we can be confident the region is a face.

The AAM is naturally limited by the representational ability of the underlying
Appearance Model. A further limitation is the AAMs current inability to deal with
occlusion in images. Further research may yield a new method for dealing with this

problem.

AAMs can be applied to many types of image; in Chapter 9 we showed the
application of AAMs to MRI brain images. It is anticipated that AAMs will be

applied to many image analysis problems.

10.1.3 Partitioned Models

An attractive property of Appearance Models is their encapsulation of several types
of variation. In the case of faces, this allows us to fit the same model to images
of different individuals with various expressions under a range of pose and lighting
conditions. In certain situations, this generality can be a handicap. For many types
of synthesis and animation, it is desired to manipulate particular ‘real-world’ charac-
teristics of a face independently. For instance, we may wish to change the expression
of a face without changing its pose - we would almost certainly not want to change its
identity. This is equally important in analysis, particularly the analysis of sequences,
where we can be sure that identity is fixed. The full model lacks specificity when

used to track multiple frames of the same individual.

We have addressed these issues by partitioning the full model into separate sub-
spaces describing specific types of variation. The most important partitioning is
between identity and non-identity, allowing a large increase in specificity for track-

ing. We have also shown how this partitioning allows successful manipulation of face
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images, whilst keeping identity constant.

10.1.4 Interpreting sequences

In Chapters 7 and 8 we introduced a scheme which uses an Active Appearance Model
and the identity /non-identity Partitioned Model to track and interpret faces in se-
quences. The iterative nature of the AAM makes it ideal for tracking; typically it
is possible to track a sequence successfully by applying just one iteration per frame.
We have thus far achieved a tracking rate of approximately 4 frames per second. The
partitioning method uses two complimentary techniques; firstly we attempt to ensure
that identity remains fixed during tracking, but also we aim to use any remaining
observed variation to correct our estimate of the persons identity. This provides a
second-order linear correction to the initial estimate of identity. We have only used
the method for person recognition in sequences; in the future we intend to develop

methods for other types of interpretation such as expression analysis.

Although minimum reconstruction error was achieved with simple tracking, we
showed that this scheme produced instability in the estimate of identity. The adaptive
tracking scheme based on on-line correction of the identity /non-identity partitioning
produced a large improvement in the stability of ID measurement with little degra-

dation in reconstruction accuracy.

Our experimental evaluation of the recognition methods showed that static recog-
nition across large changes in image appearance with a time-delay between gallery
and probe images was difficult. By using the adaptive tracking scheme described in
Chapter 7 to register both gallery and probe sequences, the recognition performance
was shown to improve dramatically - producing results which would make secure

access control practicable.
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10.2 Final statement

In this thesis we have shown how full, generative 2D models can be used practically
for image and video analysis. We hope the techniques will see further development

and application in this and other areas of computer vision.
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Warping Face Images

A.1 Image warping

Suppose we wish to warp an image I, so that a set of n control points { x; } are
mapped to new positions, { @, }. We require a continuous vector valued mapping

function, f, such that

fl))=z;Vi=1...n (A.1)

Given such a function, we can project each pixel of image I into a new image 7'
In practice, in order to avoid holes and interpolation problems, it is better to find
the reverse map, f’, taking @} into @;. For each pixel in the target warped image, 4’
we can determine where it came from in ¢ and fill it in. In general f' # f~', but is

a good enough approximation.
Below we describe a particular form of f, the piece-wise affine interpolator.

Note that we can often break down f into a sum,
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Where the n continuous scalar valued functions f; each satisfy

1 of 1=
fi(z;) = g , ] (A.3)
0 i # ]

This ensures f(x;) = ..

A.1.1 Piece-wise affine warping

The simplest warping function is to assume each f; is linear in a local region and zero

everywhere else.

For instance, in the one dimensional case (in which each « is a point on a line),

suppose the control points are arranged in ascending order (z; < z;41).

We would like to arrange that f will map a point & which is halfway between z;

and x;1; to a point halfway between z; and zj, ;. This is achieved by setting

(¢ —x))(iz1 —x;) if x€[x,xi]andi<n
filw)= (x—2)/(x+i—2i1) if x€ w1, 2]andi>1 (A4)

0 otherwise

We can only sensibly warp in the region between the control points, [x1, z;,].
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In two dimensions, we can use a triangulation to partition the convex hull of the
control points into a set of triangles. An automatic algorithm for the generation of
triangles is the Delaunay Triangulation Method. Given a set of control points, the
method produces a set of triangles such that no data points are contained within any
triangle’s circumcircle. Figure A.1 shows the result of applying Delaunay Triangula-

tion to the mean shape our Point Distribution Model of faces.
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Figure A.1: Delaunay triangulation applied to the mean shape of the
face PDM.

For the points within each triangle we can apply the affine transformation which

uniquely maps the corners of the triangle to their new positions in %'
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Suppose x;, x5 and x3 are three corners of such a triangle. Any internal point

can be written

x = o+ Bz — ) + (T3 — T1) (A5)
= ax + [Ty + yT3

where @« = 1 — (84 7) and so a + f+ v = 1. For @ to be inside the triangle,
0<a,f,7v<1

Under the affine transformation, this point simply maps to

!

' = f(x) = az)| + fxy + vy (A.6)

To generate a warped image we take each pixel, ' in I', decide which triangle it
belongs to, compute the coefficients «, 3,y giving its relative position in the triangle
and use them to find the equivalent point in the original image, I. We sample from
this point and copy the value into pixel &’ in I'. Note that although this gives
a continuous deformation, it is not smooth. Straight lines can be kinked across

boundaries between triangles (see Figure A.2).

Q O

O O O

Figure A.2: Using piece-wise affine warping can lead to kinks in straight

lines.

Piece-wise affine warping is used in all the models presented in this thesis. A
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smoother alternative are the thin-plate splines described by Bookstein [13]. These
produce deformations that are continuous up to the second derivative, however the
computational cost is far greater than for piece-wise affine warping and is not suitable
for live analysis. In fact, for face images, thin-plate splines offer no visible improve-

ment in resulting image quality.
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The Training Images

The 768 training images used to build the models used in this thesis were acquired

from several sources.

We used 159 photographs of members of the Wolfson Image Analysis Unit, kindly
made available from the earlier work of Andreas Lanitis. This set consists of around
9 examples each of different individuals, with some ethnic variation and an age range

of around 18-50.

We used 396 of the 400 images kindly provided by Dr. Jane Whittaker, of the
Department of Child Psychiatry, University of Manchester. This set consists of ap-
proximately 22 examples each of 19 individuals showing large expression variation.

There is some ethnic variation and an age range of around 21-75

We used 150 images provided by The UK Home Office. This set consists of one
example of each individual. There is ethnic variation and an age range of around

20-40.

Finally, 63 additional images of current members of the Wolfson Image Analysis

Unit were added to include more lighting and pose variation.
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Various subsets of the training images and the video sequences used for testing

can be obtained by contacting:

The Laboratory Superintendent
Wolfson Image Analysis Unit
Stopford Building

University of Manchester
Oxford Road

Manchester

M13 9PT
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