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Abstract

Relational graphs are a fundamental type of scene representation for medium and high

level computer vision tasks. They provide a generic way of encoding entities and rela-

tionships. The comparison and matching of such graphs is an important and challenging

problem under the conditions of uncertainty and corruption which exist in most vision

problems.

In this thesis a method for matching relational graphs is developed which is based on

symbolic constraints. The topology of the graph relations is used to calculate the consistency

of a particular match using a Bayesian probability model of the processes at work in the

matching process. The result is a global consistency criterion which measures the quality

of match. A discrete relaxation technique is used to locate the optimal mapping between

graphs using a MAP update rule. The technique is evaluated using both real-world image

data and simulated graphs.

Three methods of eliminating spurious elements from the graphs are also studied. The

first method involves a constraint-filtering method which is applied after matching has

taken place. The second method is an optimisation technique in which noise elements are

identified and labelled during the matching process. The final method involves the dynamic

reconfiguration of the graphs to remove noise elements during the matching phase. Detailed

evaluations of these methods are performed on simulated data.

A theoretical analysis of the criterion is carried out which allows prediction of the

expectation value of the criterion at a given level of graph corruption. The performance of

the symbolic criterion is compared to that of other alternatives reported in the literature.

Finally the symbolic methods developed earlier are extended both to the use of proba-

bilistic relaxation to match relational graphs, and to the matching of hierarchical graphs.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Relational graphs are a fundamental representation of image structure in intermediate and

high level computer vision tasks. Their key advantage is the departure from an essentially

pixel based representation to a more abstract realisation more closely allied to the intuitive

structure of real-world objects. They are therefore a powerful tool for modelling scene

structure in terms of objects and the relations which exist between them.

If techniques are available to compare and match these representations, it is possible to

interpret scenes in terms of object-based models. This task is not straightforward however;

two major problems hinder attempts to match relational graphs. The matching process itself

is combinatorially expensive - the number of possible matches rises factorially with the size

of the graphs. Furthermore, the relational graph representation of a scene is almost always

corrupted by image noise and poor segmentation. In this situation, matching can only be

accomplished by inexact means which account for anticipated imperfect matching between

graphs.

Successful approaches to this problem make extensive use of measurement information

both on objects and on the relations in the graphs to overcome matching ambiguities and

graph corruption. This approach relies on apriori knowledge of the parameters of the scene

sensing process and the fidelity of the resulting measurements.

In contrast to the measurement-based approach, it is possible to take a symbolic view of
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the matching task. Here the graph relations themselves provide the information necessary

to effect an accurate match, with the benefit that few parameters are required to perform the

matching. Furthermore, the matching process is not heavily reliant on scene measurements.

However past approaches of a purely symbolic nature have proved less effective because of

the increased ambiguity of relational information. In this thesis we will demonstrate that

matching can be accomplished by symbolic means using a suitable model of how topology

changes from one graph to another, even when significant corruption is present.

1.2 Review

Relational graph matching has been a task of pivotal importance to intermediate and high

level computer vision for some 25 years. It was the work of Barrow and Popplestone

(Barrow and Popplestone, 1971) which first exploited a relational graph representation

of scene structure. Since then graph-based representations have been a central theme of

vision research. As a consequence, a wealth of matching techniques and relational distance

measures have been developed. The focus of this thesis and the literature review in the

remainder of this chapter is on the matching of relational representations.

One of the first uses of graphs as a tool in computer vision was described by Barrow

and Popplestone (Barrow and Popplestone, 1971). In an application involving the matching

of a semantic model, relational graphs were used to represent the positional relationships

between segmented image regions. The role of the relational graph was as a representation of

scene structure which was abstracted away from the low-level pixel-based representations.

From these early beginnings the idea of a relational graph to represent scene structure was

born. Scene graphs were stored and then images recognised by exhaustive comparison

between the graphs. These ideas where later formalised by Barrow and Burstall (Barrow

and Burstall, 1976) who presented some practical matching techniques for finding sub-graph

isomorphisms based on identifying maximal cliques in the association graph(see below for

a discussion of this technique). At this early stage the difficulties of reliably extracting such

relationships were not fully appreciated. Infact, these techniques were only effective when

the structural scene descriptions were uncorrupted, and therefore had limited practical
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application.

It was soon realised that relational models of scene structure could be powerful tools

in the computer vision domain. A body of work was already available from mathemati-

cal graph theory (Harary, 1969). This dealt with formal definitions of matching between

graphs; the problems studied here were graph isomorphism and sub-graph isomorphism.

Algorithms have been developed from these foundations to calculate graph and sub-graph

isomorphisms (see (Ballard and Brown, 1982) for a review). Of particular interest is the

clique problem which is related to sub-graph isomorphism; the objective of the clique al-

gorithm is to find the fully connected sub-graphs or cliques of an input graph. Subgraph

isomorphisms between two graphs can be found using this algorithm by forming the asso-

ciation graph of the two graphs. The association graph is formed as follows: consider two

graphs G1 and G2 with nodes fui8ui 2 V1g and fvi8vi 2 V2g respectively. The nodes of the

association graph A are formed from the node-pairs f(ui; vj)8ui 2 V1; vi 2 V2g, i.e. there is

an association graph node, denoted aij for each of these node pairings. Edges exist between

nodes aij and akl when the condition (ui; uk) 2 E1 and (vj ; vl) 2 E2 is fulfilled. Extraction of

the fully connected sub-graphs of the association graph gives the sub-graph isomorphisms

between the two graphs G1 and G2. These ideas have been exploited more recently by

Horaud and Skordas (Horaud and Skordas, 1989) in the context of stereo matching.

A number of important results come out of graph theory concerning the complexity of

evaluating graph and sub-graph isomorphisms (Ullman, 1976). The sub-graph isomorphism

problem has been found to be NP-complete, that is to say that all exact algorithms (those

guaranteed to find the correct solution) take a worst case time exponential in the number of

graph nodes. Inexact algorithms can solve the problem in polynomial time, but of course

without guaranteed success. Full graph isomorphism is not known to be NP-complete,

however no deterministic polynomial time algorithms are known.

In addition to these computational constraints, the problem of noise is also an important

factor, and one which is not considered in theoretical and mathematical treatments of graph

theory. When graph corruption is a significant factor, which it invariably is in computer

vision problems, the perfect isomorphism between graphs is destroyed. Sub-graph isomor-

phism may still be used to isolate undisrupted portions of the match (Ullman, 1976; Horaud
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and Skordas, 1989).

There are, then, two major drawbacks to these these graph-theoretical methods. Firstly

the computational complexity is enormous for all but the smallest graphs and rises expo-

nentially with the number of graph nodes. The second problem is their inability to deal with

noise, corruption or any form of inexactness within their exact framework. It is clear that

if we hope to match noise-corrupted graphs of significant size in an efficient way we must

adopt an inexact approach which is robust to graph-errors. It is these techniques which we

will examine in the thesis.

1.3 Graph representations of Computer Vision Problems

A scene in a computer vision problem can be thought of as consisting of two distinct elements,

a set of objects or tokens from which the scene is constructed and a set of measurements

or properties of these objects. The unique element in a relational graph problem is the fact

that additional information about the relationships between objects in the scene is available.

These relationships, measurements and objects can be used to form what is usually referred

to as an ARG (Attributed Relational Graph).

In discussing different representations of an ARG, there are two elements to consider cor-

responding to the two elements of the graph formulation; what attributes or measurements

are used, and how relations between objects are formed.

1.3.1 Graph Relations

The relations between scene objects can be roughly grouped into two separate categories,

perceptual relations and abstract relations. Perceptual relationships between objects rep-

resent properties of some physical or perceptual significance in the scene; for example

adjacency, inclusion, above (Ranganath and Chipman, 1992), corners, junctions and paral-

lelism (Davis, 1979; Etemadi et al., 1991). These are properties which physically exist in the

real world and could reasonably be expected to appear in a consistent fashion from image

to image. However robust extraction of perceptual object relationships such as these is not

an easy task, especially prior to scene interpretation. Moreover, they are rather fragile and
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prone to corruption (Sarkar and Boyer, 1993).

Other geometric schemes include pixel-based neighbourhood schemes (Geman and Ge-

man, 1984; Hancock and Kittler, 1990b) and closest point graphs such as the Delaunay graph

and Gabriel graph (Tuceryan and Chorzempa, 1991). In (Tuceryan and Chorzempa, 1991),

the robustness of various closest point graphs to corruption is investigated. The conclusion

reached is that the Delaunay graph is the most resistant to disruption; a result of considerable

significance to the matching of noise scenes using abstract relations.

The sensitivity to noise of the perceptual relations is not easy to analyse; the response

to noise depends not only on the type of relation but also on the type of objects present in

the scene and the segmentation strategy. However (Chipman and Ranganath, 1992) suggest

that ’fuzzy’ relations with real-valued measurements are more robust and useful than simple

binary or "on/off" relations such as ’above’ and ’adjacent’.

This idea of associating measurement information with graph relations has been widely

adopted (Kittler et al., 1993; Boyer and Kak, 1988). For example the graphs of Kittler et al

are fully connected - it is the measurements on these relations which provide the distinction

between the graph connections. In this sense the relations are ‘soft’, being characterised by a

real-valued measurement. This constrasts with the symbolic approach which is based on the

existence or non-existence of relations. This measurement approach clearly provides more

information, potentially aiding the matching process. However, as with any measurement

process, in order to be of any use the probability distribution of measurements must be

defined. This means an increase in apriori information which needs to be known.

Hierarchies

Within the realm of perceptual relations, there has been considerable interest in hierarchical

representations of scene structure. The main motivation for this approach is the realisation

that the richness in structure of the real world is impossible to model at one level of ab-

straction. In the hierarchical approach, simple scene structure is first interpreted and this

information is used to simplify the analysis of more complex structures. With the hier-

archical approach, complex entities can be modelled as simple groupings of less complex

structures.
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As an example, Dickenson et al (Dickinson et al., 1992) use an "aspect hierarchy" which

attempts to closely model the structure of physical objects. They use a hierarchy which

builds from contours through contour grouping to faces. These faces can be thought of as

possible views of a set of object primitives from which objects themselves are constructed.

In this case the important modelling step is to choose a set of primitives from which objects

can be constructed; Dickenson et al use a rich set of geometric solids (cylinders, cones,

cuboids - c.f. Marr’s cylinder zoo (Marr, 1984) which constructs objects from cylinders).

Clearly it is difficult to choose a set which can represent a wide range of different objects

given the variation in structure which real objects exhibit. The need for such a conceptual

(or perceptual) hierarchy has been stressed by (Henderson, 1990) in the domain of discrete

relaxation.

Another hierarchical approach worthy of mention is the technique of subsumption of

detail or resolution. In this approach the top of the hierarchy contains sparse details,

information is limited and the resolution is coarse. As we move down the hierarchy scene

detail increases, and we can draw on information from the coarser levels to interpret the

scene. Examples of such a detail hierarchy can be seen in (Gidas, 1989), (Lau et al., 1993)

and (Mjolsness et al., 1989). The pyramidal resolution approach falls within this category

(Hancock et al., 1992; Lu and Jain, 1992; Meer et al., 1990), in which different levels represent

different image resolutions.

Active Graphs

Most researchers use graphs which are essentially static; that is to say that once formed

from scene data, the graphs do not change their structure in the matching phase. Another

approach motivated by the need to overcome corruption is to modify the graphs during

matching using edit operations (Messmer and Bunke, 1994; Sanfeliu and Fu, 1983). Edit

operations such as deleting arcs and nodes are performed until a homomorphism between

graphs is found. The number and ’cost’ of these operations determines the distance between

the graphs under match.
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1.4 Graph Matching Criteria

A graph matching criterion is a function of the match between graphs which gauges the

quality of the match. If such a criterion is to hand, then the graph matching problem may

be accomplished by optimisation. A good choice of criterion or energy function is vital if

the optimisation phase is to be fast and accurate and the quality of the final match good. In

this section we discuss the range of energy functions present in the literature.

1.4.1 Heuristic Energy Functions

By far the most common way of defining an energy function is in a goal-directed fashion.

Terms are added to the energy function to perform specific tasks. These terms are not

generally constructed in a rigourous way, rather they are known to have a optimal point

at the desired solution and some less favourable value elsewhere, for example (Yuille,

1990). This lack of understanding of the energy function away from the optimal point

leaves the way open for problems caused by local optima and slow convergence. Ad-

hoc approaches are commonplace in the literature; for instance in probabilistic relaxation

approaches, (Ranganath and Chipman, 1992; Izumi et al., 1992; Ton and Jain, 1989) define

support functions in an ad-hoc fashion. In the structural domain (Horaud and Skordas,

1989) employ an empirical energy function for choosing between a number of candidate

maximal cliques.

It is also possible to impose syntactic constraints on the match such as demanding a one-

to-one mapping by the inclusion of additional terms into the energy function. The optimal

point is repositioned by the extra term to a point which fulfils the relevant constraint (Yuille,

1990; Mjolsness et al., 1989). However the play-off between the strength of the constraint

term and quality of match terms is difficult to control and intervention is often required to set

arbitrary weighting factors between the terms. Arbitrary weights are not only confined to

the constraint terms and they abound throughout the heuristic approaches (Ranganath and

Chipman, 1992; Izumi et al., 1992). Because of the ad-hoc approach, theoretic analysis of the

appropriate values for such constants is not possible. Invariably they must be empirically

set by the user for different problems.
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1.4.2 Continuous Energy Functions

One way to define an energy function in a more principled manner is to use Bayesian

or probability-based methods. In this paradigm, a continuous probability of a particular

matching is maintained for all matching configurations. Optimisation of this probability

leads to the matching configuration with the largest probability. The principle advantage of

this approach is that the processes which lead to matching errors can be modelled objectively

by probability distributions.

It was (Hummel and Zucker, 1983) who first showed that the probabilistic relaxation

scheme of (Rosenfeld et al., 1976) could be interpreted as the minimisation of an energy

function based on label probabilities and a set of heuristically defined support functions.

Following on from this, (Faugeras and Berthod, 1981) and (Bhanu and Faugeras, 1984)

developed similar energy-based criteria which maximised consistency while minimising

ambiguity in the labelling. The later work of (Kittler and Hancock, 1989) demonstrated

how the process of probabilistic relaxation could be viewed entirely in terms of probability

distributions, specifying support functions in terms of these distributions. Consequently the

process of PR can now be seen as the optimisation of a consistency function based entirely on

probability distributions. Recent efforts by (Kittler et al., 1993) have extended this Bayesian

framework to incorporate ARG’s with measurement information pertaining to the binary

relations within the graph.

Another probabilistic approach is that of (Boyer and Kak, 1988) and (Sengupta and Boyer,

1995). They use an information theoretical approach to define a distance measure between

matching units of the graph. This measure which is the conditional information conveyed

by the second unit about the first is essentially a measure of entropy between the units. The

global graph criterion then becomes the sum of the individual terms for the units, or the

global match entropy.

1.4.3 Statistical Physics

An interesting point of contact exists between labelling problems (of which matching prob-

lems are a subset) and statistical physics. Statistical physics is concerned with the properties
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of a system of large numbers of particles in which the particles can inhabit different energy

states. The analogy with labelling problems in computer vision stems from the identification

of the particles as objects in the scene and the possible particle states as different possible

labellings of the object. Statistical physics tells us that if we can identify a ’potential’ U
with the system of labels and objects, the probability of the state 
 can be calculated by the

Boltzmann distribution: P (
) = e��U(
)Z (1:1)
where Z = P
 e��U(
) is the partition function and � = 1=kT is a constant dependent

on the ‘temperature’ T of the system. Interpreted in the sense of a labelling problem the

’temperature’ determines the amount of randomness or uncertainty in the system.

If we adopt this analogy then it gives a direct connection between the definition of an

energy function and the probabilities of various system states. It is therefore possible to

analyse any defined energy function in terms of probabilities. Geman and Geman(Geman

and Geman, 1984) applied these concepts with seminal impact to low-level vision and used

them to develop a non-deterministic updating scheme referred to as simulated annealing.

This scheme uses the temperature as a control variable which is used to introduce controlled

amounts of randomness into the updating schedule. Geman and Geman were able to show

the equivalence between the Gibbs distribution and a Markov Random Field for calculating

the MAP estimate of the labelling. The MAP estimate of the probability distribution defined

in equation 1.1 is recovered by the process while local minima are avoided. This method is

discussed further in section 1.5.1

The relationship between minimising an energy function and a probabilistic approach

to the matching problem is explored further by Yuille (Yuille, 1990). He reiterated that any

problem formulated in terms of an energy function can be given an interpretation in terms

of probability by the Gibbs distribution. Yuille then uses the partition function to map hard

constraints onto an energy function.
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1.4.4 Structural Pattern Recognition

As described above, the ARG under match contains a considerable amount of measurement

information. We can loosely group matching schemes into two categories based on the way

in which they utilise the information. Those that only use measurement information in an

initialisation phase, after which labelling decisions are made by a purely symbolic process

are referred to as ‘symbolic schemes’. Those in which the measurement information persists

and is referred to at all stages are ‘measurement-based schemes’.

When designing a matching criterion the question arises of how much of this information

should be used to aid the matching. At first sight the answer is simple - the more information

available, the better the result will be. Indeed much recent work has adopted this philosophy

with reasonable success. After earlier work which focussed mainly on symbolic processes

(for example (Shapiro and Haralick, 1985; Horaud and Skordas, 1989)) the need was seen for

increasing amounts of scene information to disambiguate the scene interpretation process.

Classical structural pattern recognition was perceived as impoverished in terms of the

amount of scene information available. However this is not necessarily the case as there

are both advantages and disadvantages to a heavy reliance on scene measurements. On

the positive side they decrease the amount of ambiguity in the scene interpretation phase

and alleviate the need for potentially fragile structural information. On the other hand,

parameters of the measurement probability distributions must be known before hand and

the matching can be inflexible to differing scene conditions. This inflexibility is due to

parameterisation of the probability distributions. The parameters often vary from scene

to scene and consequently need to be measured and adjusted for each new matching task.

On the other hand, symbolic matching approaches can overcome some of the problems of

ambiguity and lack of reliable measurement information by successfully using contextual

information.

Proponents of the measurement approach include (Boyer and Kak, 1988) with their con-

ditional mutual information based on both inter-object and inter-relation measurements.

Kittler et al (Kittler et al., 1993) use unary measurements on nodes and binary measure-

ments between nodes in their probabilistic relaxation scheme. Mjolsness et al (Mjolsness

et al., 1989) use inter-object measurements in their Hopfield-style energy function, which
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is optimised with a neural network. Ranganath and Chipman (Ranganath and Chipman,

1992) similarly use inter-object measurements in the definition of a support function for

probabilistic relaxation, albeit in an ad-hoc fashion.

Symbolic approaches include the original relaxation scheme of (Rosenfeld et al., 1976);

their definition of a support function and relaxation scheme is such that measurements were

used in the initialisation of probabilities, but as the scheme progresses this information is

overridden by labelling constraints. This has been seen as a weakness of the classic PR tech-

nique. Recent work on relaxation has focussed on creating a persistence of measurements in

the PR technique by incorporating measurement probability distributions into the support

function (Kittler et al., 1993)

Part of the aim of this thesis is to demonstrate that symbolic techniques can overcome the

problems of ambiguity by effectively using contextual information and gain the advantages

of flexibility, robustness and ease of control.

1.5 Optimisation

When a matching criterion is available for the problem under study, which has, for the sake

of discussion, a maximum point at the desired solution of the problem, the task is then to

locate this maximum point by some optimisation technique. This is not in general a simple

task; as we discussed earlier the space of possible mappings between a pair of graphs under

match is enormous. For example two graphs each of only 10 nodes each has 10! possible

matches (4 � 106 combinations). Clearly for graphs of moderate size direct evaluation of

all matching combinations is not feasible. Rather than take this brute force approach, all

authors have employed methods of traversing the search space from a poor initial position

to the optimal point, using only a few intermediate steps. It is these methods to which

we now turn our attention. It is worth pointing out at this stage that traversing the search

space is not in general a simple task; if local optima exist which do not correspond to the

global optimum the potential exists for incorrect solutions to be found. Furthermore the

task becomes increasingly difficult when the initial guess is far from the final target.

Optimisation schemes may be split broadly into two categories; continuous optimisation
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methods operate when a continuous labelling space is available. These methods are well

understood mathematically (Faugeras and Berthod, 1981). In contrast discrete optimisation

methods in which the mapping is discretized in labelling space is not well understood.

1.5.1 Continuous Optimisation

We consider first the case when the matching criterion is continuous, i.e. the case when

the space of labellings is continuous and the matching criterion exists at all points. In more

formal notation, we have a real-valued mapping function which tells us how ’likely’ the

match from node u in G1 to node v in G2 which we will refer to as �(u! v). This function

always resides in the interval [0; 1]. The components �(u ! v) can be formed into a vector

of matching weights denoted by ~�. The matching criterion F(~�) is defined for all ~� and is

therefore continuous.

Gradient Ascent

Imagine that we are interested in the maximum point of the matching criterion F . If F has

just one maximum and monotonically increases to this maximum the problem is relatively

straightforward. We need only move through the space of mappings in the direction of the

maximum gradient of F to locate the optimal point. Formally�~� = rF(~�) (1:2)
This technique is known as gradient ascent (GA).

Projected Gradient

The GA technique above is sufficient to locate the maximum point of F when there is one

maximum and F monotonically increases to this maximum, and, importantly, when no

constraints apply to the components of the mapping vector ~�. We referred earlier to the

components of ~� as ’likelihoods’ because they do not necessarily represent probabilities.

However many authors wish to interpret them as probabilities and for this to be the case

the components must obey the axiomatic rules of probability. In this case they must be
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subjected to the constraint Xv2V2

�(u! v) = 1 (1:3)
which implies that each node in G1 should have only one match in G2. With this constraint�(u! v) may be interpreted as the probability that node u is matched to node v.

If Equation 1.3 is to satisfied we can no longer simply update the matching-vector ~�
by the gradient of the matching criterion since we have no guarantee that this will lead

to an allowed value of the matching-vector (see (Bhanu and Faugeras, 1984; Zucker and

Mohammed, 1978; Faugeras and Berthod, 1981; Luo et al., 1988)). Instead we must use

a gradient projection method. In this method the constraints in Eqn. 1.3 are viewed as

defining a sub-space in the labelling space which contains only the allowed values of ~�. We

then project the gradient vector (Faugeras and Berthod, 1981) onto this sub-space to obtain

an update vector who’s magnitude and direction are determined by the gradient but keeps

the mapping-vector in probability space. If the projection operator is denoted P , then the

update rule becomes �~� = PrF(�) (1:4)
Non-unit step sizes

While these gradient ascent techniques will converge to the optimal value under the con-

ditions we have specified, the rate of convergence may not be satisfactory. The simple

approach we have so far examined always takes a unit step towards the maximum, which

may take considerable time if the gradient is small and the maximum is distant. Under

these conditions we would like to take a larger step. When the maximum is near by we

wish to take smaller steps in order to avoid overshooting the optimal point. This approach

has been explored by (Faugeras and Berthod, 1981; Lloyd, 1983) and (Bhanu and Faugeras,

1984). The update is defined by (in the case of the gradient projection method)�~� = �PrF(~�) (1:5)
where� is the step size of the update. It then remains to determine the appropriate value

for this step. Faugeras and Berthod (Faugeras and Berthod, 1981) show how this can be

achieved analytically when the energy function is quadratic; in this case the ideal step size
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is easily determined. For polynomial energy functions of high order and other non-linear

functions, the step size is not easy to calculate; usually the local properties of the function

are interpolated by a quadratic or cubic polynomial and the corresponding step size is only

approximate.

Probabilistic Relaxation Schemes

Relaxation schemes are optimisation techniques in which the variables of the scheme are

iteratively updated in order to approach a stationary point of the update equations. They can

be used to optimise a matching criterion which has a maximum at the stationary point. The

exciting feature of relaxation algorithms for matching problems is their inherently parallel

nature.

The classic probabilistic relaxation scheme is due to Rosenfeld, Hummel and Zucker

(Rosenfeld et al., 1976), and was conceived as an object labelling algorithm. Since it’s

conception the approach has been widely used for image processing tasks including graph

matching.

Again the matches are represented by a matching vector, but this time more in the spirit

of probabilities; we will denote the probability that umatches to v at iteration s of the scheme

as P (s)(u ! v). The Rosenfeld et al scheme specifies that the probabilities at iteration s + 1

should be given by P (s+1)(u! v) = P (s)(u! v)Q(s)(u! v)Pw2V2
P (s)(u! w)Q(s)(u! w) (1:6)

where Q is called the support function. The reason for choosing this particular form

becomes clearer when we study the individual terms. The numerator appearing in the RHZ

update formula can be viewed as the product of two ‘probabilities’ or evidential factors; the

first being the probability that node u is matched to v, and the second being the probability

of the surrounding matches given that v is the match on u. This then combines the local

probability with contextual information from the surroundings. The denominator simply

ensures the normalisation of the probabilities, i.e. that
Pv P (s+1)(u ! v) = 1. This step is

necessary since the support functions Q are not true probabilities.
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The scheme depends on the definition of a support function. Rosenfeld et al define the

support function asQ(u! v) = Xn2V1

Cun Xm2V2

r(u! v; n! m)P (n! m) (1:7)
where Cun are arbitrary weights specifying varying influences of neighbouring nodes n

on u, and r determines how compatible the matches u! v and n! m are.

In the original form there are several problems with this scheme. The support function,

compatibility coefficients and weights are purely arbitrary - no method for their specification

is offered. No convergence properties are offered; it is not clear if the scheme will converge

at all. Finally no meaning in terms of an energy function is attached to the stationary points

of the scheme. Hummel and Zucker (Hummel and Zucker, 1983) later overcame some of

these problems, showing that the RHZ scheme infact optimised the energy functionFp = Xu2V1

Xv2V2

P (s)(u! v)Q(s)(u! v) (1:8)
and at the stationary points, the probabilities were unambiguous, i.e. Ps(u! v) = 0 or 1.

Despite drawbacks probabilistic relaxation proved to be a powerful tool in labelling

problems. A plethora of alternatives evolved, and due to a lack of theory behind the speci-

fication of support functions they have many different and generally heuristic definitions of

support. See (Price, 1985) for a comparison of some of the more conventional approaches.

This final hurdle was recently overcome by Kittler and Hancock (Kittler and Hancock, 1989)

who show how the probabilistic relaxation algorithm can be see as the iterative filtering of

a set of object measurements. The filtering is based on the maximisation of the conditional

probability of the object labels given the measurements i.e. P (u! vjxw8w 2 V1). When this

Bayesian approach is adopted, the resulting scheme includes a specification of the support

function in terms of probability distributions:Q(n)(u! v) = 1P (u! v) X�2
n Yn2Cu P (n)[n! �(n)]P [n! �(n)] oP [�(m)8m 2 Cu] (1:9)
Where Cu is the neighbourhood of u, that is u and all its interacting neighbours. �

represents the set of possible matches on Cu and 
 is the set of possible labellings on

these nodes. This support function is however of exponential complexity which limits it’s

usefulness in realistic labelling problems.

15



Kittler and Hancock provide two methods for reducing the complexity of this expression.

The first method involves defining a limited dictionary of allowed labellings on any graph

neighbourhood. If this dictionary of labellings is denoted �, then the expression for support

is given by Q = 1P (u! v) X�2� n Yn2Cu P (n)[n! �(n)]P [n! �(n)] oP (�) (1:10)
The sum is over the limited set of dictionary items rather than the entire space of

mappings.

The second technique involves factorisation of the support function; details of this

approach are discussed in Chapter 7; suffice it to say here that under certain independence

assumptions the support function can be simplified to one of polynomial complexity.

In a more recent development (Kittler et al., 1993) have developed this methodology to

incorporate binary measurements between pairs of objects; They are interested in evaluatingP (u! vjxw8w 2 V1; Aij8i; j 2 V1).
1.5.2 Discrete Optimisation Techniques

Discrete Relaxation

Discrete relaxation differs from probabilistic relaxation in that there is no ambiguity in the

labelling at any point during the scheme - at all times a match is maintained. This technique

pre-dates probabilistic relaxation with the discrete labelling ideas of (Waltz, 1975), which

evolved from earlier work on consistent labelling problems by (Huffman, 1971; Clowes,

1971). Indeed the probabilistic version was a development of Waltz’s discrete method. The

simple idea of this approach is to visit each object in turn and update the label on that object

in order to gain the maximum improvement in the matching criterion of the problem. The

update rule is thereforef (n+1)(u) = arg maxf (n)(u)2V2

F [f (n)(u); f (n)(v)8v 2 V1; v 6= u] (1:11)
More recently the discrete relaxation labelling problem has been cast into a Bayesian

probabilistic framework (Hancock and Kittler, 1990a). They suggest that the matching crite-

rion should be defined as the joint probability of the labelling given the (unary) measurement
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information, i.e. P (f jX). Under assumptions of independence of the unary measurements

they show how the discrete update procedure can be used to locate the MAP estimate of the

labelling.

Simulated Annealing

In their seminal paper, Geman and Geman developed an interesting variant on the basic

relaxation scheme (Geman and Geman, 1984). Drawing on analogies with statistical physics,

they show how a set of discrete labels on objects, if placed in a Markov Random Field, can be

viewed as a system of interacting particles. A Gibbs distribution can then be associated with

the labels. The interesting feature of the Gibbs distribution is the rôle of a ‘temperature’

variable; this variable has the effect of introducing controlled levels of smoothing into

the energy function. They then coupled this energy function with a semi-random label

update procedure in which updates that increase the energy function are also allowed with

a certain probability, as well as those which decrease the energy function. This allowed the

optimisation phase to escape small local minima in the energy function. They were also able

to show that if temperature was reduced according to a certain rather restrictive schedule,

then all local minima would be avoided and a global optima would be found.

The main draw-back of their method is the speed of convergence. The proposed reduc-

tion schedule is impractical and the update procedure computationally expensive.

More recently (Herault et al., 1990) have adopted the simulated annealing technique for

performing structural matching tasks.

1.5.3 Search Techniques

Search techniques involve sifting through the different configurations of the labelling space

in order to locate the optimal point of the energy function. As we mentioned earlier the space

of possible mappings is large enough to preclude the possibility of searching all configu-

rations and therefore the key element of search algorithms are their ability to intelligently

prune the search space. Examples of search techniques applied to graph matching problems

can be seen in (Shapiro and Haralick, 1981) and (Dickenson et al., 1992). These algorithms

rely on heuristics and thresholding in order to reduce the space of mappings which need to
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be explored (see (Ballard and Brown, 1982) for a comprehensive review).

1.6 Summary

In summary, we should look towards inexact optimisation techniques if we wish to match

large, noise corrupted graphs. These provide the necessary robustness to corruption and

error while being relatively efficient at locating the best match. On the optimisation side,

relaxation techniques provide an attractive method because of their parallel nature.

Study of the different approaches to defining an energy function (either implicit or ex-

plicit) reveals an interesting split between the structural and symbolic approaches ( (Horaud

and Skordas, 1989; Shapiro and Haralick, 1985) for example) and the measurement-based

methods (Boyer and Kak, 1988; Kittler et al., 1993). We take the view that structural ap-

proaches can be more flexible under varying scene conditions and that it is an advantage

to have as few parameters as possible to be specified in advance. In the past symbolic

approaches have proved ineffective due to insufficient scene information being available.

However if a measure of structural similarity is sufficiently fine, enough information should

be available to interpret the scene. We will therefore concentrate on the symbolic matching

paradigm.

In order to provide a rigorous framework for developing our models, the appropriate

choice seems to be Bayesian probability. Adopting this framework means we are able to

model corruption and noise processes with objective probability distributions.
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Chapter 2

Comparing Relational Graphs

2.1 Introduction

In this chapter we derive a measure of the quality of a graph match, based on structural

considerations and developed using the principles of Bayesian probability theory. In the first

half of the chapter we set up a formal framework for graph matching problems and discuss

the application of probability theory to such problems. In the second part we develop a new

criterion based on structural, topological constraints.

2.2 A Graph-Matching Formalism

The first step in discussing a relational graph matching technique is to establish a suitable

formalism for describing the matching process. Here we describe the attributed relational

graph (ARG) widely used in the literature (Barrow and Popplestone, 1971; Tang and Lee,

1992; Kittler et al., 1993; Ton and Jain, 1989). Our particular formulation is relatively simple;

structural considerations are our primary concern here.

A relational graph is represented by the triple G = (V;E;X) and consists of a set of

nodes V = fv1; v2; :::; vng which represent objects in a scene graph or model. The setE = fe1; e2; :::; emg is the set of graph edges, and these represent the presence of a relationship

of some sort between a pair of objects. If the objects represented by v1 and v2 are related in

the image, then they are connected by an edge e = (v1; v2) 2 E. The edges could represent

a perceptual relation such as adjacency or Voronoi neighbours. Within our approach the
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significant element is the existence of a connection and different types of edge are not

distinguished in the formalism.

We also hypothesize that a set of unary measurements are available on the objects in the

scene, and these are denoted by the setX = fx1;x2; :::;xng. In the text we simply refer to the

measurement for node u as xu. Our interest will be confined mainly to methods of gathering

structural information from the graphs and therefore measurement information is not our

primary concern. It is for this reason we have adopted a simple model of measurement

information. In this formulation we assume that only unary measurement information

is relevant to the labelling of the nodes. While this is a common approach (Barrow and

Popplestone, 1971; Rosenfeld et al., 1976; Hancock and Kittler, 1990a) it is far from the only

technique. For example (Boyer and Kak, 1988; Kittler et al., 1993) use measurements defined

on the relations as an additional source of information.

Our aim in matching is to associate the nodes in a graph G1 = (V1; E1) with those in a

second graph G2 = (V2; E2). Graph G1 is referred to as the data graph and G2 as the model

graph. Nodes from G1 are denoted by v(1) and those from G2 as v(2). In order to discuss

matching problems we require a mapping function from the nodes in V1 onto those in V2:f : V1 ! V2

Hence (u(1); v(2)) 2 f denotes the match of node u(1) 2 V1 against node v(2) 2 V2. There is no

explicit restriction on multiple matches; the structural constraints governing our matching

process encourage unambiguous matches implicitly. The function f is potentially many to

one and therefore non-invertible.

2.3 Matching: The Bayesian approach

Many approaches to matching suffer from one major flaw: the quantitative criterion of

matching quality is arrived at by largely goal-directed methods (Ranganath and Chipman,

1992; Izumi et al., 1992; Ton and Jain, 1989; Sanfeliu and Fu, 1983) Therefore, while the

matching technique may be effective, there is little meaning in terms of the quality of the

match associated with the value of the criterion and theoretical analysis of the algorithm is
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intractable.

In order to tackle this problem, an objective framework for quantifying matching perfor-

mance is required. Bayesian probability theory provides us with just such a framework. The

Bayesian minimum error decision rule (Kittler and Taylor, 1994) specifies how best to assign

labels to objects based on the label probability distributions and the costs of the different

mis-labellings. In the context of our study, the labels of interest are the various matching

assignments and the Bayes decision rule tells us how to best assign the matches to minimize

the error due to misclassification. Furthermore the framework specifies how to combine

probabilities and measurement distributions in a principled way.

Using this framework, we can determine the best set of matching assignments given the

information provided by the available measurements by finding the maximum a posteriori

(MAP) probability of the matching function given the measurements. In other words, the

matching criterion is given by the a posteriori probability of the match thus:F(f) = P (f jX) (2:1)
and we should attempt to maximize this quantity with respect to the matching functionf .

Two distinct sources of information are at our disposal when studying the matching

problem. Observational information is originally provided by the sensor or sensors which

image the scene. From the symbolic perspective this data is then processed by a segmenta-

tion algorithm to extract individual scene objects and corresponding attributes. Since these

attributes reflect measured data about the world, we expect a degree of variability or uncer-

tainty to be present. In order to capture this variability in the measurement information the

models are specified in terms of the conditional probability densities p(xijf(v(1)i ) = v(2)j ).
The second source of information is present in the structure of the graphs under study.

The graph connections provide a source of contextual information which can be exploited

to gauge the quality of match. These relationships constrain the matches, since we would

expect the relationships between objects to be the same in both data and model scene. This

expectation creates a limitation on the set of legitimate graph to graph matches. This is the

motivation behind subgraph isomorphism approaches (Ballard and Brown, 1982). However
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since we wish to operate under conditions of noise, we must soften these expectations and

use inexact constraints.

In the formulation of Equation 2.1 there is no clear rôle for either source of information;

the various sources of information are hidden within a single term. By applying Bayes

theorem to Equation 2.1 the individual ingredients become clearerF(f) = p(Xjf)P (f)p(X) (2:2)
A clear dichotomy between the rôle of measurements and structure is now evident. Mea-

surement information is confined to the measurement density p(X) which is not dependent

on the match, and to a conditional probability density p(Xjf) which models the probability

of the known measurements given a match f . Such models are not our primary concern

here and consequently we adopt a simple and widely held assumption (Kittler and Hancock,

1989; Hancock and Kittler, 1990a) that measurements on nodes are conditionally indepen-

dent of each other. As a consequence we can factorise the joint conditional probability

thus p(Xjf) = Yvi2V1

p(xijf(vi)) (2:3)
vastly simplifying the calculation of the influence of the measurements.

We should also note at this point that the joint measurement density p(X) does not

change during the matching process and for our purposes can safely be ignored.

The second element is then the joint prior P (f). In contrast to the other term, this models

the structural aspects of the graphs under match. This knowledge is captured in terms

of an a priori model of the allowable configurations of matching labels which maps one

graph on to the other. The fundamental assumption here is that relational structure should

be preserved under the mapping in question. It is exactly how to formulate the input of

structural information into the matching process that we intend to study in depth in this

thesis.
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2.4 Matching Complexity

To match two graphs the simplest approach we can take is to use a non-contextual method.

As we mentioned earlier, the joint prior P (f) models the rôle of contextual information

in the matching process. The non-contextual limit simply corresponds to the case when

all matching configurations are equally likely and no contextual information is present.

Under these circumstances P (f) simply has a uniform distribution. Combining Equations

2.2 and 2.3, our task is to maximize Fnc = Qvi2V1
p(xijf(vi)). We also note that under our

assumptions the node measurements are independent of each other and we may individually

maximize each term to find the globally optimum labelling. We therefore compare the unary

measurements on the nodes thusf(u(1)i ) = arg maxv(2)k 2V2

p(xijf(u(1)i ) = v(2)k ) (2:4)
Typically modelling of the p.d.f. is based on a monotonic decreasing function of some

distance measure d(x(1)i ;x(2)j ) between measurements on the two nodes. Example distri-

butions include p[xijf(u(1)i ) = v(2)j ] = exp[�d(x(1)i ;x(2)j )] or 1=[1 + d(x(1)i ;x(2)j )]. A variety

of distance measures are also used, including the Mahalanobis distance and the Euclidian

distance.

In more complex and realistic pattern recognition problems the unary measurements

X rarely provide sufficient information to allow an accurate match. In this situation an

additional supply of information is needed to label each object, and one source of this

information can be provided by the object’s context within the surrounding objects. The

relationship between objects within the graphs provide constraints which we can exploit to

enhance the quality of the match. These constraints must be satisfied by a correct match.

With this knowledge, another approach suggests itself to us. We need only locate a

mapping in which the constraints are fully satisfied. In our formulation of the problem this

involves a binary distribution for the configuration probability. In other words P (f) = 1

if f represents a mapping in which all constraints are fully satisfied and P (f) = 0 in all

other situations. By rejecting any partial match which is inconsistent, the space of mappings

which need to be explored remains small and the ideal match can be quickly located. This
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approach is at the heart of graph search algorithms (Flynn and Jain, 1991; Jones and Wong,

) such as subgraph isomorphism and maximal clique finding (Messmer and Bunke, 1994;

Horaud and Skordas, 1989; Horaud et al., 1990; Barrow and Burstall, 1976; Herault et al.,

1990); structure which is inconsistent is immediately rejected.

This model however fails to take account of one of the fundamental problems of image

processing - data extracted from images is invariably corrupt and uncertain. Because this

is the case, we must admit the possibility of both extraneous and missing objects, and

constraints which are also corrupt. As an immediate consequence we can no longer discard

inconsistent matches as incorrect since they could be the result of graph corruption. Indeed,

a fully consistent match in all likelihood no longer exists. Furthermore this hard probability

model provides a very coarse measure of the consistency of a match. If we were to use this

approach in an optimisation scheme, it would lead to problems in determining the optimal

update direction necessary to move towards a more consistent match. In this situation the

matching algorithm will often become deadlocked in an inconsistent configuration. Under

conditions of corruption the need is for a measure of consistency which uses softer, inexact,

constraints and produces a fine measure of consistency.

A finer way of gauging consistency is to count consistent edges in the graph match.

However this has the disadvantage of weakening the constraints provided by graph struc-

ture and does not make full use of the available structural information. For example, a set of

consistent yet incorrectly ordered edges would give a high consistency measure. Another

related approach is that of Shapiro and Haralick (Shapiro and Haralick, 1985) which counts

consistent cliques. While this uses more structural information, the measure of consistency

is still coarse.

For our purposes the approaches presented in the literature are unsuitable; we require a

consistency measure which makes powerful use of structural information while providing

a fine measure of consistency. This structure defines the relationships between scene objects

and therefore controls the flow of contextual information. The symbolic approach has

been largely ignored in recent work, in favour of attribute based schemes which use more

measurement information and less structural constraints; it was felt that structural methods

were too ambiguous to allow the matching of scene graphs without the need for considerable
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attribute information. Here we try to show that a fine measure of structural similarity

is sufficient to allow matching, and therefore we anticipate a strong role for contextual

information and a correspondingly weak influence from measurement information. The

algorithms in the literature take the opposite view; Boyer and Kak (Boyer and Kak, 1988)

base their matching process on joint measurement information between pairs of objects in the

graph as do (Kittler et al., 1993) in their probabilistic relaxation scheme. Such probabilistic

relaxation techniques which are based on the quadratic support function (Rosenfeld et al.,

1976) may also be seen as adopting an approximation of weak context (Kittler and Hancock,

1989) which is unsuitable when the context provides the major source of information.

2.5 A Structural Approach to Matching Graphs

In summary, a number of problems present themselves. Since the graphs may be corrupt,

we cannot eliminate any matching configurations as illegitimate and we must potentially

explore them all. However the number of possible matching combinations is n!=(n �m)!
where n is the number of nodes in the larger of the two graphs and m the smaller. This

number rapidly becomes unmanageable, growing exponentially with n for large n, making

direct exploration impossible.

One approach to this problem is to break the large graph down into manageable sub-

units (Faugeras, 1981). These sub-graphs can be seen as representative of the graph as a

whole. These units can then be matched exactly by a full exploration of the set of mappings

between them, provided they are small in size. We can then allow these sub-units to interact

through the passing of contextual information between them. This allows the constraint

information to propagate across the graph. This is done by allowing the units to overlap,

so that two adjacent units contain information about each other via the mutual graph nodes

they contain. By applying a suitable relaxation process, the matches can be modified until

they best fulfil the constraints applied to them. Because neighbouring cliques overlap, there

is effectively a chain of constraints across the entire graph and hence an influence from all

matches on all others, provided we iterate the match update procedure a sufficient number

of times.

25



To begin the construction of a global consistency measure based on this principle, we

must select graph sub-units appropriate for the task. Units of arbitrary size may be used,

however the unit size plays a key role in determining the effectiveness the scheme.There

are two issues at work in selecting structures appropriate to this task. One key element

is the relative size difference between the set of possible labelling combinations and the

set of allowable mappings of the nodes, i.e. the reduction of the search space achieved by

applying the topological constraints. As we discussed earlier (section 2.4) the number of

possible matches between graphs is n!=(n�m)! if all matches between graphs are allowed.

Of course this equally well applies to the sub-graphs we are trying to match here. However

if we use the sub-graph relational structure by only allowing matches between units which

have the same topology, we can drastically reduce the space of legitimate mappings. It

is through this topological constraint that contextual information is introduced into the

matching scheme. The greater the reduction in the legitimate space of mappings, the more

powerful the applied constraints are.

Of course the topological constraints discussed here are not completely valid under

conditions of graph corruption, and therefore an inexact means of gauging the quality of

match is required if we are to successfully apply them. By modelling the noise processes

which corrupt the graph we can still apply the structural constraints in an error tolerant

form.

The more constraining the topological structure is, the more effective the scheme is in

discarding unacceptable labellings. In these terms small structural units perform badly and

the matching process is impoverished in terms of the contextual information upon which

it can draw in locating a consistent match. This limits the effectiveness of the relaxation

scheme, rendering it susceptible to noise or error. If, on the other hand, the structural units

are too large, then the matching process becomes excessively cumbersome in terms of its

computational requirements; the limitation stems from the need to explore the space of

mappings between representational subunits.

As an example, consider the case of a pair of joined nodes and a triplet in an example

graph (Figure 2.1). There are 30 possible matches of the two nodes onto the graph when we

do not consider topological constraints, and 10 possible matches of the pair unit as a whole.
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Figure 2.1: Example mappings of different sized units

For the triplet, there are 120 possible matches of the nodes, but still only 12 matches for the

unit. While we must explore more combinations for the triplet, the constraining power of

the relation is greater as it reduces the number of possible mappings by a factor of 10 rather

than 3. When larger units are used, there is a greater reduction factor, but the actual number

of mappings still increases.

As a compromise between representational power and computational requirements we

propose the choice of sub-graphs which consist of a central node and all the adjacent nodes

connected to it by a graph edge. It is important to stress however that the methodology

presented here is not limited to a particular sub-graph unit, but is applicable to any type of

structural unit. For convenience we will refer to these structural units or N-ary relations as

cliques.

2.6 A Graph Matching Criterion

2.6.1 Structure preserving mappings

As mentioned above we have adopted the clique as our basic structural unit, which is

denoted by C. This consists of a central node and all those linked to it by a graph edge.

More formally, the clique of the node indexed j in the graph G1 is given by the set of nodesC(1)j = j [ fij(i; j) 2 E1g. For notational ease, we will denote this N-ary relation asRj = (u1; u2; : : : ; ujC(1)j j) (2:5)
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where u1 is the centre node of the clique. The matched realisation of this relation is

therefore given by �j = (f(u1); f(u2); : : : ; f(ujC(1)j j)) (2:6)
That is to say, �j is the set of nodes which the relation Rj currently maps onto. The

mapped unit � gives us a set of nodes which we can compare with similar relational units

in graph G2 to gauge the quality of the match. The structural unit C(1)j must match to a

similar unit C(2)k in graph G2. It is through exploiting this knowledge that G2 provides

constraints on the matching. Since we have no apriori knowledge of the match, any of the

possible units generated from G2 provide a feasible match for C(1)j . Furthermore we do not

know how the nodes from the relation Rj map onto the nodes of any candidate clique fromG2. We need to perform a full graph-to-graph matching between these sub-graph units by

exploring all possible mappings between them which preserve the topological structure of

the relations. In practice, if the candidate clique from G2 is C(2)k we permute the set of nodes

in C(2)k through all combinations which preserve the adjacency structure of the sub-graph

unit, to form a set of M potential mappings of C(2)k ; Each potential mapping is denoted bySmk = (v1; v2; : : : ; vjC(2)k j) (2:7)
which henceforth will be referred to as a structure-preserving mapping (SPM). The

clique C(2)k generates M possible mappings onto which Rj may legitimately map. The set

of structure preserving mappings at node k is therefore given by Sk = fS1k; S2k; : : : ; SMk g.

We can now construct a set P(C(1)j ) = fSij8i 2 V2g containing all possible mappings of the

clique C(1)j . This is a union of all the possible mappings at each clique in G2. The set of

mappings P contains all legitimate mappings of a clique onto graph G2. As a consequence

the set of mappings P is identical for all cliques, i.e. P(C(1)j ) = P(C(1)i ) = P .

An example set of SPMs is shown in Figure 2.2. In this case the clique consists of a

central node and three neighbours. When matching a clique from G1 onto a clique in G2,

the centre nodes are clearly identifiable and must match to each other. This is not true of the

external nodes however, and for these any combinations of matches amongst themselves are
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Figure 2.2: Example clique mapping
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1,3,d,2
1,d,2,3
1,d,3,2

Figure 2.3: Example clique mapping with dummy nodes

legitimate because the topology is preserved. We must therefore run through all possible

permutations of the external nodes.

When the cliques are of different sizes, the situation is more complicated (Figure 2.3).

We must hypothesize that an unknown number of nodes have been lost or added in one or

both of the cliques which disrupt the structure. A model must be adopted at this point to

account for this discrepancy; dummy nodes may be added to either clique to account for

the missing or extra nodes. These nodes are not added freely, in contrast to (Shapiro and

Haralick, 1985)) they are subject to a penalty which is discussed later. In theory since there

is no knowledge regarding the number of extra nodes present, we should run through all

possible numbers of added dummy nodes to either clique in order to calculate the matching

quality. In practice, however, the addition of dummy nodes can be penalised in such a way

as to make the mappings with the minimum number of added nodes the dominant term in

the calculation of mapping probabilities. In other words, the probability of extra dummy

nodes above the minimum to restore equal sizes to the cliques is considered to be negligible.

Correspondingly the smaller of the two cliques is padded out with dummy nodes until the

cardinalities are equal and the generation of SPMs continues as before (Figure 2.3).

It is also worth noting that if some property of the graph structure is invariant under
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Figure 2.4: Example clique mapping with cyclic order preserved

the possible set of transformations between the two scenes, this information can be used to

reduce the size of legitimate SPMs. For example, if the scenes are known to be planar the

cyclic order of the external nodes is always preserved (Figure 2.4) between different views

(for example in aerial images). In this case we need only explore mappings which also

preserve this order. Dummy nodes may still be inserted at any point within the cyclic order

of external nodes.

2.6.2 Consistency criterion

Our basic philosophy in constructing a consistency criterion is to use the probability of a

labelling as a measure of the quality of match. This approach allows the construction of an

objective matching model. To achieve this aim we must construct a probabilistic model of

the processes at work in the matching problem.

To construct a consistency measure we begin by computing the probability of each clique

matching as specified by the function f . In other words, we are interested in computing

the probability of the matched relation �j assigned to the clique C(1)j . As we noted in the

previous section, the topologically consistent mappings available for gauging the quality

of match are represented by the set of relational mappings from C(1)j onto G2, i.e. P . As

demanded by the Bayes rule, we compute the probability of the required clique matching

by expanding over the basis configurations belonging to PP (�j) = XSki 2P P (�j jSki ):P (Ski ) (2:8)
The models we require are represented in terms of the conditional matching probabilitiesP (�j jSki ) and of the joint priors P (Ski ) for the consistent relations in the set of legitimate
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mappings. After Hancock and Kittler (Hancock and Kittler, 1990a) we assume that matching

errors exist in the current match f , and that the matching errors on adjacent nodes in the

same clique are memoryless. Furthermore we assume that such errors occur with uniform

probability distribution. In direct consequence of our assumptions, we may factorise the

required probability distribution over the constituents of the relational mapping under

consideration. As a result the conditional probabilities may be expressed in terms of a

product over label similarity probabilitiesP (�j jSki ) = jSki jYk=1

P (f(uk)jvk) (2:9)
Our next step is to propose a model of the processes which give rise to erroneous

matches. As mentioned above we have assumed that label errors occur with a memory-

less uniform probability. If this probability is Pe, then if we have selected the matching

SPM Ski , the probability that two selected labels will disagree is Pe. Comparison between

relations of different sizes is performed by padding the smaller relation with a number of

nodes S(�j; Ski ) = jj�jj � jSki jj which belong to a no-match category as described in section

2.6.1. These missing nodes, denoted d, correspond to graph corruption and are assigned a

probability P (f(uk)jd) = P (djvk) = Ps equal to the probability of node loss through corrup-

tion. The confusion probabilities appearing under the product of equation 2.9 are therefore

assigned according to the following distribution ruleP (f(uk)jvk) = 8>>><>>>:Ps if f(uk) = d or vk = d(1� Pe)(1� Ps) if f(uk) = vkPe(1� Ps) if f(uk) 6= vk (2:10)
Combining this distribution with equation 2.9, we obtain an expression for the condi-

tional probability:P (�j jSki ) = PS(�j ;Ski )s (1� Ps)C�S(�j ;Ski )PH(�j;Ski )e (1� Pe)C�S(�j;Ski )�H(�j ;Ski ) (2:11)
where C is the size of the larger of the two cliques. As a natural consequence of this

distribution rule the joint conditional probability is a function of two physically meaningful
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variables. The Hamming distance H(�j ; Ski ) between the assigned matching and the fea-

sible relational mapping Ski counts the number of conflicts between the current matching

assignment �j residing on the cliqueC(1)j and those assignments demanded by the relational

mapping Ski . The size difference S(�j ; Ski ) counts the number of missing corrupted nodes

hypothesised by the mapping. With these ingredients, the resulting expression for the joint

conditional probability acquires an exponential characterP (�j jSki ) = KCj exp[�keH(�j ; Ski )� ksS(�j ; Ski )] (2:12)
where KCj = [(1 � Pe)(1 � Ps)]jCjj. The exponential constants appearing in the above

expression are related to the matching-error probability and the corruption probability, i.e.ks = ln
h(1�Ps)(1�Pe)Ps i

, and ke = ln
h (1�Pe)Pe i

. The expression may be regarded as providing

a natural way of softening the hard relational constraints operating in the model graph.

Having developed an exponential expression for the joint conditional matching probabilities,

it only remains to specify the distribution of the prior probabilities for consistent relations

in the dictionary. Here we adopt a uniform distribution of the available unit probability

mass over the set of possibilities P , i.e. P (Si 2 P) = 1jPj . The final expression for the clique

matching probability is therefore (from Eqn. 2.8)P (�j) = KCjjPj XSki 2P exp[�keH(�j ; Ski )� ksS(�j; Ski )] (2:13)
Before proceeding, it is important to comment on the structure of the above expression.

The most striking and critical feature is that the consistency of match is gauged by a series

of exponentials that are compounded over the dictionary of consistently mapped relations.

It is this feature that distinguishes it from alternatives reported in the literature (Boyer

and Kak, 1988; Herault et al., 1990; Kittler et al., 1993; Li, 1992). Each relational mapping

contributes a single exponential to the probability of match. It is this feature that allows

our method to operate in a robust manner when the space of relational mappings is large.

As we will demonstrate in Chapter 6 compound exponentials of the type defined above

offer tangible benefits over linear or quadratic measures in terms of the number of relational

mappings accommodated and the label-error probability of the resulting match (Hancock

and Kittler, 1993). Moreover, the importance of the different relational constraints is naturally
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graded by Hamming distance; relational mappings of large Hamming distance contribute

insignificantly while those of small Hamming distance dominate. By gradually reducingPe, the exponentials appearing in equation 2.13 approach their delta-function limits. This

effectively corresponds to subjecting the softened relational constraints operating in the

matching problem to a graded hardening. In the limit of vanishingly small error probability

the matching probabilities become binary in nature; their role is to effectively count the

number of consistently matched relational units. Under these conditions our matching

criterion becomes similar in function to the relational distance measure of Shapiro and

Haralick (Shapiro and Haralick, 1985). However it is worth noting that in this limit, partially

matched relational units do not contribute to the consistency of a match. This is clearly

undesirable when the match is poor and few or no fully consistent relations exist. The

softening of relational constraints implied in Equation 2.13 alleviates these problems.

We have adopted a very simple distribution rule to specify the label confusion proba-

bilities (Equation 2.10) based purely on a symbolic representation. A number of authors

(Boyer and Kak, 1988; Kittler et al., 1993) suggest the use of binary attribute relations to

characterize the similarity between label pairs as opposed to Hamming distance. Here we

aim to show that the symbolic approach is indeed sufficient to successfully match complex

graphs and that it provides advantages in terms of ease of control and a reduction in the

number of matching parameters. However our clique matching probability is similar to that

of Boyer and Kak (Boyer and Kak, 1988) if we adopt a label similarity based on Gaussian

measurement distributions and we assume that the exponentials appearing in Equation 2.13

can be approximated by linear terms (i.e. that the measurement deviations are small).

2.6.3 Defining a Global Criterion

Using our model of the clique matching probabilities, We can define a global criterion of

match between any two graphs. There are a number of possible alternatives; we could for

example use the joint probability of the clique mappings over the graph. Another alternative

is a entropy function of the mapping probabilities (Wong and You, 1985; Boyer and Kak,

1988). The philosophy behind decomposition of the graph into manageable sub-unit is that

each sub-unit is representative of the graph as a whole. In effect the cliques are samples of
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the complete graph. Following this line of reasoning, the probability of a graph match is

best given by the mean probability of the sub-unit matches. This is an approach which is

widely employed in relaxation schemes (Hancock and Kittler, 1990a). Our functional based

on the match f is given by P (f) = 1jV1j XC(1)j �V1

P (�j) (2:14)
Accordingly, the MAP criterion we should attempt to maximize isFd(f) = n Yvi2V1

p(xijf(vi))o� 1jV1j XC(1)j �V1

P (�j) (2:15)
We evaluate other forms in the experimental study presented later in Chapter 6.

2.6.4 Applications of the Matching Criterion

The clique matching probabilities and corresponding criterion are influenced by a number

of factors, most obviously the current match f and the label error probability Pe. Also of

interest are the clique and SPMs. These are dependent on the structure of the graph. These

elements can be employed to achieve a number of different optimisation goals.

The simplest use of the criterion in the arena of matching involves the improvement

of the matching function f . This application is discussed in Chapter 3. Theoretical issues

pertaining to this are discussed in Chapter 5. The criterion may also be used to control the

structure of the graph by assessing the impact of changes in the clique and SPMs. This is

applied as a method for controlling clutter in the graph in Chapter 4.

2.7 Summary

In this chapter we have developed a method of decomposing a graph into small sub-units

and calculating the topologically legitimate set of mappings between these units. With

these mappings to hand, probability distributions can be defined for the different possible

matching configuration and the probability for a particular match of a unit can be calculated.

Treating these sub-units as samples of the graph as a whole, the global matching prob-

ability is defined as the average clique match probability. The MAP estimate of the match

probability can then be exploited to achieve a number of graph-matching tasks.
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Chapter 3

Discrete Relaxation

3.1 Introduction

In the previous chapter we developed a criterion based on the consideration of structural

constraints from the graphs. The criterion is based on probability distributions and is

defined over a set of entities. The criterion is defined in terms of a mapping function f
which represents the current match between graphs in terms of a many-to-one mapping

fromG1 toG2. The next step in solving the matching problem is then to locate the maximum

of the criterion corresponding to the most probable match between the graphs. Discrete

optimisation is not a mature field and research is still being conducted into new algorithms

(Milun and Sher, 1993) which include simulated annealing and genetic search. Here we will

briefly discuss the problems of optimising a discrete function and some of the techniques

available to perform the task.

3.1.1 Updating the Discrete Criterion

The main hindrance to the accurate and efficient discrete optimisation of a matching criterion

is the function itself. There are two problems which present themselves; these are local

maxima in the function and deadlocked updating. The aim of the optimisation phase is

to locate the global maximum (which is the largest local maxima) of the criterion, which

corresponds to the optimal solution of the matching problem. If there are local maxima

present which are smaller than the global maximum this provides a severe test for the
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optimisation procedure. Methods which rely on local gradient information will fail in this

case precisely because they use local information - there is no information about the large-

scale structure of the function (Geman and Geman, 1984). Update methods which wish to

overcome the problems of local minima must make use of some global knowledge of the

matching criterion. The second problem, that of deadlocked updated is caused by a flat

criterion around the current matching configuration. In other words if the function makes

use of a coarse measure of consistency, all matching configurations close to the current

match could potentially have the same consistency value. In this case the problem is with

determining the necessary update to move towards the solution. These difficulties can be

overcome either with a global view of the criterion or with a finer measure of consistency

3.1.2 Discrete Optimisation

There are a number of techniques discussed in the literature for optimising a discrete func-

tion. The basic approach is the parallel method to gradient ascent(GA) in the optimisation

of continuous functions (Hancock and Kittler, 1990a). In this approach we simply choose

the label update which results in the maximum increase in the criterion. It is the local nature

of the function which determines the direction of label update and the method is susceptible

to sub-optimal local maxima. However it is straightforward and efficient if there is only one

maximum to find.

Simulated annealing(SA) (Geman and Geman, 1984; Herault et al., 1990) is a far more

sophisticated technique, and it is discussed in detail both in Chapter 1 and in section 5.3

in Chapter 5. In essence, the method is able to escape from local minimum traps by

allowing updates which both increase and decrease the value of the function. Updates

which improve the consistency of the match are always allowed, whereas consistency-

decreasing updates are carefully controlled by allowing them with a probability dependent

on the change in consistency and the ‘temperature’ of the system. As the temperature is

decreased, consistency-decreasing jumps become more and more unlikely, resulting in an

update procedure more and more like the traditional gradient ascent approach. It is this

temperature which effectively provides the global information about the state of the labelling

(the temperature decreases as the labelling approaches the optimal point) and smoothes out
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the sub-optimal local maxima. While this approach provides a technique for escaping local

maxima, it is extremely inefficient and converges only slowly.

Genetic search (Fogel, 1994) employs the processes of mutation and selection to generate

a population of new solutions to the optimisation problem which are superior in terms of a

fitness measure to the initial solution. The mutation process is a random update procedure

which is reminiscent of the Metropolis algorithm. Because the randomness of updates, the

method is generally very slow to converge but is potentially able to escape from local maxima

by virtue of generating consistency-decreasing configurations as part of the population of

solutions.

These sophisticated update schemes are necessary when there are problems with local

optima and a coarseness in the criterion. However we have developed a fine measure

of relational consistency which involves a parameter Pe which has meaning in terms of

the current match. This parameter naturally smoothes out local minima of the criterion.

Consequently we have adopted gradient ascent as our optimisation method. In this Chapter

we demonstrate that the structurally based criterion function defined in the previous chapter

when coupled with a simple GA optimisation scheme is able to effectively match graphs

under a variety of testing conditions.

3.2 Relaxation

With the average consistency criterion to hand we can iteratively update the mapping

function f : V1 ! V2 on a node-by-node basis to locate an optimal match. The updating

process is therefore effected by replacing one of the node mappings belonging to f by

the match that results in the greatest improvement in the value of the MAP estimate of

the labelling. This optimisation strategy has the dual advantages of accommodating the

persistence of observational information and being realisable by simple gradient ascent.

The aim of this decision scheme is to locate the matching configuration that has maximum

a posteriori probability (MAP) with respect to the available observations. The result used

here is derived by Hancock and Kittler in (Hancock and Kittler, 1990a). According to

our philosophy, structural information is modelled by the joint prior P (f). Observational
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evidence for matching affinity between data node u(1) 2 V1 and model node v(2) 2 V2

is captured by the single probability of the relevant unary measurement information, i.e.P (f(uk)jxk). The initial configuration of the relaxation scheme is seeded on the basis

of the maximum value of P (f(uk)jxk). Updated matches are selected to optimise the

following quantity which is proportional to the a posteriori probability of the global matching

configuration (see Chapter 2, section 2.6.3).Fd(f) = n Yvi2V1

p(xijf(vi))o� 1jV1j XC(1)j �V1

P (�j) (3:1)
Consider the updating of the label on node u(1). The appropriate GA update rule for this

node is f(u) = arg maxv(2)2V2

nF(f(u(1)) = v(2); f(w(1)); 8w(1) 2 V1; w 6= u)o (3:2)
Since only the label on this node changes and the unary measurements are independent,

we need only consider the change in conditional measurement probabilities at the node u
itself; i.e.f(u) = arg maxv(2)2V2

nP (xujf(u(1) = v(2))P (f(u(1)) = v(2); f(w(1)); 8w(1) 2 V1; w 6= u)o (3:3)
We now turn our attention to the joint prior P (f). We do not need to evaluate the entire

probability, rather we can confine our attention to the portion of the function that is modified

by a change in the match of node u(1). Reference to equation 2.14 shows that we consider

the contribution of only the cliques which contain u(1). The final update rule is then given

by f(u) = arg maxv(2)2V2

nP (f(u(1) = v(2)jxu) Xw(1)2Cu P (�w)o (3:4)
In deciding on the label on u(1) structural information is drawn from all the cliques

surrounding u, which exploits labelling information from up to two graph edges away from

the original node.

In the deterministic sequential implementation of the scheme each node is visited for

update once per iteration and all possible matching nodes are tried at that location. A

number of iterations are required to spread context across the graph.
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Linear Exponential Decay

Figure 3.1: Plots of reduction schemes for the label-error probability

3.3 Parameter Control

By adopting a symbolic paradigm in the matching process, we have arrived at a scheme

which is economical in terms of the parameters required. Infact, once the unary measure-

ments have been incorporated into initial matching probabilities, the relaxation scheme

has just two parameters, both of which represent physically meaningful quantities. The

probability of relational corruption Ps is equal to the probability of nodes being lost or

spurious nodes being introduced into the cliques and therefore is related to the amount of

graph corruption. This quantity reflects a property of the graphs themselves and remains

static throughout the relaxation process. The label error probability Pe on the other hand

is effectively a control parameter of the relaxation scheme analogous to the temperature

of an annealing scheme, but with an interpretation in terms of the quality of the labelling.

This parameter should reflect the prevailing level of labelling errors currently in the match

(Hancock and Kittler, 1990a). Since the relaxation scheme should iteratively improve the

labelling, one strategy is to set it to a initial high value to reflect a poor labelling, and reduce

it according to a deterministic schedule to some small terminal value. This corresponds to a

graded hardening of initially soft constraints which has the effect of driving out label errors.

Since the labelling fidelity improves with time, the need for a scheme which reduces the

value of Pe with each iteration is anticipated. A number of schedules for the reduction of Pe
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have been experimentally tested (Plots of the schemes under study are shown in Figure 3.1;

they show the value of Pe as a function of iteration number). The first scheme represents a

linear reduction in the label error probability with each iteration to a terminal value of zero.

In this scheme we anticipate a constant rate of labelling improvement with iteration down

to zero final matching errors. The second scheme is an exponential decay of the probability

given by the equation Pe = P (0)e exp[�ki] where i is the iteration number and k is some

empirically chosen decay constant. This scheme is more realistic in terms of the rate of

matching improvement. It represents a rapid early increase in matching fidelity which tails

off towards zero matching errors, ending at a small terminal value. Finally we have also

tested a non-reduction scheme in which Pe is held static throughout the matching process

at the same terminal value as that of the exponential reduction scheme. This experiment

is performed in order to test the validity of our assumption that reduction is required to

drive out label errors. In order to test the effectiveness of these different schemes, matching

has been attempted on the different sets of data described in Appendix A. Details of

how the matching experiments are performed and the datasets are explained later in this

chapter. Here the synthetic data under match contains 60 nodes and has been subject to 50%

corruption. Figure 3.2 shows the relative performance of the three schemes in terms of the

fraction of correct nodes (the number of correct matches divided by the maximum possible

correct matches).

This analysis shows some interesting results. Firstly the exponential scheme is the best

in terms of its labelling performance. However there is very little difference between the

exponential and the constant schemes. This suggests that the reduction itself is not a key

element in the control of Pe, although the reduction scheme is slightly superior to using

a constant value of Pe. Further investigation shows that the constant Pe scheme does not

perform well when a continuously high value of Pe is used. In comparison the linear

scheme performs poorly. This is attributable to the fact that this scheme terminates onPe = 0; when the data is corrupt the state of zero matching errors is not achievable and

theoretical investigation (Hancock and Kittler, 1993) has shown the reduction of Pe to zero

to be undesirable. Infact investigation shows that the linear scheme performs similarly to

it’s exponential counterpart until the final iteration with Pe = 0.
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Figure 3.2: Performance of different label-error probability reduction schemes

In conclusion, the key elements to the control of the label error probability are that the

schedule terminates on a small but non-zero value. Schedules in which Pe is reduced or

remains static give very similar performances, although the results show a marginal advan-

tage to the reduction schemes over the static scheme. We have chosen to use the exponential

reduction schedule for the dual reasons that the scheme gives the best performance and

we anticipate a faster improvement in labelling in the early iterations when there is more

potential for labelling improvement.

The other aspect of the reduction schedule concerns the initial value of the label-error

probability, P (0)e . This should reflect the number of initial errors in the labelling, but study of

the expression for the constant of the exponential, i.e. ke = ln (1�Pe)Pe , forces the condition thatPe < 0:5 for ke to be a positive constant. Above this value, an increase in the number of label

errors results in an increase in the function Fd. As a result, with Pe > 0:5 the discrete update

procedure produces the maximum number of incorrect labels. We must confine ourselves

to the regime Pe < 0:5 and in practice we cannot set Pe according to the demands of the

data. The danger of this is that the criterion will be insufficiently smoothed by an artificially
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Figure 3.3: Performance for different initial label-error probabilities

low error probability. To investigate this factor we again perform a number of matching

experiments, this time over a range of initial values for Pe. Figure 3.3 demonstrates how the

matching performance varies with P (0)e for the exponential scheme.

Study of Figure 3.3 suggests some instability in the final labelling for both the SAR and

aerial infra-red data-sets, but it should be noted that this variation corresponds to a change

of one correct/incorrect match and is due to the sequential nature of the update process in

our implementation. Apart from this there is very little variation over the whole range of

values for P (0)e . However the quality of match falls off rapidly if P (0)e is set initially to zero.

This clearly emphasises the need to soften constraints.

This empirical approach, while experimentally based, is effectively a non-rigourous

solution to the problem of algorithm control. Another approach is to attempt to extract the

optimal value of the label error probability using the information provided by the topology

of the graph. More details of this approach are provided in Chapter 5.
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3.4 Experimental Investigations

In this section we are interested in testing the effectiveness of our discrete relaxation scheme

for matching graphs relevant to computer vision problems.

Two critical elements which affect the performance of all optimisational graph matching

algorithms are the level of graph corruption and poor initial matching conditions. These

elements reflect the varying quality of data from a scene; uncertainty in the scene can lead to

poor measurement information, missing objects and an inability to reliably extract a stable

relational representation. With the experiments in this section we intend to make a detailed

study of performance under varying conditions of scene corruption and initial labelling

quality.

Also of interest with regard to our iterative discrete relaxation algorithm are studies of

both the rate of convergence and performance under scene occlusion. As far as the rate

of convergence is concerned, this is critical in determining the feasibility of the proposed

scheme. Because of the use of large contextual units in the algorithm we anticipate a

relatively fast rate of convergence.

Occlusion effects are of interest because of their fundamental importance to the inter-

pretation of three-dimensional scenes from images, where occlusion is a significant effect in

the variation of relational graphs between different viewpoints. We anticipate considerable

success in this area because the graph is represented in terms of small sub-units, and there-

fore we would expect the matching to be invariant to occlusion effects provided sufficient

structural units remain to provide the required context.

In summary we will investigate the following factors affecting graph matching feasibility

in the context of the discrete relaxation matching method over a number of data-sets:� Random corruption of graph nodes� Varying quality of measurement information (initial match quality)� Corruption by occluding portions of the graph� Rate of convergence
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3.4.1 Investigating Scene Corruption

The greatest potential problem facing any matching scheme is corruption of the data under

match. Data obtained from a scene is invariably corrupt due to noise and segmentation

error. Such uncertainty hinders the matching process and eventually renders it inoperable.

In the context of the data we present here, all the scenes under match are corrupt. In

the case of the real-world data the level of uncertainty is not under our control; rather it is a

function of the natures of the scenes themselves. For this reason and in order to explore the

entire range of data corruption, the bulk of the results are based on synthetically generated

data in which the level of error is under experimental control.

3.4.2 Investigating the Effect of the Initial Match

The seeding of the initial match is clearly important to the relaxation scheme as it forms the

starting point for subsequent label updates. The labelling is based on a set of unary mea-

surements on the objects under match. It is the effect of the quality of these measurements

which is under study here. Poor measurement information leads to initialisation errors from

which the relaxation scheme must recover. Variation in the quality of the initial labelling

is easily effected in the synthetic data by perturbing the measurement information. The

image-based data has a natural degree of variability in the measurements.

3.4.3 Investigating the Effect of Occlusion

Occlusion is generally a feature of the study of 3D scenes but although none of the data

here is within this domain, the matching method here is equally applicable to such scenes.

For this reason, occlusion is simulated by progressively masking out portions of the image

under match.

3.4.4 Investigating the Rate of Convergence

Relaxation schemes vary greatly in the number of iterations required to reach a consistent

match. At one end of the scale the stochastic relaxation of Geman and Geman (Geman

and Geman, 1984) requires many thousands of iterations. Schemes based on the original
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Rosenfeld, Hummel and Zucker probabilistic relaxation scheme (Rosenfeld et al., 1976)

rely on spreading weak context across the scene and typically require tens to hundreds of

iterations (Price, 1985). Here we investigate the quality of the final match with regard to the

number of iterations used.

3.4.5 Experimental Data Types

This subsection describes the various data-sets used in the experimental evaluation of the

discrete relaxation technique. For a more detailed discussion of the extraction from images

and the formation of graph-structures, the reader should refer to Appendix A.

Road Networks

According to our graph-based abstraction of the matching process the nodes represent line-

endings or T-junctions while the arcs signify the existence of a connecting road structure.

This data set represents fairly straightforward conditions of low levels of corruption of about

30% of nodes, with relational units of orders 4 at T-junctions and 2 at line-endings. Our

matching of the two scenes is based on finding correspondences between the T-junctions

and line-endings which delineate the road network. At this point it is worth mentioning that

segmentation error will have different effects on the two node-types. Pairs of line-endings

are created by line fragmentation, line-ending triples result from junction occlusion and

single line-endings are produced by poor junction reconstruction. Spurious T-junctions are

less likely since they are produced only as a result of over enthusiastic gap filling. As a

result the number of spurious line-endings is much greater than the number of spurious

T-Junctions. For this reason we can anticipate very different qualities of matching in the two

cases, and hence we will differentiate between them in presenting our experimental results.

The initial matches have been seeded using the probability model described in Appendix

A which attempts to capture some of the systematics of the line segmentation process. The

initial matches are determined using the angle and length information of the roads which

form a junction.

Three separate data sets are available; they comprise of the road network viewed from

different altitudes together with a digital map of the road network. The original images are
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Figure 3.4: Graph structures generated by SAR data and map

presented in Appendix A and the graphs under match are topologically equivalent to the

road networks themselves. The map provides uncorrupted ground-truth information.

SAR Matching

Again Appendix A describes the extraction of suitable graph structures for matching. Figure

3.4 shows example graph structures generated by the Voronoi tesselations for the map model

and SAR data respectively. There are several features of these graphs that merit special

mention. In the first instance, there is considerable variation in the sizes of the clique for the

different nodes. The smallest contains only 4 nodes while the largest contains 10 nodes; this

means that the order of the largest symbolic relation exploited in the optimisation phase of

the discrete relaxation is 10. It is also clear that the data graph suffers from both relational

drop-out and relational contamination; there are both spurious and missing arcs. In the

region covered by the model graph there is a rate of node corruption of some 43%. There

are significant topological differences between the two graphs to be matched.

The initial matches between the linear segments extracted from the SAR data and their

map representation are established on the basis of the angular affinity as explained in Ap-

pendix A. While there may be a considerable quantity of information remaining untapped

by this model, accuracy at this stage is not our primary concern. We wish to demonstrate

that the relaxation scheme can recover from poor initial configurations.

The experimental matching study is based on 95 linear segments in the SAR data and

34 segments contained in the map. However only 23 of the SAR segments have feasible
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Figure 3.5: Distribution of relational cardinality in a Delaunay graph

matches within the map representation.

Synthetic Data

Because of the limited quantities of available data, while the experiments above provide a

challenging real-world application, they do not represent an ideal vehicle for demonstrating

the performance characteristics of this method. It is important to provide a study of the

performance of the matching algorithm under controlled and varying levels of corruption

and measurement uncertainty. We wish to explore the domain over which the scheme is

effectively operable, both in terms of corruption of the graph topology and poor initialisation.

In order to embark on this study, graphs have been generated consisting of a number

of lines with random positions and orientations. The patterns have been given a relational

abstraction by seeding a Voronoi tessellation from the line centre-points and computing the
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associated Delaunay graph. The nodes of the graph are therefore the random points, while

the arcs indicate that the associated Voronoi regions are adjacent to one-another. Figure 3.5

shows a histogram of the number of Delaunay neighbours for each dot in the graph; it is

these neighbourhoods that form the relational units or cliques in our matching experiments.

The mode of the histogram occurs at 6 Delaunay neighbours, however, there are clearly a

number of relations of cardinality as high as 9 and 10. By randomly adding and subtracting

lines from the patterns we can simulate the effects of noise, clutter, segmental dropout in the

matching process. In addition by adding Gaussian noise to the line angles, we can simulate

poor initial measurements which allow us to control the quality of the initial labelling.

3.5 Performance and Sensitivity Analysis

In the following results, the matching scheme is evaluated according to a simple performance

measure: Fc = NcN
where Nc is the number of correct matches which are found and N is the possible number

of correct matches available.

As an example, if the data is 50% corrupt, only half of the nodes have feasible matches. If

all 50% of these were correctly matched by the algorithm, the performance measureFc = 1:0.

On the other hand if 25% of all the nodes were correctly matched then Fc = 0:5. Matching

performance is therefore measured over the interval [0; 1].
3.5.1 Scene Corruption

As mentioned earlier, our main experimental vehicle here is the synthetically generated

data. We are interested in studying the effect of different levels of scene corruption on the

matching process. To commence, Figure 3.6 shows the effect of corrupting nodes on the

relations used in the matching process.

The deletion of one node affects the composition and structure of a number of adjoining

cliques, amplifying the effect of corruption in the Delaunay relations. For example when
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Figure 3.6: Effect of node corruption on relations in a Delaunay graph

30% of the nodes are corrupt, 50% of the average Delaunay relation is altered.

Figure 3.7 shows the fraction of correctly matched nodes as a function of the level of

random graph corruption as measured by the fraction of corrupted graph nodes, for the

case of synthetic data. The dotted line gives an indication of the initial matching conditions,

i.e. the measurement information was sufficient to allow the initial correct matching of

approximately 50% of the matchable nodes. Once the level of graph corruption reaches 60%

there is little or no improvement to be gained from the application of the relaxation scheme.

Provided that the level of graph corruption does not exceed 10% of the nodes, then an almost

perfect match is recoverable. The performance rapidly drops off above 50% corruption.

Also marked on the graph are two points corresponding to the road network and SAR

data sets. The corruption levels of these data sets are calculated from ground-truth matches

by looking at the number of unmatchable elements within the portion of the data graph

covered by the model graph. External clutter in the portion of the scene not included in

the model graph is ignored for the purposes of this calculation; the significant factor is the

level of relational corruption among the elements to be matched. The numbers of these

unmatchable entities gives a rough indication of the level of scene corruption. It should be
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Figure 3.7: Matching under graph corruption using discrete relaxation

stressed however that it is not feasible to compile error-bars for these points.

The road network data has a corruption level of 28% with 49 T-junctions and 6 line-

endings initially correctly matched. After application of the discrete relaxation scheme the

results improve dramatically. Of the T-junctions 82 of 97 possible correct matches are found.

For the final line-ending interpretation, 33 of a possible 45 match correctly. The match is

shown graphically in Figure 3.8, the top picture corresponding to the initial matches and

the bottom displaying the final matches after relaxation.

The SAR data has a higher level of corruption at 44%. Initially there are 11 correct

matches. After application of the method increases the number of correct matches to 20 of

a possible 23 matches. The number of matching errors is still substantial but these mainly

represent unmatchable scene clutter. A number of techniques for removing these spurious

clutter segments are developed in Chapter 4. Figure 3.9 shows pictorially these correct

matches; the incorrect matches have been removed for display purposes.
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Figure 3.8: Matching of Road Networks: Initial(top) and final(bottom) matches

Figure 3.9: Matching of SAR line segments (incorrect matches removed)
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Figure 3.10: An example occluded scene

3.5.2 Occlusion

The results presented here are designed to show the effect of occluding portions of the data

graph. The study here is based on 100 synthetic nodes which are then occluded using a

circular mask across the image. An example subject of occlusion is shown in Figure 3.10.

Initially approximately 50% of the nodes correctly match. Figure 3.11 shows the result of

relaxation on data with varying levels of occlusion.

This figure demonstrates that there is little effect for levels of occlusion up to 80%. Sub-

graph matching proceeds as effectively as the full match. This is an exciting feature of the

graph decomposition approach; the results here suggest that it is feasible to match scenes

with up to 80% of the structure occluded by a foreground object. Above this level the

matching algorithm rapidly becomes completely ineffective.

3.5.3 Initial match

Figure 3.12 shows the labelling improvement over a number of iterations for an initially

poorly labelled synthetic matching problem. In the problems under study here the graphs

under match are of identical topology and only the initial match is corrupt. This figure

clearly shows the ability of the scheme to recover from a very poor labelling state. Figure

3.13 expands on this observation by analysing the quality of the final match over a range

of initial labellings. This figure illustrates that provided there are no other sources of error
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Figure 3.11: Matching under occlusion using discrete relaxation

present, then a fully consistent global match can be recovered if as few as 10% of the initial

matches are correct, and even when only one match is initially correct, as much as 80% of

the correct match is recovered.

3.5.4 Rate of Convergence

Here we wish to investigate the minimum number of iterations required for our discrete

relaxation scheme to converge to a stable and accurate match. In order to do this the

algorithm has been run with varying numbers of iterations, while the reduction scheme forPe is modified each time. This modification is such that it allows the initial and terminal

values of Pe to remain the same while the number of iterations determines the number of

points sampled in between. For example, if three iterations are used, both the predetermined

initial and final values are used as well as one point sampled in between. The reduction

proceeds according to the exponential decay law in section 3.3. Figure 3.14 shows the effect

of varying numbers of iterations on the matching performance.

It is clear that there is some variation in the number of iterations to convergence between

the different datasets. For the SAR data, three iterations are sufficient to locate the optimal
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Figure 3.12: An example of the iterative improvement of labelling

Figure 3.13: Matching under varying initial match corruption using discrete relaxation
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Figure 3.14: The effect of varying the number of iterations

match, whereas the road network data requires 17 iterations to find the best match. This

seems to be attributable to the much larger number of matchable nodes the road data; more

iterations are required to spread the required contextual information across the network

before optimal performance is achieved. However by far the majority of the labelling

improvement occurs in the first 7 iterations.

3.5.5 Comparison of MAP and Configurational Relaxation

In our MAP matching philosophy, measurement information persists throughout the match-

ing phase in the form of conditional measurement densities. Much recent interest in the

field has been focussed on techniques which bring in measurement information at all stages

of the matching process. It is interesting to speculate how great a rôle the measurement

densities play in our algorithm, and to what extend symbols alone can be made to enforce

a consistent match. To this end we have studied the comparative performance of the MAP

scheme and a configurational relaxation scheme which optimises the joint probability P (f)
only (Figure 3.15; points labelled ‘MAP’ and ‘Config.’ respectively ). In this case the function

we are interested in is given by
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Figure 3.15: Comparison between MAP and Configurational relaxationF(f) = 1jV1j XC(1)j �V1

P (�j) (3:5)
The study is performed with synthetic data over a range of levels of corruption ( see

Section 3.5.1 ).

Examination of the performance of the configurational relaxation scheme reveals that

the matching is completely ineffective at all levels of corruption. The conclusion is that

it is a combination of the constraints on the match provided by the unary measurement

information and the structural information that allows effective matching to take place,

since neither alone are able to locate the correct match.

One possible explanation of the poor performance of the configurational scheme is that

the correct matches are swamped by relational noise from background configurations (In

Hopfield associative memories it is this effect which limits the storage capacity). One way

to investigate this effect is to use the unary measurement information to disallow node

matches with very low initial probabilities. By applying this rule we can drastically reduce

the space of mappings which need to be explored. A configurational scheme with a pruned

configuration space is also displayed on Figure 3.15 (the "Config(cut)" plot). Here a match
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f(u) = v has been disallowed if P (f(u) = vjx) < 0:01. From the figure it can be seen that

this configurational scheme performs identically to the MAP scheme within the limitation

of experimental errors. This provides some confirmation that it is the size of the space of

legitimate mappings which limits the performance of a structural approach.

3.6 Conclusions

These simulation experiments demonstrate the effectiveness of the described relaxation

scheme under conditions of poor initialisation which is the assumption under which our

criterion was developed. Figure 3.13 indicated that a perfect labelling can be recovered

when only 10% of the nodes are correctly labelled, demonstrating the powerful use this

scheme makes of relational information, and experimentally justifies our use of an explicit

model of the role of errors in the matching process.

An encouraging feature of these results is a tolerance to moderate levels of structural

corruption. The quality of the final labelling is not significantly affected by levels of cor-

ruption up to 20%. However at 30% corruption the performance begins to degrade, until

at 60% corruption and above little improvement in the initial labelling is seen. Reference to

Figure 3.6 shows that at this level, relational corruption is 70% and over. At this level the

constraints which facilitate the matching process are so corrupt that they no longer provide

useful information.

In summary the main conclusions of this analysis are as follows:� We have show that the MAP discrete relaxation scheme developed in Chapter 2 is

extremely effective at recovering from poor initial matches due to corruption of unary

node measurements. The scheme can recover from 90% mis-labelling to locate a fully

correct match. Even at 98% initialisation errors, 80% of the correct match is still

recovered.� The algorithm has also been shown to be tolerant to corruption of the scene graph

due to missing or spurious nodes. A 90% correct match can be recovered with 20%

corruption. The performance degrades as the structural corruption increases, and at

60% to 70% corruption there is little to be gained by the application of the method.
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� We have also shown the method to have a large tolerance to occlusion of portions of

the data graph; a fully correct match is located at up to 85% occlusion of the original

graph. Above this level the matching is completely inoperable.� Empirical studies of the rate of convergence to a solution suggest that typically the

algorithm is close to the solution after 7 iterations. However, some matches are not

located until the 17th iteration for one of our data-sets.

Finally, scene clutter has not been identified by the algorithms presented in this chapter.

Incorrect matches still persist due to elements in the data graph which have no feasible

match. The next chapter is concerned with labelling and removing such clutter.
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Chapter 4

Controlling noise and clutter

4.1 Introduction

Clutter elements are the inevitable result of the imaging and segmentation process on realistic

scenes in pattern matching tasks. Scene elements may be missing or fragmented and there

may be significant numbers of extraneous objects. In severe cases, extraneous elements may

permeate bona-fide scene structure. Indeed it was the presence of these noise objects which

motivated us to adopt an inexact approach to the graph matching problem in Chapter 2.

These objects inevitably hamper the matching, rendering it susceptible to error. Part of the

matching process then must be to identify spurious elements in the scene under match, label

them as such and isolate their effect on the matching of the uncorrupted scene elements.

The discrete relaxtion matching technique developed in the last chapter is capable of

locating the best match between two graphs, but it has no capacity to either identify or

remove nodes corresponding to scene noise. In this chapter we will examine a number of

different methods to implement this capability.

As before we are interested in the case when there is insufficient unary measurement

information on the elements alone to identify noise. We must therefore turn to contextual

information to provide the necessary clues. Examination of the literature reveals three sep-

arate approaches to the problem of labelling noise using contextual information. Common

to the three approaches is the concept of using relational consistency to drive the filtering

out of corruption. The simplest approach is the constraint filtering technique which iden-
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tifies inconsistent matches and rejects them as noise. This was the philosophy behind the

association graph of Barrow and Popplestone and maximal clique searching. The idea also

underpins Waltz’s (Waltz, 1975) discrete constraint filtering. Basic to the constraint filtering

technique is the idea that the true structure of the scene is relationally consistent with the

corresponding match, whereas random noise elements have no such structure. Elements

can therefore be filtered out based on whether the set of objects currently residing in the

graph form a consistently matched group. Inconsistent elements are labelled as corruption.

The graph is thus broken up into a number of sets of mutually consistent nodes and a set

of excess inconsistent noise elements. This is exactly the idea behind the maximal clique

approaches to matching of (Barrow and Burstall, 1976; Horaud and Skordas, 1989; Jones

and Wong, ).

The second approach falls firmly within the optimisation framework. It involves the

addition of another label to the set of possible matches. This label represents a null or

no-match category to which suspected noise elements can be assigned during the matching

process itself. An affinity with the null label is then calculated for nodes in a similar fashion

to other labels, so the null label process becomes incorporated in the optimisation phase

of the labelling. This approach is developed in (Wilson and Hancock, 1993b; Kittler et al.,

1993).

A third possible method involves the use of an active graph. In this approach an element

which is thought to be noise is removed from the graph and the relations (and therefore

the edges in the graph) are reconfigured. The structural similarity between the new graph

and a model graph is then computed and compared with that of the previous graph. An

improvement in the similarity without the element leads to the classification of that element

as noise. This technique has not previously been addressed in the literature, although

methods involving modification of the graph have been studied (Messmer and Bunke, 1994;

Tsai and Fu, 1983; Sanfeliu and Fu, 1983). However these methods associate arbitrary costs

with modifying the graph rather than using the graph structure itself to gauge the effect of

a structural modification.

In this chapter we develop these three different schemes for controlling the labelling of

noise in graph matching. These schemes are a constraint filtering approach, an optimisation
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method and a novel relational clustering technique with dynamic graphs. A comparative

study of the effectiveness on both SAR data and synthetic graphs is also undertaken.

4.2 Constraint Filtering

The classical constraint filtering approach has attractive features; we need neither incorpo-

rate the possibility of null-matched elements into the label probability distributions, nor do

we require prior knowledge of the number of unmatchable elements expected to be present

in the data. This tactic limits the number of matching parameters required to a minimum.

The softening of relational constraints implied in Equation 2.13 enables the matching process

to accommodate these erroneously matched segments while still locating the most consistent

match.

If the graphs under match are uncorrupted, we would anticipate a final match which

is completely consistent over the whole graph. We have already demonstrated in Chapter

3 that the discrete relaxation matching process is capable of achieving this when graph

corruption is not present. In a realistic case in which corruption is a significant factor, this

potential area of consistency is broken up into smaller patches, the size of which is limited

by the possibility of constraint corruption. Unmatchable elements, on the other hand, have

no consistent interpretation and are therefore unlikely to form patches of consistency.

We commence by forming a new graphG0
1 = (V 0

1 ; E 0
1; R0

1)which contains the consistently

labelled portions of G1. To form G0
1 we first eliminate arcs whose mapping does not appear

in G2 E1
0 = f(u1; u2)j(f(u1); f(u2)) 2 E2

0g (4:1)
The discarded arcs from G1 have no consistent interpretation in G2 and are therefore

considered to be the artifact of graph noise and corruption. We then remove disjoint nodes

which are no longer connected by an arc; these nodes have no support from the relations in

the graphs and are therefore considered to be unmatchable. The new node-set is given byV1
0 = fuj(u; v) 2 E1

0; v 2 V1g (4:2)
and the remainder of the nodes are assigned to the null category, i.e. 8u =2 V1

0 [f(u) = �].
The graph G1

0 now consists of a number of consistent regions Hi in which the nodes are
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Figure 4.1: Example graph division into regions

connected to each other, but not to any node from a different region. The node-set V2
0

consists of the union of these regions, i.e. V2
0 = H1 [H2 [ : : :[Hn. Formally,u 2 Hk , v 2 Hk _ (u; v) 2 E1

0
If correct matching were the only process which generates consistency, then G1

0 would

contain only the correctly labelled portion of the graph. However, a small amount of

spurious consistency is generated from local isomorphism between erroneously matched

segments and regions of G2. In other words, some edges which correspond to scene clutter

can still find consistent matches in G2 because the local graph structure is similar to a

sub-graph of G2. The probability of this random match occuring reduces as the size of

the consistent region increases. We can therefore gauge the consistency of region Hi via

a quantity Ni = jHij and set a rejection threshold T . If Ni � T then all nodes in Hi are

assigned to �.

In practical matching applications the regions of spurious consistency are small, typically

much smaller that correctly labelled regions, and in this case it is sufficient to set the thresholdT to remove out these regions without eliminating valid matches. For example in the

experiments on corner graphs presented at the end of this Chapter, T = 3 is used. However

if the level of corruption is very high the consistent regions begin to have sizes similar to the

regions of noise and the algorithm becomes inoperable.
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4.3 Noise Rejection by Optimisation

In the optimisation approach to clutter identification, we augment the label set of possible

matches with an additional null category, i.e. V 0 = V [ �. We must then additionally

account for the possibility of null labels occuring in the matched realisation of a clique and

suitably modify the distribution of label probabilities specified in equation 2.10. Again we

hypothesise a uniform probability of null labels but in contrast to the label-error probability

it remains constant throughout the relaxation process, reflecting the anticipated amount

of node corruption in the graph. We denote this noise probability with P�. The new

distribution rule is given byP (f(uk)jvk) = 8>>>>>>><>>>>>>>:Ps if f(uk) = d or vk = dP�(1� Ps) if f(uk) = v�(1� Pe)(1� Ps)(1� P�) if f(uk) = vkPe(1� Ps)(1� P�) if f(uk) 6= vk (4:3)
As before, in the case when a label has no match because of the different sizes of cliques

under comparison, dummy nodes are assigned with a probability Ps. The corresponding

clique probability isP (�j jSi) = KCj exp[�keH(�j ; Si)� ksS(�j; Ski )� k�N (�j)] (4:4)
The exponential constants are now given byks = ln

� (1�P�)(1�Ps)(1�Pe)Ps �k� = ln
� (1�Pe)(1�P�)P� �ke = ln
� (1�Pe)Pe �

while the multiplying constant is given by KCj = [(1� Pe)(1� Ps)(1� P�)]C.

This new distribution rule implies that the joint conditional probability is now a function

of three quantities; the Hamming distance H and size difference S as before, and the

number of null labels present N . The clique probabilities are therefore naturally graded by

the number of null labels present.
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It should be stressed that although the no-match probability Ps and the node corruption

probability P� are related, they are not identical. Figure 3.7 in Chapter 3 emphasises this

point; the node corruption level is amplified in the level of relational corruption. The

relationship between these two quantities is highly dependent on the type of relations

employed. The major disadvantage of this approach stems from the need to know apriori

the level of corruption present.

The optimisation phase of the matching proceeds as before, apart from the additional

evaluation of the probability of a null label at any node. It is important to point out that,

while noise elements are labelled as such, the structure of the graph remains unaltered;

there is no model of how extraneous or missing elements affect the relational structure in

the graph.

4.4 Graph reconfiguration

Different approaches described in the literature incorporate a range of different approaches

to relational inexactness. For example the logarithmic conditional information of Boyer

and Kak (Boyer and Kak, 1988) captures attribute deviations using Gaussian probability

distributions over the measurement space. These distributions are aimed at modelling noise

at the level of attributes rather than at the level of symbolic corruption. At the structural

level, Shapiro and Haralick (Shapiro and Haralick, 1985) allow the insertion of dummy

nodes with no associated penalty, to accommodate the effects of noise and segmentation

error. This contrasts with the previous approach in which dummy nodes are incorporated

directly into the cost function with an associated probability distribution. The simulated

annealing method of Herault et al (Herault et al., 1990) and the graph-edit approach of

Messmer and Bunke (Messmer and Bunke, 1994) also associate a cost function with the

consistency of match.

Despite the variety of models of relational inexactness, all the techniques described above

exploit a static representation of the relationships between objects under match. Spurious

elements in the graph contaminate the information supplied by true graph relations, even

after the element has be recognised as noise. Under conditions of extreme scene clutter
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this can prove to be a severely limiting factor in matching performance. When true scene

objects are surrounded by high levels of clutter, little of the original structure is preserved

in the data. It then becomes difficult to elicit meaningful relationships from the scene and

the matching process only meets with a limited degree of success.

In order to overcome the limitations imposed by high levels of scene noise, we need to

additionally attempt to reconstruct the relational structure of the scene when an element

is discarded as noise. We must therefore adopt a dynamic representation of the scene

objects and their relationships (Messmer and Bunke, 1994; Sanfeliu and Fu, 1983). When

noise elements are identified, they are deleted from the scene data and the corresponding

graph is recomputed without the object; in this fashion relational structure is restored as the

extraneous entities are identified. Eventually the intrinsic relational structure of the model

is recovered.

4.4.1 A Dynamic Model of Topology

The task of reconfiguring the graph is one of rejecting noise elements based on the relational

structures they form with the rest of the scene graph. As such, it is similar in many ways to

the clustering ideas of robust statistics, which are often used to reject a set of outliers to a

measurement probability distribution or a uniform coordinate transformation. In this case

our aim is to locate entities which form a consistent structural cluster which satisfies the

constraints supplied by the model (Henderson, 1990). The MAP criterion developed earlier

(Equation 2.15) may now be regarded as a probability distribution which can be used to

reject a population of relational outliers. This approach has some features in common with

the constrained clustering technique of Rose, Gurewitz and Fox (Rose et al., 1993) but rather

than exploiting a Euclidean distance measure, we rely on a Bayesian framework to provide

our probability distributions.

Suppose we wish to assign a graph element u from G1 to the set of outliers �. The

new node-set is trivially recomputed; it is simply given by V 0 = V � u. Similarly, the set

of measurements is given by X0 = X � xu. Computation of the new edge-set E 0 is more

complicated. The relational structure of the scene must be recomputed without the influence

of the node u. For example, in the experiments detailed later in this section, the Voronoi
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tessellation of the image plane and the associated Delaunay graph are recalculated when a

node is dropped.

As before, we wish to optimise the MAP criterion for the matching configuration with

respect to the unary measurements which are available. However in this situation we are

interested in reconfiguring the graph structure in order to optimise the partition between

consistently matched inliers and relational outliers. Formally the outliers are denoted by �.

We must therefore optimiseP (f;�jXf ;X�) = p(Xf ;X�jf;�)P (f;�)p(Xf ;X�) (4:5)
whereXf andX� are the unary measurements associated with the graph nodes and the

null nodes respectively. In order to calculate the various terms in Equation 4.5 a model is

required specifying the nature of the corruption present in the scene graph. Here we assume

that noise elements are randomly distributed and uncorrelated with the true structure of

the scene. As a consequence, the a priori probability of the null labels is independent of the

match and, as in the development of our initial MAP criterion, we assume that the unary

measurements on all nodes are conditionally independent. We may therefore factorise the

conditional measurement density thus,p(Xf ;X�jf;�) = Yu2G1

p(xujf(u)) Yu2� p(xuj�) (4:6)
assuming that the measurement probability densities on outliers are independent of the

fact that they are in the null partition. Using Bayes theorem to re-write this equation in

terms of a posteriori probabilities,p(Xf ;X�jf;�) = Yu2G1

P (f(u)jxu) p(xu)P (f(u)) Yu2� p(xu) (4:7)
We now note that because the outliers are assumed to be a priori independent of the

match we may factorise the joint probability thus;P (f;�) = P (f):P (�) (4:8)
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Our model for the joint prior of the matching function, P (f), remains unchanged, but

whereas the joint probability of the match P (f) is dependent on the structure of the scene,

there is no meaningful structure to be found in the outliers. They are therefore independent

of each other resulting in another factorisation;P (�) = Yu2�P (u! �) = P j�j� (4:9)
We now turn our attention to the optimisation of the partition between outliers and

inliers. As with the matching phase, we are interested in locating the maximum a posteriori

probability. The quantity of interest is therefore the MAP ratio between two states of the

graph. The update procedure involves the deletion or reinstatement of image entities on a

node-by-node basis. We need only evaluate the effect of reassigning one matched node to

the null category. Under these conditions the ratio isP (fG1
;�jXf ;X�)P (fG0

1
;�jXf ;X�) = P (f(u)jxu)P (u 2 �jxi):P (f(u))P (fG1

)P (fG0
1
) (4:10)

From this expression we can see that the assignment of a particular node is dependent on

two factors; namely the ratio of joint matching prior and the ratio of the a posteriori matching

probabilities for the current label and the null label. Both measurement information and

graph structure of the nodes influences the classification process.

4.4.2 Relational Clustering

The structural effect of deleting a node is apparent in the change in the joint prior fromP (fG1
) to P (fG0

1
). In order to establish the influence of a single node reassignment we must

compute the effect over all graph units structurally changed by the deletion. Our model

of structural consistency is averaged over the cliques in the data-graph, and so we must

examine those contributions that arise from modification of the cliques containing the node

in question.

This set is constructed by identifying those nodes that form a clique with node u in graphG1, i.e. Cu � fug, and determining the new clique set for these nodes in the reconfigured

graph G0
1. We let �+u denote the clique set of object u in graph G1 and ��u denote the
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corresponding clique set in the reconfigured graph G0
1. In other words, �+u contains all

the cliques which originally contained u as one of the external nodes; these are the graph

units which are affected by the deletion of u. The set ��u on the other hand contains the

same cliques after the deletion of u and the associated reconfiguration of the relations in the

graph. With this notation the change in the denominator of the MAP criterion caused by

the deletion of the node u is proportional to��u = P� Xj2��u P (�j) (4:11)
By contrast, when considering the change in the numerator of the MAP criterion it is

the clique set �+u to which we turn our attention. The corresponding change to the MAP

criterion is proportional to �+u = P [f(u)jxu]P [f(u)] Xj2�+u P (�j) (4:12)
With these two measures to hand, we can both delete and reinstate nodes in such a way

as to monotonically increase the MAP ratio. We therefore delete node u provided �+u < ��u
and reinstate the node if �+u > ��u .

It should be noted that in assessing the change to the global MAP ratio we have confined

our attention to the component of the average consistency criterion that is modified by node

deletion. This effectively corresponds to ignoring the effect of the unmodified component

which can be regarded as representing a constant pedestal consistency value. In order

to justify this iterative reassignment approach, we will now illustrate that the modified

consistency component is in fact proportional to the change in Kullback-Leibler entropy

caused by node deletion. Consequently, the decision criteria specified in Equations 4.11 and

4.12 not only locate the global MAP, they also ensure that the reconstructed graph is the

structure that maximises the Kullback-Leibler entropy with respect to the model.

To proceed, we note that the canonical way of assessing the impact of the change in a

probability distribution evaluated over a set of discrete entities is to compute the Kullback–

Leibler divergence (Kullback and Leibler, 1951; Kullback, 1987). Our strategy for assessing

the relevance of nodes in the data graph is therefore to compute the change in Kullback-
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Leibler entropy associated with reconfiguration of the graph and the consignment of nodes

to the set of outliers �. In our application, we require a means of gauging the improvements

associated with the deletion of nodes, which may be facilitated by comparing the matched

relations from the original graph �u 2 G1 with those in the modified graph �0u 2 G0
1.

Adhering to our underlying philosophy of exploiting a relational model, we wish to gauge

these differences in the light of the structure preserving relations residing in the dictionary,

i.e. Si 2 P . The Kullback-Leibler entropy which meets our requirements isIu(G1; G0
1) = � Xj2�+u XSi2P P (�j jSi) ln

P (�j jSi)P (�0j jSi) (4:13)
Substituting for P (�j jSi) and exploiting the exponential nature of the probability distri-

butionIu(G1; G0
1) = � Xj2�+u XSi KCjjPj nke[H(�j ; Si)� H(�0j ; Si)] + ks[S(�j; Si)� S(�0j ; Si)]o�e�keH(�j;Si)�ksS(�j;Si) (4.14)

The change in entropy associated with the iterative reassignment of the single node u
is therefore proportional to the weighted change in Hamming distance and size difference

over the set of modified cliques. This is a result which has a pleasing physical intuition. Our

maximum entropy criterion for deleting a node is that it minimises the average weighted

sum of Hamming distance and size difference between the relations in G1 and G2.

Now let us examine the change in the joint prior P (f) during the deletion of a node.

This change is given by�P (f) = P (fG1
)� P (fG0

1
)= 1jV1j Xj2�+u KCjjPj XSi2P e�keH(�j ;Si)�ksS(�j ;Si) � e�keH(�0j ;Si)�ksS(�0j ;Si)

(4.15)

This expression can be rewritten in the the following form which elucidates the relation-

ship between the change in the joint prior and the Kullback-Leibler entropy:
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�P (f) = 1jV1j Xj2�+u KCjjPj XSi2P n
1� e�ke[H(�0j;Si)�H(�j;Si)]�ks[S(�0j;Si)�S(�j ;Si)]o�e�keH(�j;Si)�ksS(�j;Si) (4.16)

From Equation 4.16 it can be seen that that the change in the joint prior has a similar

form to that of the Kullback-Leibler entropy; indeed under conditions of small changes in

Hamming distance and size difference the exponential difference term can be approximated

by a linear term. Since only one node is deleted in each modification of the graph, the Ham-

ming distances and size differences under consideration generally change by a maximum

of one, although because the graph structure is recomputed, the changes may be more than

one. Simulation studies show that 90% of node deletions lead to a change in surrounding

units of one or less nodes. If a linear approximation of the exponential is valid, the change

in the criterion is given by�P (f) = 1jV1j Xj2�+u KCjjPj XSi nke[H(�0j ; Si)�H(�j ; Si)] + ks[S(�0j; Si)� S(�j ; Si)]o�e�keH(�j;Si)�ksS(�j;Si) (4.17)

This is proportional to the change in the Kullback-Leibler entropy. Configurations of

optimum average consistency are therefore not only those of minimum average Hamming

distance, they are also those that minimise the entropy of the relational model. Viewed as

a relational clustering process, the maximum value of the joint prior is also of minimum

entropy.

4.5 Experimental Comparison of Techniques

In this section we compare the relative performance of the three algorithms presented earlier.

The performance evaluation is based on two factors, the fraction of correct matches (Fc) and

the noise fraction (Fn). These are given by the formulasFc=correct matches/maximum possible correct matchesFn=incorrect matches/number of matches.
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Figure 4.2: Corner graphs generated from the SAR and map data

With these definitions 0 � Fc � 1 with 1:0 being the best performance, and 0 � Fn � 1

with 0:0 being the best performance.

The first set of experiments is based on the SAR aerial data shown in Appendix A.

We evaluate the matching performance on this data using two different sets of relations.

The first set of relations are generated by the presence of corners between line segments.

The second set are generated by a Voronoi tessellation seeded on the center points of the

lines. These two relational abstractions generate very different edge densities; nodes under

a Voronoi tessellation have an average of 5.5 connections, with up to 12 adjacent nodes for

some. The corner relations have on average 2.4 neighbours with a maximum of 4. A corner

graph representation of the data is shown in Figure 4.2

Table 4.1 summarises the results produced by the three algorithms derived in sections

4.2,4.3 and 4.4. From these results a clear difference can be seen, which is attributable to

the different graph structures. On corner graphs constraint filtering is the most effective

method. Both the optimisation and reconfiguration methods perform similarly poorly

on this graph structure. However the situation is different when we come to study the

Delaunay graph representation. The reconfiguration method improves dramatically, and
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Corner graph Delaunay GraphFc Fn Fc Fn
Constraint Filtering 0.71 0.35 0.96 0.56

Optimisation 0.52 0.78 0.57 0.77

Reconfiguration 0.43 0.81 0.77 0.47

Table 4.1: Summary of Results for noise removing schemes on real data

indeed it out-performs constraint filtering slightly in terms of the noise rejection figure.

There is little difference in the performance of the optimisation scheme.

These differences can be understood in terms of the processes at work in the various

approaches. The optimisation version of the null-labelling process compares unfavorably

with the other methods; it is dogged both by problems of parameter control and a tendency

to shuffle valid matches into the null match category from which they can no longer be

successfully recovered. The graph reconfiguration method also performs poorly on the

corner graphs. The nature of corner relations does not lend itself to reconstruction of the

topology of the graph, since the dropping of a line segment leads only to the loss of the corner

relations associated with that line; the rest of the graph is unaltered and no new relationships

appear. There is little to be gained by attempting to reconfigure the relationships. In this

case the algorithm is reduced to merely pruning out nodes of the graph.

With the Delaunay representation the graph is significantly altered by a node deletion;

relationships disappear and new ones appear in their place. The reconfiguration technique

is more potent since there are significant structural differences between the different graph

configurations which the algorithm can use to determine the optimal partition between le-

gitimate nodes and noise elements. Infact reconfiguration is marginally superior in terms of

noise rejection to constraint filtering because of it’s ability to restore the original uncorrupted

relationships in the graph.

The second set of experiments involves the use of Voronoi triangulations of random point

sets with controlled levels of corruption. These are described in more detail in Appendix A

and are also used in Chapter 3. This allows a study of algorithm performance at varying

levels of corruption. Figures 4.3 and 4.4 summarise the relative performance of the schemes
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Figure 4.3: Correct Fraction for noise removing schemes

on this data.

These results lead to the conclusion that the optimisation approach is the inferior method

of the three alternatives studied here. The algorithm is unable to allocate null labels during

the matching phase without disturbing the patterns of correct matches.

A fuller study using Voronoi relationships (Figures 4.3 and 4.4) demonstrates that the

graph reconfiguration method out-performs constraint filtering. There are two reasons

for this performance advantage; firstly the reconfiguration approach is able to adjust the

relations and restore the original graph structure after an element has been identified as

noise. Secondly the constraint filtering algorithm uses a coarse measure of consistency when

compared to our consistency criterion; rather than gauge the similarity between cliques, it

relies on finding subgraph isomorphisms between the matched graphs. It is therefore

less successful at setting the partition between noise and genuine matches. However in

favour of constraint filtering is the fact that the approach takes minimal computational

resources whereas graph reconfiguration requires the recalculation of relations typically
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Figure 4.4: Noise Fraction for noise removing schemes

many thousands of times.

4.6 Conclusions

The following points summarize the finding in this chapter;� A graph reconfiguration method has been developed which uses an objective consis-

tency criterion to gauge the cost of graph edit operations. In the limit of small error

and corruption probabilities the update operation also optimises the Kullback-Leibler

entropy of the edited graph match.� Results on both real-world data and simulated graphs demonstrate that, of the three

methods studied here, the optimisation approach is significantly worse than the other

two.� The simulated graph study shows that the reconfiguration method is the most effective

method for eliminating noise and recovering the correct match; however on the SAR
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data, the constraint filtering approach recovers more of the correct match.
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Chapter 5

Understanding the consistency

Criterion

5.1 Introduction

We demonstrated in previous chapters, using experimental analysis, that the proposed

consistency criterion is effective in matching graphs and eliminating noise and clutter from

corrupted graphs. Because the criterion is based on a symbolic measure of consistency

between graph sub-units, it is also possible to make some theoretical predictions. Armed

with a model of the distribution of cliques in pattern space we can predict some properties

of the criterion.

5.2 The Expectation Value of P (f)
In order to calculate the average value of the prior mapping probability, P (f), we first require

a pattern space model representing the distribution of structure-preserving mappings over

the space of labellings. Since SPMs are in turn generated from the relations in the graph, this

model is dependent on the type of relational structures present. The choice of these structures

has an important role to play in determining the power of the constraints available to the

relaxation algorithm. Here we develop a theory based specifically on Delaunay graphs,

although the methodology is valid for other structures. Again, for the sake of simplicity, we
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neglect the possibility of null labels.

We begin by writing the functional value explicitly in terms of the label error probabilityPe thus P (f) = 1jV1jXC(1)i 1jPj XS2PYP 1��(f(u);v)e (1� Pe)�(f(u);v) (5:1)
Now consider the labelling on one particular clique match �u with n nodes. With respect

to this site, the dictionary P contains only one item which is fully congruent with �u when

it is correctly labelled. However because of both the overlap of SPMs and the need to

enumerate all possible mappings of a clique, there will be a number of items which are

partially congruent with �u. The exact number and distribution of these items depends

on the relational abstraction adopted when the graph is formed. In order to calculate the

average value of P (f) this distribution must be known.

Rather than evaluate the congruency of each clique with all it’s SPMs, we make a

simplification at this stage. We view the set of structure-preserving mappings at a particular

clique (S(u)) as having a ’principle’ mapping which has the maximum possible congruency

and a set of sub-mappings with lower congruency. Now provided that the number of sub-

mappings with a congruency of one less than the maximum is small compared to (1�Pe)=Pe,
then their influence on the functional will be negligible.

More formally, each clique inG2 generates a set of SPMs comprising of the permutations

of the non-centre nodes - we denote this set by S(v) = fS(v)
1 ; S(v)

1 ; : : : ; S(v)k g. Now let�min = minS2S(v)H(�u; S) (5:2)
be the minimum value of the Hamming distance for this set of mappings and let N(�) be

the number of mappings from S(v) which have � as their Hamming distance from the clique�u. The assumptions being made can be summarised by the following points:� N(�min) = 1� N(�min + 1) << (1� Pe)=Pe� N(�min + 2) << [(1� Pe)=Pe]2
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and so on.

If this condition is fulfilled only the principle mapping will be significant. The validity

of the first assumption is dependent on the distribution of congruent labels and the way in

which mappings are generated.

There are two processes which may violate the first assumption that there is only one

principle mapping and we will deal with each in turn. The first process involves the

generation of mappings in which some of the node pairings are the same. Each individual

mapping is not independent of the others, rather they involve cyclic permutations and

placements of dummy nodes. If there are no dummy nodes the similarity in the node

pairings between mappings is confined to the centre node only and so the potential for

the same minimum Hamming distance to appear in more than one mapping is small. As

dummy nodes are added there is a much greater overlap between mappings due to the

possibility of placing the dummy nodes in different positions within the mappings while

retaining the rest of the node pairings. We must therefore confine the analysis to situations

where dummy nodes are not a significant factor.

The other process we must consider is the case when the same minimum Hamming

distance is generated by two mappings which have different node pairings, simply due to

the chance congruency of labels. However if the Hamming distance is small enough to be

significant influence on the criterion, the probability of it being repeated by the action of

incorrectly congruent labels is small.

The other issue is that of the influence of mappings of larger Hamming distance than the

minimum. This is not a significant if N(�min + 1) << (1 � Pe)=Pe;N(�min + 2) << [(1 �Pe)=Pe]2 : : : The numbers of such mappings are difficult to predict but at arbitrarily small

values of Pe this condition can be enforced. In practice, Pe = 0:1 gives N(�) << 9N(�+ 1);
without the action of dummy nodes the total number of mappings at each site rarely exceeds

9. With this consideration, we can expect this assumption to hold for say Pe < 0:1
As mentioned above, there is a chance that incorrect labels may accidentally be congruent

with a SPM entirely unconnected with the correct mapping. The probability that two labels

which have no place in the correct mapping are not the same is denoted by P (w)e .

We model these incorrect labellings by assuming a uniform distribution of labels when
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a node is incorrectly labelled. As a consequence, the probability of a node u being wrongly

labeled as node v in G2 is given by Pe=(V2 � 1) andP (w)e = 1� PeV2 � 1
(5:3)

We now partition the dictionary into a number of different sets, according to the potential

congruency of each mapping, when correctly labelled, with �u. For convenience we will

denote each set by Pn;m where n is the number of potentially correct sites each mapping

contains and m is the number of items in that set. Because of the overlap of cliques within

the graph there will be a number of cliques (2jCj�2) which share two nodes with the central

clique. The partition of the set of principle SPMs is thereforePp = PjCj;1 [ P2;2jCj�2) [ P0;jV2j�2jCj+1 (5:4)
The probability of occurrence of a particular instance of a possible labelling is defined in

the same fashion as our previous label distribution (Equation 2.10). For labels we expect to

be correct, this is P (f(uk)jvk) = 8<: 1� Pe if f(uk) = vkPe if f(uk) 6= vk (5:5)
We also define a similar distribution for labels we would expect not to matchP (f(uk)jvk) = 8<: 1� P (w)e if f(uk) = vkP (w)e if f(uk) 6= vk (5:6)
Now let us examine the average value of the functional itself. Because of the average

nature of the definition of the functional, the average value reduces to the average probability

of one clique < P (f) >=< 1jPj XS2P Yu2S P 1��(f(u);v)e (1� Pe)�(f(u);v) > (5:7)
and then expanding over the possible states of �u denoted by ! 2 
, the average value

is given by < P (f) >= X!2
P (�u = !) 1jPjXYP 1��(f(u);v)e (1� Pe)�(f(u);v) (5:8)
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We may exchange the sum over all states of �u with the product over labels in �u to

obtain < P (f) >= 1jPjXYnP [�(f(u); v) = 1](1� Pe) + P [�(f(u); v) = 0]Peo (5:9)
Armed with the pattern model defined in Equation 5.4 and with probability distribu-

tions for the various component labelling of this model, we can now calculate the average

functional value to be< P (f) > = 1jPpj�[(1� Pe)2 + P 2e ]jCj+(2jCj � 2)[(1� Pe)2 + P 2e ]2 � [(1� Pe)(1� Pe)(w) + PeP (w)e ](jCj�2)+(jV2j � 2jCj+ 1)[(1� Pe)(1� Pe)(w) + PeP (w)e ]jCj� (5.10)

This expression can be considerably simplified by the substituting for the weights as-

sociated with correct and incorrect labels, i.e. �c = (1 � Pe)2 + P 2e and �w = (1 � Pe)(1 �P (w)e ) + PeP (w)e . The average functional value therefore becomes< P (f) >= 1jPpj��jCjc + (2jCj � 2)�2c�(jCj�2)w + (jV2j � 2jCj+ 1)�jCjw � (5:11)
Although Equation 5.11 has been developed with specific reference to Delaunay graphs,

study of the form of the expression reveals a more general applicability to graph structures.

If the mapping items generated by the graph can be partitioned in a similar fashion to that

described in Equation 5.4 then an equivalent expression for the average functional value

applies. Formally, we partition the principle SPMs as followsPp = [Pn;m2PpPm;n (5:12)
The average value of the functional is now simply given by< P (f) >= 1jPpj XPn;m2Ppm�nc �(jCj�n)w (5:13)
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Figure 5.1: Comparison of true and predicted functional values

5.2.1 Experimental Validation

It now remains to compare this expression with the value calculated from experimental runs

of the matching algorithm. Figure 5.1 shows a graph of the functional value sampled over

the course of two matching runs. The solid line represents the theoretically predicted value

of the functional. Both are plotted against the true label error probability which is generated

by a ’master’ matching which gives the true labelling of the nodes.

Figure 5.1 shows that our pattern space model leads to an accurate model of the processes

at work in the matching process at lower levels of Pe. The experimental and theoretical

values begin to diverge towards Pe = 0:5, in keeping with the assumptions made earlier.

It is important to note that the values in Figure 5.1 are compared with a label error

probability which was generated with reference to a ’master’ match which needs to be gained

from some other source. Clearly in realistic applications no such information is available.

However knowledge of the expectation value of the functional provides a method by which

we can determine the prevailing label error probability.

Since we do not know what the value of the label error probability is, we commence by

allowing the value used in the calculation of the functional to vary. The true level of errors

remains unchanged. If the value used by the algorithm is denoted Qe, we have
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Figure 5.2: Finding the true value of Pe�0c = (1� Qe)(1� Pe) + QePe�0w = (1�Qe)(1� P (w)e ) +QeP (w)e
These values are then used to calculate a new average functionalF 0. This is the functional

value that the matching algorithm will return. Let us now examine a plot of both < F 0 >
and < F > (see Figure 5.2). The prevailing value of Pe can then be determined by the

intersection point of the two curves.

5.3 Stochastic Relaxation

Stochastic relaxation has often been proposed as a suitable method for escaping from local

optima of a functional. In particular Geman and Geman (Geman and Geman, 1984) origi-

nated a method of stochastic relaxation based on an analogy with statistical physics. They

compare the labelling of objects in a Markov Random Field with annealing in a physical

system. Label updating is performed in a non-deterministic fashion which effectively allows

transitions between the current state and a random new configuration with a probability

equal to the ratio of the probabilities of the new state 
0 and the previous configuration 
,
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i.e. the quantity q = P (
0)P (
) = e��[�(
0)��(
)] (5:14)
is calculated; the transition is allowed with probability q (or 1 if q > 1). In other words,

labelling changes which increase �(
) are allowed with a probability q, whereas changes

which decrease �(
) are always allowed. This has the effect of producing new states 
 in

proportion to their probability P (
) when � is the Gibbs energy.

The probability distributions used by Geman and Geman are based on Gibbs distribu-

tions containing the parameter T = 1=�, equivalent to the temperature in a physical system.

They show that by reducing the temperature in a particular fashion, namely at iteration k,Tk � c
log(1+k) local minima of the energy function can be avoided.

In order to relate the previously described discrete relaxation scheme to this statistical

physics analogy, an equivalent Boltzmann distribution is required to represent the system.

We begin by hypothesising a set of possible states, denoted by� = f�1; �2; : : :g, for the clique

under match, �. These states are the equivalent ingredients in the statistical mechanics

framework to the SPMs in the discrete relaxation scenario. There is one state for each SPM,

and if the match is in state � this is equivalent to matching � to the corresponding SPM.

The clique matching probability in a given state � can then be calculated and is given byP (�; �) = Kj�je�kH(�;�) (5:15)
In drawing an analogy with statistical physics, we compare this expression with the

partition function for a system of particles with possible configurations � = f�1; �2; : : :g.

This partition function is given by Z = X�2�e���� (5:16)
We therefore define the equivalent partition function for the discrete relaxation system to beZ = Kj�j X�2� e�kH(�;�) (5:17)

From this starting point a number of statistical and ’physical’ properties of the system

can be calculated. For example, the equilibrium Gibbs potential of a particular clique can
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easily be derived from the formula U(�) = � 1Z @Z@k (5:18)
Combining Equation 5.17 and Equation 5.17 we obtainU(�) = P�H(�; �)e�kH(�;�)P� e�kH(�;�) (5:19)

This expression is worthy of further comment. The effective potential for the clique

mapping � is the average value of the Hamming distance with respect to the available SPMs.

Examination of the individual terms in the numerator of expression 5.19 reveals an important

feature of the Gibbs energy; as H ! 1, He�kH ! 0 and when H = 0 then He�kH = 0.

The exponential weighting of Hamming distance suppresses the influence of items of large

Hamming distance, while items of small Hamming distance also have little contribution.

The main contribution to the potential is therefore from items of intermediate values of

Hamming distance. Figure 5.3 shows this factor graphically. This is an important feature

in terms of the algorithm’s ability to handle a large dictionary of SPMs; items with a large

Hamming distance of order jC�jwhich have little influence on the Gibbs energy correspond

in general to mappings which in reality have no connection with the correct match. Items

with zero Hamming distance will correspond to mappings in which a consistent match has

already been found. Attention is naturally focussed on the intermediate items on which

consistency still needs to be imposed. This structure limits the effects of inter-pattern

competition which dog linear systems, and has been shown to lead to a vastly improved

storage capacity and enhanced pattern reconstruction abilities over the Hopfield network

in the case of binary memories (Hancock and Kittler, 1993; Gardner, 1986).

5.3.1 The Entropy of Matching

From the same starting point we can also calculate another property of the system, the

thermodynamic entropy. The entropy of an individual clique with respect to the matching

state � is given by S = k0 lnP (�; �) (5:20)
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Substituting for the expression for P (�; �) (Equation 5.15), we obtainS(�; �) = k0 ln hK� e�kH(�;�)i (5:21)
The average value of the clique entropy is given by averaging over the possible states of

the match thus < S >=P� S(�; �)P (�; �). Consequently, the average entropy is:< S >= Kk0j�j X�2�[ln(K=j�j)� kH(�; �)]e�kH(�;�) (5:22)
5.3.2 Equivalent Boltzmann Distribution

As we have seen, the probabilities which are available model the Boltzmann distributions

for the different dictionary items in the set of SPMs. With these distributions we can

stochastically update the state �. This corresponds to optimal selection of the dictionary

item which corresponds to a particular fixed labelling �. This is of little interest as far

a improving the quality of match is concerned. Rather we need to optimise the clique

labelling itself. In order to do this an equivalent Boltzmann distribution for the labelling is

required, which we denote Q(�). As required by the theorem of total probability, we can

expand Q over the possible states of the system, i.e.Q(�) = X�2�Q(�; �) (5:23)
We now require a method of relating the joint probabilities Q(�; �) to the original joint

probabilities of the different states. Following (Cross et al., 1995), we use a result from

information theory, namely that the probability distribution which best models a known

distribution can be found by minimising the Kullback-Leibler divergence. The divergence

between the conditional matching probabilities P (�j�) defined over the state-space of the

dictionary and the new conditional probabilities of the Boltzmann distribution Q(�j�) is

given by �(�) = X�2�P (�j�) ln
P (�j�)Q(�j�) (5:24)

Before continuing, we must apply additional constraints to Q in order to provide a

unique solution for the minimal point of the Kullback-Leibler divergence. We note that

we have no interest in which state is involved in the optimal matching; the Boltzmann

distribution we are looking for is a function of the labelling only. Consequently we assume
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that the probabilities q are independent of the state of the match, i.e. that Q(�; �1) =Q(�; �2) = Q(�; �m)8m. Under this assumption we obtain Q(�) =P� q(�j�)p(�) = Q(�j�).
Substituting the expression for the original conditional matching probabilities, we obtain�(�) = KX� h

lnK � kH(�; �)� lnQ(�j�)ie�kH(�;�) (5:25)
The Kullback-Leibler divergence is minimal when the distributions are identical, i.e.�(�) = 0. Using this condition;

lnKX� e�kH(�;�) � kX� H(�; �)e�kH(�;�) � [lnQ(�)]X� e�kH(�;�) = 0

and therefore the equivalent Boltzmann distribution for the clique isQ(�) = Ke�kU(�) (5:26)
HenceU(�) is the equilibrium Gibbs potential for the equivalent Boltzmann distribution

of clique �. It is equivalent to the set of distributions over the state-space of mappings in

the sense that the Kullback-Leibler entropy between the two is zero. We are now justified

in performing simulated annealing on the potential U(�).
5.4 Conclusions

In this chapter we have predicted the average value of the matching criterion under some

limiting assumptions about the nature of the pattern space and parameter values, which

confine the validity of the expression to small values of the label error probability Pe. This

expression was show to be an accurate prediction of the criterion experimentally, for values

of Pe < 0:2.

We then drew on the partition function of the system to calculate the Gibbs energy of

the labelling with respect to the set of SPM’s. The Gibbs energy was simply the average

Hamming distance over the set of SPM’s. Further analysis demonstrated that the equivalent

Boltzmann distribution for the clique labelling was an exponential function of this energy.
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Chapter 6

A Comparative Study of

Optimisation-based Inexact Matching

Schemes

6.1 Introduction

In the preceding chapters we have developed a compound exponential criterion for perform-

ing graph matching tasks which develops earlier ideas of Hancock and Kittler (Hancock and

Kittler, 1990a) who introduced the concept of a label error process and applied it to low-level

labelling problems. In the past little attention has been directed at the mathematical form

of the criterion for matching tasks. In general authors have been little concerned with how

the choice of criterion affects the fidelity and robustness to noise of matching algorithms.

Instead they have opted for simple expressions which permit ease of computation and anal-

ysis. Examples of this can be seen in (Faugeras and Berthod, 1981; Shapiro and Haralick,

1981; Boyer and Kak, 1988). In the first part of this chapter, we examine some alternative

forms of the matching criterion, show how they relate to the exponential approach described

in previous chapters and discuss the robustness of different methods.

Infact it has been the optimisation process that has interested many authors, with elab-

orate update procedures (Geman and Geman, 1984; Lloyd, 1983) or search techniques

(Shapiro and Haralick, 1981; Messmer and Bunke, 1994) overcoming problems of local op-
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tima in the matching function. One example of this is in Geman and Geman’s work (Geman

and Geman, 1984). Here they develop an elaborate stochastic update procedure known as

simulated annealing to escape from local minima of the matching function. However it may

be that the need for stochastic optimisation methods is largely inflicted by the choice of cri-

terion. In the final part of this chapter we assess the need for a more elaborate optimisation

scheme.

6.2 The Linear Approximation

Traditionally the relaxation technique has involved the evaluation of a labelling energy or

criterion which is a linear sum of error terms, with each error term being linear or quadratic

in terms of the adopted distance measure. For example, it is precisely the quadratic form

of the consistency criterion which is optimised by the Hummel and Zucker (Hummel and

Zucker, 1983) probabilistic relaxation scheme. Linear compatibility models are common

place in the literature on relaxation labelling (Bhanu and Faugeras, 1984; Izumi et al., 1992;

Lloyd, 1983; Ranganath and Chipman, 1992; Ton and Jain, 1989).

However recent efforts have established a fundamental weakness in this technique,

particularly in the context of pattern recognition problems. This is highlighted particularly

by the Hopfield network (Hopfield, 1984) which essentially operates using a linear criterion.

It has been established (Gardner, 1986) that the Hopfield network is severely limited in the

number of patterns it can store and recognize; the limitation stems from problems of inter-

pattern competition. For a large number of patterns, the contribution from non-matching

patterns swamps the signal from the one matching pattern.

In contrast, recent investigations (Hancock and Kittler, 1993) have shown that the sum of

exponential inter-pattern distances is superior in its ability to cope with large sets of patterns.

The exponential element to the matching function effectively suppresses the contribution

from outlier patterns, which in the linear case can dominate the criterion. In this sense

the linear expression is non-robust to pattern noise since an arbitrarily placed outlier can

arbitrarily change the value of the criterion.

In this section we establish a linear approximation to our global criterion of match,
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and use this as a point of comparison with other such techniques. We also investigate the

performance of this linear cost function.

6.2.1 An Approximate Criterion

We begin by examining the expression for the clique matching probability:P (�) = KCjPj XSi2P exp[�keH(�; Si)� k�S(�; Si)] (6:1)
We are interested in computing a linear approximation to the exponential appearing in

the above expression using the Taylor expansion. This expansion is valid when keH(�; S)!
0 andk�S(�; S)! 0. This limit occurs when the corresponding constantske andk� approach

zero, i.e when the error probability Pe ' 1
2 and the node loss probability P� ' 1

2 . Under

these conditions the exponentials of in the summation in equation 5 can be expanded in

terms of a Taylor power series,P (�) = KCjPj XSi2P n1� keH � k�S + 1

2
[keH + k�S]2 : : :o (6:2)

Limiting the expansion to linear terms, we obtainP (�) = KCn1� 1jPj XSi2P hkeH + k�Sio (6:3)
The resulting global consistency criterion under consideration is thenFh = 1jV1j XC(1)j �V1

KCn1� 1jPj XSi2P �keH(�; Si) + k�S(�; Si)�o (6:4)
Therefore, in the situation when clique size differences are not important (if, for example

we confine ourselves to pair units only, or any units of the same cardinality) the global

criterion may be approximated by the sum of Hamming distances to the SPMs. The reader

should note however that this approximation is only accurate when Pe ' 1
2 and there is a

clear divergence between the two schemes as Pe is reduced.

Several features of this approximation deserve further comment. In the first instance,

the resulting relaxation scheme minimises the total Hamming distance to the set of structure

preserving mappings. This minimisation of a linear function of Hamming distance as a
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Figure 6.1: Performance of linear and exponential forms over a range of graph sizes

measure of total error is precisely the function performed by the Hopfield memory in the

associative recovery of binary patterns. We can anticipate that the linear approximation will

suffer in exactly the same way as the Hopfield memory. In particular we would expect the

criterion to be limited in its capacity to accomodate a large set of SPM’s. As the size of the

model graph increases, the number of SPMs generated from it rises and the matchability

should decrease. Infact, the Hopfield memory can distinguish 0:14N patterns (Gardner,

1986) where N is the number of nodes in the pattern; for the graph matching problem on

planar graphs there are a minimum of N � 1 patterns generated from each graph clique.

6.2.2 Experimental Comparison

Theory suggests that the linear approximation will become increasingly poor as the size

of graphs to be matched increases. In this section we present experiments comparing the

behaviour of the linear scheme with the exponential formulation over a range of graph sizes.

We also compare the performance on graphs at different levels of corruption.

The clearest way of illustrating the effect of increasing the number of mappings explored

is to compare the performance of the linear algorithm over both the full set of SPMs and
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Figure 6.2: Performance of linear and exponential forms under corruption

over a limited number of SPMs. We can limit the number of mappings explored by applying

a threshold to the initial probabilities of node mappings. Consider the case when we are

trying to evaluate the probability of a particular clique, ie P (�) = PP (�jS)P (S). We can

assume that if the initial probability P (f(u�) = vS) is very small (where u� is the centre

node of clique � and vS is the centre node of S), that we may ignore the possibility that S
is the matching clique to �. In this case, we do not evaluate contribution from the mappingS. The number of mappings being evaluated is drastically reduced, a fact which we would

expect to benefit the linear criterion. Figure 6.1 illustrates the effect of applying this cut-off;

the difference to the linear scheme is clear - without the cut-off the linear scheme produces

results commensurate with a random labelling (one node correct). When the cut-off is

applied, this increases to around a 90% correct labelling. The drop-off in the performance

of the cut-off linear criterion for smaller graphs can be attributed to the fashion in which the

cut-off is generated; for small graphs the initial probabilities of individual nodes are larger

and the cut-off removes a smaller proportion of mappings. Finally, the figure shows that

the cut-off has little effect on the full exponential criterion.

Figure 6.2 illustrates the relative performance of the linear and exponential schemes
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with the cut-off applied over a range of corruption levels. The exponential scheme clearly

out-performs the linear scheme over all values of corruption up to 50%. The linear scheme

starts at around 90% of nodes correctly matched with no graph corruption and begins to

drop away immediately. This is in contrast to the exponential approach which results in

much higher levels of performance.

6.3 Squared Error Criteria

Another common approach is to use a mean square error criterion to measure the divergence

between structural units. The main motivation for this approach is related to the well under-

stood properties of mean square error functions, and their foundation in statistical estimation

procedures. In the case where the deviations are Gaussian, minimising the mean square error

correspondingly maximises the log likelyhood, i.e. whenP (�) = Qi(1=�p2�) exp[�e2i =2�2],
minimising the total squared error

Pi e2 maximises P (�). They are not, however, robust

when estimating noisy data (Kittler and Taylor, 1994) because they suffer from one flaw; all

the samples are assumed to be part of the inlier distribution. This is rarely the case in a

realistic problem. Infact, for the quadratic criterion large pattern deviations which are asso-

ciated with outliers produce a larger contribution to the criterion than smaller deviations.

The criterion can therefore be dominated by outlier patterns which have no connection to

the true pattern. In contrast the exponential criterion gives very little weight to large errors.

It is interesting at this point to compare our exponential criterion with that used by

Boyer and Kak (Boyer and Kak, 1988) and Sarkar and Boyer (Sarkar and Boyer, 1993). Their

criterion of match is based on the entropy of inter-primitive distances of objects and relations

in the graph. These inter-primitive distances are founded on measurement information

relating to these primitives. We can write a simplified version of their criterion asFbk = Xi2V1

Xj2V2

log d(pi; pj) (6:5)
If we were to adopt a Gaussian model of attribute deviations, ie d(pi; pj) = exp[(xi �xj)��1(xi�xj)T ] this expression becomes the mean square error criterion discussed earlier:
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Fbk = Xi2V1

Xj2V2

(xi � xj)��1(xi � xj)T (6:6)
A point of contact can be made with the exponential criterion if we were to adopt the

Hamming between primitives as our measure of relational unit similarity, as opposed to

the attribute deviations measured by the Mahalanobis distance. With this modification, we

can see that under the assumption of Gaussian distributions, the Boyer and Kak approach

is equivalent to the quadratic approximation to the exponential Hamming distance scheme.

In other words if we make the substitution H(�; S) ! (xi � xj)��1(xi � xj)T then we can

see that the case of the Gaussian Boyer and Kak functional is equivalent to a quadratic

approximation of the exponential function, except that unit similarity is measured in terms

of attribute measurement deviations rather than the symbolic Hamming distance.

6.3.1 Experimental Comparison

From the analysis in the preceding section we anticipate that the mean square error should

be even less robust to relational noise than the linear approximation, because outlier patterns

are given greater weight than inliers. Here we analyse the performance of all three schemes

(the linear, square and exponential schemes) over a range of levels of corruption.

It is clear from Figure 6.3 that little improvement is gained at all by applying the mean-

square-error criterion; as anticipated it is not at all robust to outliers.

6.4 The Hard Limit

We begin this approximation by eliminating the effect of null-labels; this corresponds to

setting the null-relation probability P� = 1
2 . In this mode we allow comparison between

cliques of different sizes with no penalty. Alternatively the size difference term will disap-

pear if we operate on structural units of the same size. Under these conditions k� = 0, and

the clique probability is given byP (�j) = KCjPj XSi2P exp[�keH(�j ; Si)] (6:7)
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Figure 6.3: Performance of square, linear and exponential schemes under corruption

To gain some computational advantage, we may wish to eliminate the exponentials

appearing in equation 6.7 and thereby simplify the calculation of probability. This can be

achieved by examining the case when the label error probability becomes vanishingly small,

i.e. Pe ! 0. Under these conditions the exponentials approach their delta function limits.P (�j) ' KCjPj XSi2P �[H(�j ; Si)] (6:8)
Each clique now contributes to the global consistency measure in a binary fashion;

completely consistent cliques contribute an amount KCjPj , while everything else contributes

zero. The consistently matched portion of the graph contains those cliques for which a zero

Hamming distance exists in the set of allowed mappings.

The delta-function form of the criterion has significant computational advantages; the

evaluation of equation 6.8 can be implemented by simple table lookup. Once a clique

has reached a zero Hamming distance configuration, there is no further improvement to

be gained by label updating. Such a clique may be removed as a candidate for further

reconfiguration, leaving the set V � � only under consideration. Computational resources

can be focussed on cliques adjacent to nodes in �, allowing consistency to spread as a

95



"brushfire" from the consistent portions of the graph. This technique obviates the need for

an exhaustive iterative search over all labels and sites.

However, despite the computational advantages, it is immediately obvious that the

resulting consistency measure will lead to a deadlocked updating procedure with even

moderate departures from consistency. If the full consistency of individual cliques cannot be

restored by a single label update, the update process will be unable to improve consistency by

deterministic means. The only way to escape these deadlocks is via an expensive stochastic

optimisation scheme.

Shapiro and Haralick (Shapiro and Haralick, 1981) propose a measure of graph simi-

larity which is, in essence, the same as this process. They effectively count the number of

consistently matched relations, whilst allowing the addition of null nodes at no additional

cost. The Shapiro and Haralick scheme minimises the numbers of inconsistent mappings

using a search method. It is equivalent to the hard limit of the discrete relaxation method in

terms of the cost function when cliques are used as relations. Their strategy also encounters

problems of deadlock which they resolve with a forward checking and backtracking search

algorithm rather than stochastic optimisation.

6.4.1 Experimental Comparison

The experimental evaluation presented in Figure 6.4 compares the performance of this

scheme with that of the full exponential scheme. The comparison is made using Delaunay

graphs representing the structure of random dot patterns, with a range of levels of corrup-

tion. It is clear from these results that, as anticipated, the hard approximation performs

poorly at all levels of relational corruption. At moderate levels, the full exponential scheme

significantly out-performs the simpler alternative. However at high levels of corruption

both versions fare equally badly with neither significantly improving the initial labelling.

Under circumstances of moderate levels of corruption the hard limit of delta functions can

therefore be inappropriate. Partially matched cliques have no influence in the consistency

measure, causing poor matches to deadlock the scheme. We can further clarify how the

delta-function scheme operates by studying the case of initialisation errors only with no

graph corruption. Figure 6.5 illustrates this comparison.
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Figure 6.4: Performance of delta-function and exponential forms under corruption

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

al
 C

or
re

ct
 F

ra
ct

io
n 

F
c

Initial Correct Fraction

Exponential
Hard Limit

Figure 6.5: Relative performance of delta-function and exponential forms under initial errors
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From this figure we can draw the conclusion that the delta-function limit operates well

when the level of initialisation errors is low (in this experiment when the level of initialisation

errors is less than 50%) and there are significant numbers of correctly matched relational

units. At higher levels of initial errors, the scheme is unable to recover sufficient consistency

to operate effectively. The full exponential scheme on the other hand is not sensitive to the

level of initial errors.

6.5 Optimisation Schemes

There are a diversity of alternative optimisation schemes available in the literature. A

particular energy function may often have features which require a specialised or complex

update procedure to locate the optimal labelling configuration. In contrast we have chosen

to update our functional by a simple gradient ascent procedure. In this section we compare

and contrast this approach with some alternatives. In particular we wish to determine if

there is a need for, or an advantage to be gained from, a more complicated approach.

6.5.1 Random Non-Deterministic Algorithm

This simple algorithm attempts to make a random label replacement at a random node

within the graph. The replacement is accepted provided it increases the global consistency

criterion. This effectively corresponds to a non-deterministic version of the gradient ascent

method.

The aim of this experiment is to determining how susceptible the matching algorithm is

to finding poor matches because of sub-optimal local maxima in the matching criterion. If

there are a plethora of such maxima, a deterministic update procedure would be expected

to ascend the gradient to one of these points, resulting in an inaccurate match. A random

updating method would fall into a different maxima each time, resulting in varying matching

performance over different runs of the algorithm on the same data.

Table 6.1 describes a set of results investigating a number of runs using both the deter-

ministic and random algorithms on the same data. One set of data has been generated at

each level of graph corruption. The deterministic algorithm is then run on this data to pro-
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Corruption Deterministic Fc Deterministic F Random Fc Random F
0.0 1.0 0.0021 1.0 0.0021

1.0 0.0021

1.0 0.0021

0.1 0.87 0.0293 0.87 0.0293

0.87 0.0293

0.87 0.0293

0.2 0.73 0.056 0.73 0.056

0.73 0.056

0.73 0.056

0.3 0.6 0.00120 0.6 0.00120

0.43 0.00037

0.43 0.00037

0.4 0.2 0.000894 0.17 0.000887

0.17 0.000892

0.17 0.000892

0.5 0.13 0.000804 0.2 0.003040

0.17 0.000805

0.2 0.003040

0.6 0.2 0.00146 0.2 0.00146

0.2 0.00146

0.2 0.00146

0.7 0.125 0.000443 0.175 0.000439

0.2 0.000438

0.175 0.000439

Table 6.1: Comparison of Deterministic and Random Labelling
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vide a benchmark against which the random approach can be compared, both in terms of the

matching fraction achieved Fc, and the value of the criterion F . The non-deterministic ver-

sion is then run three times on the data to see whether a superior maximum of the criterion

is found. These figures are shown in the fourth and fifth columns. From examination of the

results, the random update approach shows superior performance on the graph with 50%

corruption - the deterministic algorithm seems to have become stuck in a local maximum.

On all the other runs the deterministic algorithm achieves the highest or equal highest value

of the criterion.

It is interesting to note that in some cases the matching fraction is greater for the random

algorithm where the criterion value is less than the deterministic algorithm. If the determin-

istic algorithm does find the global maximum of the criterion as suggested by these figures,

then matching errors occur at higher levels of corruption because the optimum point does

not correspond to the correct match; noise in the graph causes the maximum to be misplaced.

Of course this is rather an inefficient way to perform updates; in the experiments here the

random algorithm was run with 3 to 5 times as many updates in total as the deterministic

approach simply because the latter explores the possible label changes more efficiently.

6.5.2 Simulated Annealing

A more justifiable and interesting update procedure is provided by simulated annealing.

This method which produces label updates in a non-deterministic way and allows label

updates which reduce consistency is based on a Boltzmann machine interpretation of the

labelling process. This analogy is developed more fully in section 5.3, where we show that

the appropriate Gibbs potential isU(�) = P�H(�; �)e�kH(�;�)P� e�kH(�;�) (6:9)
Therefore in order to find the optimum labelling, we should anneal the labels in this

potential field.

The annealing algorithm operates as follows. At each node u in G1, a random match

is chosen as a candidate update. The change in the Gibbs potential U(�) is calculated for

all cliques in which u resides; the change in energy �U = (1=jCuj)Pv2Cu [U(�0v) � U(�v)]
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is given by the average energy change over these cliques. The label update is accepted if�U � 0. If �U > 0 the update is accepted with a probability e�k�U . This procedure is

repeated at each node in G1. The whole sequence of node updates is then repeated jV1j
times at a particular value of Pe to allow the labelling to approach an equilibrium state

at a particular ‘temperature’. This whole update sequence constitutes one iteration and

evaluated the same number of possible label changes at the standard deterministic update

algorithm, albeit in a random fashion.

The critical feature of this algorithm is it’s ability to escape from local maxima and locate a

globally optimal result, provided that a suitable temperature annealing schedule is adopted.

According to Geman and Geman (Geman and Geman, 1984) the annealing ’temperature’T (corresponding to the parameter k in our scheme) should be reduced according to a

theoretical schedule T (i) = 1=ke = N�
log(1 + i) (6:10)

where N is the number of sites of the system (N = 30), � is the difference between the

maximum and minimum values of the energy function U (� ' 5:5 for our criterion), and i
is the iteration number. In the case of the graphs under study here, if for example we wish

to reach T = 0:2 which is typical of the experiments presented earlier, then we would neede825 iterations. This schedule turns out to be prohibitive in practice (Geman and Geman,

1984). Rather, we reduce according to the schedule used previously, i.e.Pe = P (0)e e��i (6:11)
The annealing schedule extends over 60 iterations, and � is chosen such that T (60) = 0:2

which corresponds to the same terminal value of ke used in discrete relaxation experiments.

Figure 6.6 shows a comparison of the performance of the simulated annealing of the

potential U with a gradient descent version also optimising U . This is identical to the

simulated annealing algorithm except that updates which increase the value of U are not

allowed. For comparison the exponential discrete method is also included.

These results are encouraging for the new energy function U ; the performance of the

gradient descent optimisation of U are very similar to that of the original discrete scheme.
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Figure 6.6: Relative performance of SA and GA on the Gibbs energy and exponential discrete

relaxation

This supports the theoretical calculation of U as the corresponding energy representation of

the global probability P (f). The success of the gradient descent algorithm also suggests a

lack of local maximum in U .

The simulated annealing approach is marginally worse than the other two algorithms,

suggesting that even after 60 iterations convergence has not been reached. This is not

surprising since in (Geman and Geman, 1984) 300-1000 iterations are suggested. However

for the graph matching problem this number proves to be computationally prohibitive.

The conclusion from these results is that simulated annealing is unnecessary when opti-

mising the energy function U since gradient ascent works satisfactorily, and that optimisingU gives the same results as optimising the global probability P (f).
6.6 Conclusions

A number of significant results come out of the studies in this chapter;� Under a variety of limiting cases the compound exponential criterion can be approx-

imated in terms of either a linear, mean square or delta function, which allows the
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method to be related to other methods developed in the literature.� Experimental studies show that all these approximations under-perform the full com-

pound exponential criterion, but also reveal certain situations in which an approximate

approach can be expected to be effective.� In the second part of the chapter we compare a random update algorithm and sim-

ulated annealing with the gradient ascent optimisation approach. The conclusion of

this study is that gradient ascent optimises the consistency as effectively as either of

the other two methods and does not become stuck in local minima.
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Chapter 7

Probabilistic Relaxation

In the previous two chapters we have concentrated on finding the MAP estimate of the joint

node mapping probability. Essentially the MAP labelling scheme takes a global view of the

match, often referred to as a message centred approach. In this philosophy we considered the

matching of all objects at the same time while using only local measurement information.

This model leads to a matching criterion on which a discrete MAP optimisation scheme

operated.

In this chapter we will focus on another modality of decision making, the object centred

approach. In this we confine ourselves to matching a single object at a time, using the

measurement information available for all objects. Following this model leads us to a prob-

abilistic relaxation scheme which combines evidence for a match from the neighbourhood

to compute continuous matching probabilities. Using a similar modelling philosophy for

matching errors to that previously described in the construction of our consistency criterion,

we show that such a framework allows the calculation of compatibility coefficients which

are devoid of parameters. Finally we examine the comparative effectiveness of the new

probabilistic relaxation scheme and the discrete relaxation approach.

7.1 Introduction

Probabilistic relaxation was originally conceived by Rosenfeld, Hummel and Zucker (Rosen-

feld et al., 1976) as a continuous labelling extension to the work of Waltz on discrete relaxation
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labelling (Waltz, 1975). As such it is concerned with combining evidence from neighbouring

objects, and has traditionally been viewed as a low-level vision process. Since that sem-

inal paper, a plethora of alternatives have evolved. Variants of the original probabilistic

scheme (Lloyd, 1983; Ton and Jain, 1989; Tang and Lee, 1992; Chipman and Ranganath,

1992) have dominated the literature. This growth of alternative formulations was driven by

the fact that in Rosenfeld, Hummel and Zucker’s original scheme there was no theoretical

grounding to the definition of a support function, leaving the path clear for an explosion

of essentially heuristic support formulations. Kittler and Hancock (Kittler and Hancock,

1989) have recently overcome some of the problems of Rosenfeld, Hummel and Zucker’s

original scheme by casting the process in a rigorous Bayesian framework. One important

result of this framework is an exact expression for the support function in terms of label

configuration probabilities. From this basis support functions for specific problems can be

derived in a principled way by defining the appropriate probability distributions. Building

on this work, Kittler, Christmas and Petrou (Kittler et al., 1993) have shown how attributed

relational graphs may be matched by extending the probabilistic framework to incorporate

binary measurements between pairs of nodes.

Another feature of the Kittler-Hancock support function in its original form is the com-

plexity; the evaluation of support involves the calculation of an exponential number of

terms. However Kittler and Hancock (Kittler and Hancock, 1989) present two methods

of simplifying the computational complexity of the support function. The first method

involves the specification of a dictionary of allowed labellings, with configurations only

considered if they reside in the dictionary. The support then need only be evaluated over

this dictionary of labellings, reducing the complexity to the size of the dictionary. The

second method consists of making independence assumptions between the nodes; with

suitable node inter-dependencies the support function may be factorised and simplified.

This approach in effect reduces the size of contextual units to pairs or triplets of nodes.

For reasons of efficiency and robustness, and their intrinsically parallel nature, relaxation

schemes make an attractive choice for relational matching problems. However when consid-

ered in the light of relational matching tasks, the algorithms reported in the literature suffer a

number of deficiencies. The relaxation methodology originated in the labelling of low-level
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image entities such as pixels and, despite advances, the basic method remains orientated

towards early vision. The method is low-level in terms of both concept and modelling ingre-

dients, and as such it lacks suitability and representational power at the intermediate and

high levels. In the past relaxation has been applied mainly to pixel based tasks such as im-

age restoration(Geman and Geman, 1984; Milun and Sher, 1993), and segmentation(Cohen

and Cooper, 1987; Kittler and Hancock, 1989; Hancock et al., 1992). Schemes also have a

tendency to be difficult to control with a number of parameters which must be manually

adjusted and have no obvious meaning in terms of the scene under match. Above all none

model the corruption processes at work in the formation of relational graphs from noisy

and uncertain data.

In this chapter we will apply a similar framework for modelling node corruption used

previously in Chapter 2.15 on a restricted range of graph configurations. This restriction on

node interdependencies will allow us to simplify the problem somewhat by factorising the

support function.

7.2 Decision making in Probabilistic relaxation

The probabilistic relaxation method is derived from an object centred interpretation and as

such attention is confined to finding the optimal label assignment for a single element at a

time using the entire set of measurement information. From the perspective of information

theory, the objective is to maximise the a posteriori probability P (f(u)jX). The appropriate

Bayesian decision rule is thereforef(u) = arg maxw2V2

P (f(u) = wjX) (7:1)
This contrasts with our previous approach; before we were interested mainly in the

joint prior P (f) and the single label aposteriori probability P (f(u)jxu). Information was

provided by the mapping function and from the graph structure, with measurement infor-

mation entering only in a local sense through the single label probabilities. The probabilistic

relaxation approach is concerned instead with combining measurement information in a

more extensive way and as such would seem to be at odds with the discrete interpreta-
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tion. However, it is still graph structure which determines how information propagates

between nodes. This being the case, structural corruption models are still important in the

construction of a probabilistic relaxation scheme. As we shall discover, there are some in-

teresting results to be obtained concerning rôle of graph structure in limiting the feasibility

of matching by this method.

At this stage we assume that only local interactions are significant. Only nodes connected

to each other by a graph arc will interact. This simplifies the conditional probability of

interest to P (f(u)jX) = P (f(u)jxv8v 2 Cu) (7:2)
7.3 The Support Function

The probability of Equation 7.1 provides the starting point from which Kittler and Hancock

(Kittler and Hancock, 1989) have developed an evidence-combining formula reminiscent of

the classic Rosenfeld, Hummel and Zucker (Rosenfeld et al., 1976) probabilistic relaxation

formula. P (n+1)(f(u)) = P (n)(f(u))Q(n)(f(u))Pv P (n)(f(v))Q(n)(f(v)) (7:3)
The development of the relaxation formula is based on the concept of iteratively filtering

measurements to reinforce the consistency of the labelling. The filtered measurements are

not explicitly calculated but they are implicitly specified in conditional probabilities. This

approach leads to a probability update rule (Equation 7.3) with the same structure as that of

Rosenfeld Hummel and Zucker.

The crucial ingredient in this update formula is the support function Q(f(u)) which

combines evidence from the neighbourhood C(1)u of node u for the match u ! f(u). In our

graph formulation this neighbourhood consists of the set of nodes connected to u by an arc.

These nodes interact directly with node u via the graph topology - they share a common

arc. The support function Q is specified in many different ways in the literature, commonly

they are heuristic (Izumi et al., 1992; Ton and Jain, 1989; Tang and Lee, 1992), have internal
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inconsistencies (Chipman and Ranganath, 1992; Ton and Jain, 1989) or are only valid in the

limit of weak contextual information (Kittler et al., 1993; Ton and Jain, 1989; Ziqing Li, 1990).

We advocate the use of the internally consistent support function of Hancock and Kittler

(Kittler and Hancock, 1989). Details of the derivation are beyond the scope of this thesis,

instead we quote the expression produced by Kittler and Hancock:Q(n)(f(u)) = 1P (f(u)) Xf(C�u)2
n Yv2C�u P (n)(f(v))P (f(v)) oP (f(w)8w 2 C(1)u ) (7:4)
where 
 is the possible label configuration space for C�u, i.e. all possible labellings on all

nodes of C�u, and C�u represents clique C(1)u excluding the centre node u. It is on this support

function that we will now focus our attention. We wish to build a model based on the same

principles on which we founded our clique probabilities P (�). From this model we will

derive the compatibility coefficients appropriate to various graph matching tasks.

There are a number of important elements to this expression; the reader should note

that the sum is over the entire configuration space of C�u. The support function is there-

fore of the same order of complexity as the graph matching problem for C(1)u (i.e. the

sum has an exponential number of terms). The support function comprises of the prior

probabilities of matches P (f(u)) reflecting world knowledge of the chance of individual

matches;the probability P (n)(f(u)) reflecting the current state of the match; and the joint

prior P (f(w)8w 2 C(1)u ) which represents the world model of context. It is this last term

which provides the structural information to the scheme and is the key modelling element.

7.4 Factorisation

The support function above (Equation 7.4) has exponential complexity and is not suitable

for use in realistic matching tasks. In order to simplify the expression sufficiently a number

of techniques are available, including the weak context approximation, dictionary-based

techniques or factorisation. We will apply the factorisation ideas of Kittler and Hancock

to avoid having to enumerate the configurations in the dictionary. This approach involves

the factorisation of the joint prior P (f(v)8v 2 C(1)u ) by expanding in terms of conditional

label probabilities. Under certain limiting assumptions these conditional probabilities can

108



u

v
v

v

v

u
v

v

v

2

3

1

1

2

3

4

v
5

a) Tree-like: Pairwise interactions b) Triangular: Triplet interactions

Figure 7.1: Example Graph Types: a tree-like graph and a triangulation

be simplified to obtain a result in terms of interactions of a lower order than the size of

the clique, for example node-pairs or triplets. However the exact factorisation scheme we

should use depends entirely on the interactions between elements in neighbourhood C(1)u
and hence on the structure of the graph itself. In order to select the appropriate scheme we

must first limit the discussion to a specific graph structure. Here we develop the simplest

case, that of a tree-like graph. In this structure there are no direct interactions between

the external nodes of a clique (Figure 7.1a). The reader should note that in terms of the

experimental data this corresponds to the structure of the road network graphs.

If we label the nodes making up the clique C(1)u as fu; v1; v2; : : : ; vNg where N = jC(1)u j,
then by appliying the Bayes rule, the factorisation proceeds as follows:P [f(u); f(v1); : : : ; f(vN)] = P [f(v1)jf(u); f(v2); : : : ; f(vN)]�P [f(v2)jf(u); f(v3); : : : ; f(vN)]� : : :�P [f(u)] (7.5)

where u is the central node. Since the external nodes are independent of each other, the

conditional probabilities simplify thus: P [f(v1)jf(u); f(v2); : : : ; f(vN)] = P [f(v1)jf(u)]. The

final expression for the joint probability isP [f(u); f(v1); : : : ; f(vN)] = P [f(u)] NYn=1

P [f(vn)jf(u)] (7:6)
Substitution of Equation 7.6 into the support function in Equation 7.4 gives
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Q(n)(f(u)) = 1P (f(u)) Xf(C�u)2
n Yv2C�u P (n)(f(v))P (f(v)) oP [f(u)] NYn=1

P [f(vn)jf(u)] (7:7)
Since the sum covers all labellings on C�u, we may factorise the sum and interchange the

sum and product to obtainQ(f(u)) = NYm=1

Xf(vm)2V2

P (f(u)jf(vm))P (f(u)) P (n)(f(u)) (7:8)
In other words the support function is considerable simplified into a product over the

node neighbourhood C(1)u a form more amenable to computation.

7.5 Compatibility Coefficients

In this section we calculate expressions for the various probabilities appearing in Equation

7.8 using the modelling philosophy in Chapter 2. In order to clarify the rôle of the various

terms in Equation 7.8, we begin by re-writing the support function in terms of a compatibility

coefficient R and the unary matching probability P (n):Q(u! v) = NYm=1

Xvm2V2

P (n)(f(vm))R(f(u); f(vm)) (7:9)
The compatibility coefficient R is specified by the mutual information measureR(f(u); f(vm)) = P (f(u); f(vm))P (f(u))P (f(vm)) (7:10)
It is this measure of contextual information which is fundamental to the calculation

of support. In simple terms it represents the ratio of the probability of the two matches

appearing on adjacent nodes to the apriori probability of the matches appearing in isolation.

It is this ratio which provides the vehicle for contextual information to influence the matching

process. The contextual information is based purely on binary relationships between the

pairs of matches f(u) and f(vm) on the edges in the graph. If nodes u and vm are linked by

an arc in G1 then we would correspondingly expect their matches f(u) and f(vm) to also be

linked by an arc in G2, and so the probability of that particular pair of matches is enhanced

with respect to the apriori probabilities. Similarly two neighbouring nodes whose matches
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are not neighbours in G2 are less likely to occur. In order to complete the relaxation scheme

we need to build a quantitative model of the probabilities of these various occurrences.

We begin by noting that graph corruption will disrupt this ideal pattern by introducing

spurious nodes and arcs. In order to accommodate the possibility that objects in the graph are

produced by noise and segmentation error, we must allow for the presence of unmatchable

nodes. We therefore augment the graphs with a null node � to which unmatchable entities

may be assigned. Furthermore we assume that node corruption errors occur with a uniform

and memoryless probability p across the entire graph.

It is important at this point to stress some of the limitations of this model. We have

assumed that the only process at work in corrupting the topology of the graph is that of the

introduction of extraneous nodes. The relations themselves considered to be uncorrupted;

if the nodes in a portion of the graph are undisrupted, the set of edges will be identical.

This is not valid in the case where relations between objects are difficult to extract. We have

also not considered explicitly the case of node dropout, but if the condition of uncorrupted

relations is upheld, the loss of nodes will not affect the matching of the remaining structure.

The edges between the uncorrupted nodes will remain undisrupted.

The corruption may also not be uniform across the scene - factors such as distortion and

noise may cause a particular region to be particularly poorly segmented. The approximation

that we have adopted can be expected to perform poorly on localised patches of increased

corruption.

7.5.1 Scene to Model Matching

In this subsection we will concern ourselves with matching a scene graph to a model graph.

The model graph is assumed to be uncorrupted and therefore we do not need to consider

the effect of any spurious or missing nodes or arcs in it’s structure.

Uncertainty in the graph representation is present in two separate forms. Geometric

distortion causes variation in measurement information such as angle and length. Topolog-

ical information about the connectivity of the relational graph may be left unchanged by

such distortion, but this is largely dependent on the type of relation. As mentioned above

the adopted model does not account for purely relational corruption. For example corner

111



relations will be significantly affected by geometric distortions in the image, whereas the

Delaunay graph is robust to such distortions (Finch et al., 1995; Tuceryan and Chorzempa,

1991). If matching is to be accomplished by structural means it is critical to employ such

robust representations. Poor node segmentation will still corrupt the relational description.

Following our original philosophy of relying on structural information to provide context,

we propose a dichotomy between the two types of information - geometric information is

used exclusively in the initial probability model, and topological information only is used

in the modelling of constraints during the relaxation process. Since the topology of the

graphs is represented purely by the interconnectivity of nodes and arcs, this model is purely

symbolic.

The topology of the graphs are used to provide constraints in the following manner; if

two nodes are linked by an arc in graph G1 then there are two possible situations. If the

graph G1 is uncorrupted in that region the arc will have a matching arc in the model graph.

If, on the other hand, either of the nodes correspond to a segmentation error then the arc

relation between them will have no corresponding match and one or both of the nodes is

unmatchable. These unmatchable nodes must be labelled as null (�). If segmentation errors

occur with a uniform memoryless probability p then a probability mass (1�p)2 is associated

with uncorrupted node pairs, p(1� p) with one corruption and p2 if both nodes correspond

to corruption (and must consequently be labelled by the label � as unmatchable). If neither

node has been labelled as corruption and the corresponding model arc does not exist, the

configuration is inconsistent and is disallowed entirely (Figure 7.2).

We can then expand the node-pair probability over the appropriate set of constraints.

For example if a consistent arc is being considered, the set of edges in G2 is the relevant

set of constraints, i.e. P [f(u); f(v)] = PE2E2
P [(u; v)jE]P (E). The conditional probabilityP [(u; v)jE] is specified by the distribution rule explained above. For the prior P (E)we adopt

a simple uniform distribution assuming no apriori knowledge of the edge: P (E) = 1jE2j .
If u and vm are linked by an arc, the following probabilities apply
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(1-p) p

p(1-p)p
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f(u)

f(v) φ

φ f(u) f(v)
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Figure 7.2: Possible mappings between the nodes forming two edgesP (f(u); f(vm)) = 8>>>>>>>><>>>>>>>>: (1�p)2jE2j if (f(u); f(vm)) 2 E2p(1�p)jV2j if (f(u); f(vm)) 2 (V2 � �) [ (�� V2)p2 if (f(u); f(vm)) 2 (�� �)
0 if (f(u); f(vm)) 2 (V2 � �)� (V2 � �)� E2

(7:11)
The axioms of probability require that

P8m;n P (f(u); f(vm) = wn) = P (f(u)), and the

single label priors required in Eqn. 7.10 are calculated in this fashion to beP (f(u)) = 8<: 1�pjV2j if f(u) 2 V2p if f(u) = � (7:12)
Substituting equations 7.12 and 7.11 into equation 7.10, the compatibility coefficients are

specified byR(f(u); f(vm)) = 8>>>><>>>>: jV2j2jE2j if ff(u); f(vm)g 2 E2

1 if ff(u); f(vm)g 2 (�� V2) [ (V2 � �) [ (�� �)
0 if ff(u); f(vm)g 2 (V2 � �)� (V2 � �)�E2

(7:13)
The probability of node corruption cancels from the compatibility coefficients; the entire

graph-based constraint process is captured by a model which is entirely devoid of free

parameters; it is specified purely in terms of the numbers of arcs and nodes in the model

graph. This is an important result; it allows the matching of corrupt graphs without the need

for knowledge of either the source or level of node corruption. The strength of the constraints

is based purely on the structure of the graphs under match. Infact the compatibility of a
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consistent edge is given by the edge density of the graph. The pattern of compatibilities

also has a pleasing intuitive feel; the power of an edge constraint increases as the number

of edges decreases. If a null label is present and no edge information exists, the information

provided is neutral (the compatibility is unity), and any inconsistent arc is completely

disallowed (compatibility zero).

7.5.2 Scene to Scene Matching

In the case of matching scene graph to scene graph, we must additionally account for

possible corruption of graph G2. In this case V1 is also augmented with a null label, and

compatibility is computed taking into account the possible corruption of any of nodes

involved - uncorrupted items appear with a probability (1� p)4. Furthermore the relevant

constraint class is drawn from both graphs i.e. E1 � E2. Following the methodology in

section 7.5.1,R(f(u); f(vm)) = 8>>>>>>>>>>><>>>>>>>>>>>: jV1�V2j2jE1�E2j if ((u; vm); (f(u); f(vm))) 2 E1 �E2jV1j2jE1j if ((u; vm); (f(u); f(vm))) 2 E1 � �2jV2j2jE2j if ((u; vm); (f(u); f(vm))) 2 �1 � E2

1 if ((u; vm); (f(u); f(vm))) 2 �1 � �2
0 otherwise

(7:14)
where �n = f(Vn � �) [ (� � Vn) [ (� � �)g is the set of label pairs containing a null

label. The compatibility coefficients are now symmetrical with respect to the swapping of

the scene graphs as intuitively they must be. However the normalisation of probabilities

implied in Eqn. 7.3 is not symmetrical since the method was originally conceived as an

object labelling problem. However in the limit of a hard consistent labelling, the symmetry

condition on the probability normalisation also holds.

At first glance it seems curious that by admitting the possibility of node corruption inG2

at any level, the consistent edge compatibility is increased when compared to the original

scene to model compatibilities, to jV1�V2j2jE1�E2j . In the limit of small corruption probability we

would expect the values of compatibility to be identical. However the two cases examined

in Section 7.5.1 of a consistent edge (compatibility jV2j2jE2j ) and null labels (compatibility 1)

should be compared to the constraint sets E1 � E2 and E1 � �2 respectively. It can then be
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seen that the ratio of compatibilities remains unchanged.

7.6 Matching Delaunay Triangulations

Finally we briefly study the matching of triangulated Delaunay graphs using this probabilis-

tic framework. The work reported here is based on the paper by Finch, Wilson and Hancock,

"Matching Deformed Delaunay Triangulations" (Finch et al., 1995) and is of interest here for

two reasons. Firstly, it draws on the same error models discussed above. Secondly, the work

provides a prime example of how the factorisation scheme must be tailored to the specific

type of graph structure in use. Moreover, it emphasises the increased complexity created by

the use of interacting triplets rather than pairs.

While the use of pairwise node interactions is valid for tree-like graphs, application of the

same scheme to Delaunay triangulations not only ignores a wealth of addition constraints

and limits performance, but also involves an inconsistent treatment of node interactions.

In effect we are ignoring the local topology of the Delaunay graph; such a graph consists

entirely of triangular faces and mutual interactions of the external nodes exist. Furthermore,

use of a pairwise scheme can lead to a matched graph which, while it contains consistently

matched edges, contains incorrectly ordered graph neighbours and is not itself triangulated.

In order to overcome these difficulties we must re-examine the assumptions which allowed

us to simplify the original factorisation of the joint probability in equation 7.6.

Reference to section 7.4 shows that previously we assumed a simplification of the condi-

tional probabilities based on independence of the external nodes in the neighbourhood (i.e.

non-centre nodes). Here the external nodes are actually inter-dependent, and this model no

longer applies. Instead the following model is necessary:P (f(v)jf(w); w 2 C(1)u ; w 6= v) = P (f(v)jf(w); w 2 C(1)u ; w 2 C(1)v ; w 6= v) (7:15)
In other words, two external nodes v and w interact with each other provided v is in

the neighbourhood of w. In order to make use of this simplifying assumption we must

re-factorise the joint prior in a different way:
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P (f(u); f(v1); : : : ; f(vN)) = P (f(vN )jf(u); : : : ; f(vN�1))P (f(vN�1)jf(u); : : : ; f(vN�2)) : : :P (f(v1)jf(u))P (f(u)) (7.16)

Using Bayes rule and Equation 7.15 this expression may be rewritten in terms of inter-

acting triplets. See (Finch et al., 1995) for a mathematically detailed treatment. The resulting

expression is P (f(u); f(v1); : : : ; f(vN)) = P (f(v1)jf(u); f(vN))P (f(v2)jf(v1); f(u)) : : :P (f(vN )jf(vN�1); f(u)) (7.17)

and thus the joint probability appearing in the support function can be expressed in terms

conditional probabilities involving triples of node matches on graph triangles. However

this triplet pattern has an inter-dependence which prevents the restructuring of the support

function into a product over the nodes in the neighbourhood of u, and adds considerably to

the complexity of the expression. Expanding the support function over the set of labellings
, we findQ(f(u)) = 1P (f(u)) Xf(v1)2V2

P (i)(f(v1))P (f(v1)) Xf(vn)2V2

P (f(v1)jf(vn); f(u))Xf(v2)2V2

P (i)(f(v2))P (f(v2)) P (f(v2)jf(v1); f(u)) : : :Xf(vk)2V2

P (i)(f(vk))P (f(vk)) P (f(vkjf(vk�1); f(u))Xf(vk+1)2V2

P (i)(f(vk+1))P (f(vk+1)) P (f(vk+1)jf(vk); f(u)) : : :Xf(vn�1)2V2

P (i)(f(vn�1))P (f(vn�1)) P (f(vn�1)jf(vn�2); f(u))P (i)(f(vn))P (f(vn)) P (f(vn)jf(vn�1); f(u)) (7.18)
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Details of how to evaluate this support function in a computationally efficient way are not

our primary concern here; they are discussed more fully in (Finch et al., 1995). The primary

interest here is the development of a suitable compatibility function. The function is still

of exponential complexity but Equation 7.18 may be implemented in a recursive fashion

to reduce the complexity to O(nm3). This implementation corresponds to evaluating the

labelling of graph triangles in a cyclic fashion around the central node.

7.6.1 Triplet Compatibility Coefficients

Again we re-write the support function in terms of a compatibility coefficient R specified

by the mutual information measure thus:R(f(vk); f(vk�1); f(u)) = P (f(vkjf(vk�1); f(u))P (f(vk))= P (f(vk); f(vk�1); f(u))P (f(vk))P (f(vk�1); f(u)) (7.19)

The reader should note the similarities between this expression and the previous edge-

based expression (equation 7.10). This time we are interested in the relative probability of a

graph triangle to that of a radial edge and an isolated node. We now wish to model these

triplet compatibility coefficients following the model described in section 7.5. Following

this methodology, a binomial distribution of node corruption probabilities is adopted. In

the triplet scenario the configurations are as follows;� all nodes from the face in V1 are matched to a valid face in the model graph. This

occurs with probability (1� p)3.� Two nodes from the face match to an edge in V2 and the other node is null-matched.

This occurs with probability p(1� p)2.� Two nodes are null matched and the third matches to any node in V2. This occurs with

probability p2(1� p).� All three nodes are null-matched. In this case the probability is p3.
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All other configurations are forbidden and account for zero probability mass. Again

the probability mass is uniformly distributed over the relevant class of configurations.

Consequently the joint triplet probabilities obey the following distribution ruleP (f(u); f(v); f(w)) = 8>>>>>>>>>>><>>>>>>>>>>>: (1�p)3jF2j if ff(u); f(v); f(w)g 2 F2p(1�p)2jE2j if ff(u); f(v)g 2 E2 and f(w) = �p2(1�p)jV2j if f(u) 2 V2 and f(v) = � and f(w) = �p3 if f(u) = � and f(v) = � and f(w) = �
0 otherwise

(7:20)
where F2 is the set of triangular faces in G2.

The pairwise distribution rule is identical to that specified previously in Equation 7.11.

Again the single-label priors in the denominator of equation 7.19 can be obtained in the ax-

iomatic way by summing the joint probabilities and are identical to the previously explored

case (Equation 7.12). The compatibility coefficients are found by substituting equations 7.11,

7.12 and 7.20 into equation 7.19. They are given by the following rule

R(f(u); f(vk�1); f(vk)) = 8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
jE2jjV2jjF2j if ff(vk); f(vk�1); f(u)g 2 F2jV2j2jE2j if ff(vk�1); f(u)g 2 E2 and f(vk) = �

or if ff(vk�1); vkg 2 E2 and f(u) = �
1 if f(u) 2 V2 and f(vk�1) = f(vk) = �

or if f(vk�1) 2 V2 and f(u) = f(vk) = �
or if f(vk) 2 V2 and f(u) = f(vk�1) = �
or if ff(vk); f(u)g 2 E2 and f(vk�1) = �
or if f(u) = f(vk�1) = f(vk) = �

0 otherwise

(7:21)
Again the constraint process and compatibility coefficients are captured without the

need for parameters. The coefficients are based entirely on the global topological properties

of the graphs. These coefficients and the matching configurations they correspond to are

displayed in Figure 7.3. This pattern of compatibilities has a number of features worthy of

comment. Firstly the compatibility coefficients grade the different face constraints according

to their overall consistency. For example, in a fully triangulated planar graph, a consistently
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Figure 7.3: Allowed face configurations in a triangulated graph

matched face has a larger compatibility value than a consistently matched edge. The pattern

of compatibilities associated with isolated edges is more complicated, but can be viewed as

discouraging violation of the ordering constraint on external nodes of the clique - in a planar

graph only cyclic permutations of the external nodes are valid mappings (Wang and Abe,

1995). This is most clearly evident when the consistent edge is between external nodes (case

3 in Figure 7.3). The compatibility in this case is large, encouraging external edges which

enforce external node ordering. As for the other edge compatibilities, a trailing consistent

radial edge is favoured over a leading one; this pattern discourages the introduction of a

new edge which is potentially mis-ordered with respect to the node vk+1 in the following

triplet in favour of a trailing edge whose ordering has already been evaluated with respect

to node vk�2. It is these ordering constraints which enhance the power of the triplet scheme

over the original edge-based relaxation scheme.

7.7 Relevance of Graph Structure to Constraints

One of the more interesting features of the compatibility models presented above is their

dependence solely on graph structure. We can use this fact to elucidate the relationship
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between graph structure and the power of constraints provided. The compatibility coeffi-

cient gives us a direct measure of the power of the constraints provided to the probabilistic

relaxation algorithm. To explore this relationship, we will consider a number of special

graph structures and evaluate their corresponding compatibilities.

7.7.1 A Fully Connected Graph

In this graph structure all nodes are connected to all others. There are jV j(jV j � 1)=2 edges

in such a graph, and jV j(jV j� 1)(jV j� 2)=3 faces. The compatibilities are therefore given byRE = jV j2jV j(jV j � 1)=2
' 2 (7:22)

for the consistent edges, andRF = jV j2(jV j � 1)=2jV j(jV j � 1)(jV j � 2)=3
' 3

2
(7:23)

for the consistent faces. In this situation R takes on it’s lowest value and constraints are

at their weakest. However even in this regime the compatibilities are always too large to

justify a weak-context approximation which is only valid for R ' 1. Finally it is interesting

to note that the face compatibility is lower than the edge; the triplet model is little use on this

type of graph. However we should be wary about applying the face model to such a graph

since the factorisation and recursive evaluation of the triplet support function is dependent

on the graph being planar.

7.7.2 The Delaunay Graph

The Delaunay graph is a neighbourhood graph derived from the Voronoi tessellation (Ahuja

et al., 1985) of the image plane. Empirically, each node has 5.5 neighbours on average, and the

number of graph edges is therefore 2:75jV j. Since the image plane is fully triangulated, each

edge participates in two faces, with each face requiring three bounded edges. Corresponding

there are 5:5jV j=3 faces in the graph. Substitution in Equation 7.21 givesRE = jV j2
2:75jV j ' 0:36jV j (7:24)

120



for the consistent edges, and RF = 2:75jV j2
5:5jV j=3

' 1:5jV j (7:25)
for the consistent faces. Clearly with this relational model, not only are the compatibilities

much larger than for the fully connected case, but the face model is also the dominant

influence.

7.7.3 The Tree-like Graph

In this graph type, the nodes are connected in a tree structure. This corresponds to the

minimally connected non-disjoint graph. There are jV j � 1 graph edges and no graph

triangles. The face model is not appropriate for this type of graph, and we must turn our

attention to the pairwise model. The edge compatibility is given byRE = jV j2jV j � 1
' jV j (7:26)

It is in this situation that the edge constraints are at their strongest. This graph structure

is exactly that produced by the road network data and therefore the edge-based scheme is

the appropriate model for that data.

7.8 Evaluation of Probabilistic Relaxation

In order to evaluate the effectiveness of this scheme we present a number of experiments with

the same datasets as described in Chapter 3. As before we quantify matching performance

against a hand-generated ideal by specifying the fraction of the correct matches. In addition

we enumerate a new measure of the ability of the algorithm to reject incorrect matches as

noise. This is defined as Fn = incorrect matches=non� null matches
The quantity Fn 2 [0; 1] gauges the amount of noise in the match, 0 being the best perfor-

mance and 1 being the worst.
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Figure 7.4: Examples of the appearance of spurious line-endings

7.8.1 Road Networks

The road network data used in the first study is presented in Appendix A. This data is

ideally suited to our needs in that it closely fulfils the conditions set out in section 7.4;

the road network is tree-like by design in order to join the nodes with the lowest edge

density possible. The graph has the same topological structure as the road network itself

and is essentially tree-like in nature. As discussed earlier, a tree-like graph provides the

most powerful set of constraints for the edge-based algorithm to work with. Furthermore

spurious road connections are rarely detected. However the corruption processes which

affect the graph generate a plethora of spurious line-endings, while non-existent T-junctions

are much more rare. For this reason we distinguish between the two types of junction

when presenting the results. Figure 7.4 shows some of the common ways in which spurious

line-endings appear.

In this experiment we consider two types of matching task. In the first of these we

attempt to match lines extracted from aerial images acquired at different altitudes against

a model in the form of a digital map. In this case we only anticipate feature drop-out and

noise to be present in the lines segmented from the image data. We therefore operate our

scheme in the scene-to-model mode. The second task is more complex and challenging; it

involves the matching of the different altitude aerial images against each other. Since feature

drop-out and noise will be present in both images, we operate the scene to scene method.

The experiments here involve the matching of 198 nodes in the low-level image of

which 109 are T-junctions, 400 nodes in the high-level image of which 256 are T-junctions,

and 158 nodes in the map of which 92 are T-junctions. Figure 7.5 shows the results of a

typically matching experiment; the top set are the correct matches and the lower set are the

incorrect matches. The lines representing correct matches form a conical envelope due to the
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common transformation between the points in the two images, but it should be noted that

our algorithm makes no use of this transformational information. The organisation comes

about purely from the application of topological information to the initial label probabilities.

Table 7.1 summarises the results in terms of two quantities;Fc the fraction of correct matches

(correct matches/maximum available correct matches) and the noise fraction Fn (number

of incorrect matches/number of non-null matches). The experiments are carried out on

a variety of data sets; the full low and high altitude test images and map data and small

sub-sections of these three images.

Figure 7.5: Matching results for road-network graphs using probabilistic relaxation

Table 7.1 shows the effectiveness of the method; T-junctions are matched with a correct

fraction of above 80% and a noise fraction of below 16% for all data-sets except the large

map to the large high image; this particular data-set represents the largest difference in

scale. Because of the scale difference, there exists greater topological detail in the larger

scale image than in the small scale image and a corresponding difference in the topological

relationships which makes the matching a more challenging task.
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Matching R Fc Fn
1. small map small low 5 T-junctions 1.0 0.0

Line endings 0.91 0.0

2. small low whole map 30 T-junctions 1.00 0.06

Line-endings 0.75 0.33

3. small high whole map 30 T-junctions 0.84 0.16

Line-endings 0.61 0.67

4. small low whole high 84 T-junctions 0.84 0.16

Line-endings 0.48 0.75

5. whole low whole map 30 T-junctions 0.81 0.16

Line-endings 0.76 0.68

6. whole map whole high 84 T-junctions 0.61 0.30

Line-endings 0.64 0.64

7. whole low whole high 84 T-junctions 0.88 0.11

Line-endings 0.81 0.56

Table 7.1: Summary of Results from Probabilistic Relaxation
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The results also illustrate the increased difficultly in matching the line-endings with this

method; the results for this class are inferior to the T-junctions and the noise rejection of the

algorithm is very poor.

7.8.2 Synthetic Delaunay Graphs

Finally we present the results of matching synthetically generated Delaunay graphs as de-

scribed in Appendix A, using the triplet compatibility model described earlier in the chapter.

Figure 7.6 summaries these results in comparison to the discrete relaxation approach. Clearly

the probabilistic relaxation method is inferior in performance, however it does perform well

over a wide range of corruption levels despite the lack of controlling parameters. There

are two main reasons for the reduced performance as compared with our original discrete

relaxation scheme; firstly although the triplet compatibilities do encourage the ordering

constraint on the clique mappings, ordering can still be violated by the introduction of null

matches. The discrete approach uses a dictionary of SPMs which encode only the legitimate

mappings, so in this sense the constraints are stronger. The other factor to consider is the

natural way in which the probabilistic scheme assigns corruption to a null category - the

discrete scheme makes no attempt to identify noise and therefore has an easier task. The

issue of identifying match noise is dealt with in Chapter 4. Both schemes converge to the

same level of performance at around 60% corruption. It is also interesting to note that a fully

correct match is not produced even for identical graphs - this demonstrates an inability of

the scheme to recover from a poor initial labelling.

7.9 Conclusions

In this chapter we have developed a model which, in addition to the Kittler and Hancock

(Kittler and Hancock, 1989) theory of probabilistic relaxation, allows us to match relational

graphs based on their topology. The model so produced has proved to be entirely free

from parameters and experiments have shown that this parameter free model is able to

match graphs with a wide range of corruption levels without the need for any adjustments.

However the scheme must be tailored to the type of graph structures expected to be present;
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Figure 7.6: Results for synthetic graphs using probabilistic relaxation

for example a different scheme must be used when matching Voronoi triangulations and tree-

like graphs. The compatibilities derived from graph topology give information concerning

the power of constraints operating in the graph and the feasibility of matching different

graph structures using probabilistic relaxation techniques.

The scheme is fast and converged quickly, generally in less than 10 iterations, and works

well on tree-like graphs. However the triplet approach is shown to be inferior to the discrete

relaxation approach on synthetic Delaunay graphs.
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Chapter 8

Hierarchical Matching

8.1 Introduction

The natural world from which real vision problems are derived contains complicated struc-

tures which are difficult to model using just one type of symbolic representation or one

level of abstraction. Objects more usually consist of a natural hierarchical structure in which

simple scene elements such as regions of colour or texture and edges are built up into more

complex entities such as surfaces, shapes and objects. In order to represent and model

the hierarchical properties of real objects we need to develop methods of describing and

matching hierarchical graphs.

One key element of such a method is the choice of scene primitives and groupings

(Dickenson et al., 1992). This choice has implications for the modelling and matching

phases of any method. The use of large and complex scene primitives means that object

models can be represented by few features and the complexity of matching two such models

is kept low. However the reliable recovery of complicated scene primitives is very difficult.

The use of them results in a greater fraction of feature dropout and misclassification. The

matching phase is then hindered by graph noise. On the other hand, simple scene primitives

are easy to extract but result in a greater burden on the matching phase. For a comprehensive

review of different models of object matching, see (Besl and Jain, 1985; Chin and Dyer, 1986)

Typically a hierarchical matching of scene graphs proceeds using conventional graph

matching techniques such as search (Dickinson et al., 1992; Sengupta and Boyer, 1995) or
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optimisation (Lau et al., 1993), with the matching results from one level being used to reduce

the search space at the next level.

8.2 A Hierarchical Criterion

We begin by establishing a simple formalism to describe hierarchically structured graphs.

The hierarchical structure which we describe here is based on a uniformity of object-type

within a level. That is to say that all objects at one level of the hierarchy have an identical

relationship to the level above, the level below and to each other. For example, corners and

parallel lines could form one level of the hierarchy together, since both consist of lines at

the level below, form parts of faces at the level above and may be adjacent by the sharing of

scene lines. One final limitation on the hierarchy is that all objects at one level are entirely

constructed from units in the level below. In other words scene detail is subsumed at the

higher levels, and no new features are introduced. Figure 8.1 demonstrates an example of

just such an organisation.

The hierarchy then consists of a number of levels, each containing objects which are fully

described by children at the level below. Formally the levels are described byG = (V l; El; 8l 2 L)
with L being the set of levels in the hierarchy and t and b used to denote the top and bottom

levels of the hierarchy respectively. V l is the set of nodes at level l and El is the set of

intra-level edges at level l. The nodes at level l are also characterised by a set of unary

measurements denoted Xl. The children or descendents which form the representation of

an element j at a lower level are denoted by Dj . In other words, if ul�1 is in Dj then there is

a link in the hierarchy between element j at level l and element u at level l � 1. According

to our assumptions, the elements of Dj are drawn exclusively from V l�1.

The match between scene graph G1 and model graph G2 is represented by a mapping

function f l; 8l 2 L: f l : V l
1 ! V l

2

In general the upper levels of the hierarchy are more sparsely populated with entities,

due to the amalgamation of scene structure into representational models. The upper levels
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Figure 8.1: Example hierarchical graph
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are more closely related to world structure while the lower levels represent image structure.

It is for this reason that it is difficult to match the world-orientated upper levels using image

information. Such a representational hierarchy is therefore necessary in order to propagate

image information through increasingly more abstract representations.

The development of a hierarchical criterion proceeds along a similar line to the discrete

criterion (Chapter 2); the quantity of interest is the MAP estimate for the mapping functionf , i.e. P (f l; 8l 2 LjXl; 8l 2 L)
Again we are able to factorise the measurement information over the set of nodes by ap-

plication of Bayes rule under the assumption of measurement independence on the nodes.

The critical modelling ingredient is the joint prior of the mapping function;P (f l; 8l 2 L) (8:1)
which represents the influence of structural information on the matching process.

The information provided to us from the scene is generally in terms of image primitives

such as line segments or regions. This information is only directly relevant to the lowest level

of the hierarchy in which the representation is closest to the image. Our task is therefore to

propagate this information upwards through the hierarchy. To commence the formulation

of a hierarchical matching scheme, we assume levels are conditionally dependent only on

the levels directly above and below. This assumption allows the factorisation of the joint

probability in a manner analogous to a Markov chain of probabilities. Since we wish to draw

information from the bottom upwards, the chain of factorisation begins from the highest

level of labelling. The expression for the joint probability of the hierarchical labelling isP (f l; 8l 2 L) = P (f b) Yl2L;l6=tP (f l+1jf l) (8:2)
We can now focus our attention on the conditional probabilities P (f ljf l�1). These

factors express the probability of a labelling at the current level given a previously defined

labelling at a lower level. We can use the concept of decomposing the graph into clique

units to evaluate this probability in a similar fashion to that in Chapter 2. However in the
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Figure 8.2: Example constrained children mappings

hierarchical case the matching of child nodes is also important in gauging the quality of

match.

It is important to note that we still need to explore only those mappings which are

topologically identical to the clique j and therefore the possible mappings of the child nodes

are heavily constrained by the mappings of the parents (Figure 8.2)

We proceed as before with the best estimate of the conditional probability being the mean

value of the clique probabilities. Therefore we writeP (f ljf l�1) = 1jV lj Xj2V l P (�lj jf l�1) (8:3)
In order to gauge this probability, we require a dictionary of corresponding graph sub-

units from G2. These are formed in exactly the same way as the mappings were generated

in Chapter 2.15; the SPMs are generated from intra-level relationships only in exactly the

same fashion as with the single level criterion. We denote the set of SPMs by P and hence

the conditional clique probability is given byP (�lj jf l�1) = XS2P P (�lj ; Sjf l�1)= XS2P P (�lj jS; f l�1)P (Sjf l�1) (8.4)

We can now see that there are two distinct elements to our model. The first element is

the comparison between our mapped realisation of the clique from graph G1, �lj , with the

selected unit from graph 2 and the mapping from level l�1. Here we take the view that once
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we have hypothesised a particular mapping from P , the mapping f l�1 provides us with no

further information. The matched clique �lj is conditionally independent given a mapping

from the set of SPMs and we may write the first term as P (�lj jS). The second term is the

significant one in evaluating the impact of the labelling at the previous level - the possible

mappings are weighted according to their probability given the mapping at the level below.

The final expression for clique probability isP (�lj jf l�1) = XS2P P (�lj jS)P (Sjf l�1) (8:5)
All that remains now is to evaluate these two probabilities according to the node labels

they contain. We represent the matched realisation of the clique in terms of node matches by�lj = f0; 1; : : :g. In this case the first term is identical to the original expression in Chapter

2 and is given by P (�lj jS) = Yi2�lj P (ijsi) (8:6)
where P (ijsi) = 8>>><>>>:Ps if i = d or si = d(1� Pe)(1� Ps) if i = siPe(1� Ps) otherwise

(8:7)
The second term is more subtle; it represents the conditional probability of the SPMS given a previously determined label at the level below. However the mapping contains

labels only from the current level l, not labels from level l�1. We can reconcile this difference

by noting that selection of a particular mapping at level l limits the number of consistent

mappings allowed topologically at the level below. In other words if one node is mapped to

another at level l, the consistent interpretation is that the children of the nodes must match

to each other. By applying this constraint the labelling at l�1 and a set of allowed mappings

of the child nodes can be used to gauge the probability of a particular SPM occuring. These

legitimate mappings are referred to as Hierarchy Preserving Mappings or HPMs. We will

denote the set of HPMs derived from an SPM S as QS and a member of this set as q. Using

this model the conditional probability P (Sjf l�1) is given by
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P (Sjf l�1) = Xq2QP (S; qjf l�1)= Xq2QP (Sjq; f l�1)P (qjf l�1) (8.8)

(8.9)

We can now assume that S is conditionally independent of f l�1 given q, and arrive at

the expression P (Sjf l�1) = Xq2QP (Sjq)P (qjf l�1) (8:10)
Traditionally, dictionary based hierarchical schemes have operated by using a previous

labelling at another level to reduce the dictionary set by elimination of items which are

inconsistent with the previous labelling. This approach can easily be incorporated into

our scheme by setting P (qjf l�1) equal to 1 for consistent items and 0 for those which are

inconsistent. However we propose a different approach; by adopting the same kind of label

distribution used in Equation 8.7 we can grade the SPMs according to their consistency withf l�1. The model is specified byP (qjf l�1) = Yqi2qP (qijf l�1(vi)) (8:11)
where P (qijf l�1) = 8>>><>>>:Ps if dummy node match(1� P l�1e )(1� Ps) if qi = f l�1(vi)P l�1e (1� Ps) otherwise

(8:12)
The value P l�1e must be set to reflect the prevailing level of label-errors at level l� 1. For

the conditional probability of the SPM given the HPM q, we adopt a simple uniform model

under the assumption that all legitimate mappings are the same, i.e. P (Sjq) = P (S) = 1jPj
8.2.1 Reversibility

The expressions above have been developed under the assumption that we are ascending

the hierarchy from the lowest level of scene primitives up to complete objects. Of course

the choice of the lowest level as representing primitives is purely arbitrary; the consistency
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criterion can also be evaluated from the top level downwards. The only change to the scheme

is in the HPMs which depend on inter-level relationships. By calculating the appropriate

HPMs we can traverse the hierarchy in either direction.

8.3 An Example Hierarchy

The hierarchy which we propose here is a grouping hierarchy; objects at a lower level are

progressively grouped into more complex entities. There is a separation between image

primitives such as line segments and regions, and more representational objects such as

quadrilateral faces.

Of course the relative complexity of the various levels of grouping are of fundamental

importance to the hierarchical approach both in terms of it’s ability to identify meaningful

structure and in terms of it’s computational tractability. Simple scene objects result in a

large and complex structural model because so little of the scene structure is subsumed

into tokens, and correspondingly the optimisation phase of the matching has an increased

burden. On the other hand, it is more difficult to reliably recover more complicated scene

primitives, resulting in increasing graph noise at the more powerful representational levels

(Dickenson et al., 1992).

In contrast to Dickenson et al (Dickinson et al., 1992) who use a search technique to

match their hierarchical structures, we have an optimisation technique which can match

large structural graphs relatively quickly. It is appropriate then to adopt relatively simple

primitives and rely more heavily on the optimisation phase.

At the lowest level we adopt straight edge segments as our primitives. The natural

grouping of such segments is in terms of corners and parallel lines, and these perceptual

units form the second level. These groupings can be used to identify parallelograms in

the scene which, under the assumption of weak perspective, represent possible rectangular

object faces. These parallelograms form the top level of the hierarchy.

As an example of such a hierarchy, Figure 8.3 illustrates the hierarchical representation

of one aspect of a cube in an image.

Even for a simple object such as the aspect of a cube, the hierarchical graph produced
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Figure 8.3: Hierarchical graph of a cube

is quite complex. Here we are only interested in the methodological aspects of hierarchical

matching and consequently we will adopt a simpler two level hierarchy based on corner

relations.

8.4 Discrete Relaxation With Hierarchical Corner Graphs

In this section we develop a hierarchical matching scheme based on line-segments and

corner objects. The method of extracting these elements from the scene is explained in detail

in Appendix A; here we will discuss it briefly. The lines represent either edges or lines in

the image and are extracted with an edge detector (Kittler and Hancock, 1989). This edge

image is then grouped into meaningful perceptual groupings using the software of Etamadi

(Etemadi et al., 1991) which produces the straight-line and corner groupings of interest here.

The final element to the graph representation is a set of intra-level relationships. These

relations play a parallel rôle to the edges in the non-hierarchical relaxation scheme. Again

we adopt the Voronoi tessellation and associated Delaunay graph to generate the intra-level
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graph edges.

8.4.1 Mappings

The structure-preserving mappings (SPMs) represent intra-level structural information and

the SPMs are generated in exactly the same fashion as described in Chapter 2. The hierarchy-

preserving mappings are generated in this specific corner/line representation by exploring

the possible mapping of child lines given the corner match above. Since each corner consists

of two line-segments, there are two HPMs for each corner participating in the SPM at the

level above and hence 2jSjHPMs altogether.

As described earlier we can explore the hierarchy in either direction. When descending

the hierarchy corner mappings become the children of lines. In this case the HPMs are

determined as follows: A clique of the lines consists of a central line and the external lines

which are direct Voronoi neighbours of the centre. Consider the central line and one of the

external lines; if they do not mutually participate in a corner relation there is no hierarchical

constraint and the hierarchical portion of probability is ignored. If on the other hand they

do participate in a corner, this unit can provide a hierarchical constraint. In this case there is

just one HPM; the corner must map to the corresponding corner of the mapping of the two

lines (see Figure 8.4).

Armed with these SPMs and HPMs we can evaluate the hierarchical criterion in Equation

8.3. The strategy we use is to first match the lines with a non-hierarchical criterion to

obtain an initial labelling. Then we match the corner level with the hierarchical criterion

incorporating information from the initial line labelling. Finally the lines are re-matched

with the hierarchical criterion for descending the hierarchical graph.

8.5 Experimental Results and Discussion

The discussion of the performance of the hierarchical scheme begins with a small test case

to demonstrate how the hierarchical criterion can reduce ambiguity between similar graphs

by introducing information from an additional level of representation. Figure 8.5 shows a

graph which is symmetrical at the top level of representation and consequently ambiguous
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Figure 8.5: Test case: Ambiguous graphs

at that level. However at the next level there are definite differences between the children.

The graphs under consideration are ambiguous at the parent level because there is a

symmetry which does not permit distinction between the mappings (1; 2; 3) ! (A;B;C)
and (1; 2; 3) ! (C;B;A). Table 8.1 shows how the HPMs introduce information from the

child level which distinguishes between the two possibilities.

However this simple case does not address some important properties of real hierarchical

graphs; segmentation of real images into a hierarchical structure is difficult and prone to

error. For this reason the method has also been tested on some real data; the data under

study here is based on the SAR data discussed in Appendix A and consists of linear field

boundaries at the lowest level and corners and the top level. Firstly a matching set of lines

from the data and model has been extracted, so that all lines in the data have a matching

line in the model. Corruption has then been added by deleting a certain number of lines in

the data and adding the same number of lines at random positions and orientations. Figure

137



Corrupted Data Original Data

Model Lines

Figure 8.6: Example hierarchical datasets

8.6 contains an example of such a process.

Table 8.2 provides a summary of the comparison between the performance of the original

discrete relaxation method on the lowest graph level of the lines, and the hierarchical

approach using lines and corners. The result show that there is no improvement in the

labelling with application of the hierarchical criterion, and in some cases the labelling

becomes less accurate. This result can be attributed to the unreliability of the extracted

perceptual relations; these relationships are unstable and corrupted to the extent that they

provide dis-information to the matching at the next level.

8.6 Conclusions

In this chapter a hierarchical criterion has been developed which makes use of the concept

of hierarchy preserving mapping between two hierarchical graphs. Development of this

idea leads to a consistency criterion in which the probability of a particular mapping at

one level is gauged by the topologically allowed mappings of the children of that mapping.
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Examination of a test case has shown that this method can disambiguate graphs which are

ambiguous at one level of abstraction. Results on image data with lines and corners as graph

nodes expose a weakness in the hierarchical approach; the method needs reliable relational

information to improve over the single level approach.
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(1; 2; 3)! (A;B;C) HPMs Value (1; 2; 3)! (C;B;A) HPMs Value

5 ! D c 5 ! dummy b

4 ! E c dummy ! D b

4 ! dummy bdummy ! E b

Total c2 Total 2b2

Table 8.1: Mappings between the test graphs using a hierarchical criterion

Level of Corruption Single-level relaxation Fc Hierarchical relaxation Fc
0.15 0.5 0.45

0.2 0.67 0.56

0.27 0.47 0.47

0.34 0.42 0.42

Table 8.2: Comparison of normal and hierarchical relaxation
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Chapter 9

Summary and Concluding Remarks

9.1 Summary of Contribution

In this thesis a method has been developed to match relational graphs using symbolic graph

information derived from the topology of the graphs under study. The graph structures are

decomposed into sub-units and it is the set of topologically valid mappings between these

sub-units which provide constraint information to the matching process.

By defining a probability model in which label errors and unmatched graph nodes

may appear, using a similar approach to that of Hancock and Kittler (Hancock and Kittler,

1990a), a measure of similarity between graph units is defined which takes account of some

of the processes which lead to mismatches between units. This model softens the relational

constraints in the sense that it tolerates a certain level of node mis-matches and missing

nodes. The degree of toleration is controlled by two parameters, the probability of label

error and the probability of relational corruption. As opposed to the MAP estimation scheme

of Geman and Geman (Geman and Geman, 1984) these parameters have a meaning in terms

of the quality of the current match and the corruption level present in the graph structures.

In contrast the attribute-based techniques of Kittler et al (Kittler et al., 1993) and Boyer

and Kak (Boyer and Kak, 1988), this measure of consistency is a purely symbolic one, and

in contrast to (Shapiro and Haralick, 1981) it provides a fine measure of symbolic match

consistency.

This criterion is then coupled with a MAP discrete relaxation updating scheme which
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makes use of a set of unary measurements on graph nodes. These unary measurements are

used both to generate an initial matching state, and in the MAP update procedure.

With experimental studies on both aerial image data and synthetically generated random

dot patterns, it is shown that the proposed scheme is extremely tolerant to poor initial match-

ing conditions when the graphs are uncorrupted. For example, if the unary probabilities

are sufficiently accurate to locate 10% of the correct matches initially, the relaxation scheme

is able to increase this to a full 100% of matches correctly located. When the initial labelling

is 5% correct, 95% of matches are located and when the initial labelling is just 2% correct,

85% of correct matches are still found. The algorithm is also extremely tolerant to occlusion

of portions of the data graph, finding the fully correct match with up to 85% occlusion.

Above this level however the matching is completely inoperable. The method also shows a

robustness to moderate levels of corruption; with up to 20% of the nodes corrupt, 90% of the

correct match is recovered. The performance degrades steadily until at 60%-70% corruption

there is little advantage to the application of the relaxation scheme. Examination of the

performance of a configuration-only scheme without persistent measurement information

showed that such an approach is ineffective because noise from incorrect patterns interferes

with the matching process.

Three methods of controlling spurious graph elements have also been studied. The first

method was a constraint filtering approach applied as a post-processing step after the match

has been located. This method has many similarities with maximal clique methods (Barrow

and Burstall, 1976). The second method is an optimisation approach in which spurious graph

nodes are labelled as such during the matching phase. Finally a new method is developed

in which suspected noise elements are removed from the graph and the graph is actively

reconfigured during a process which attempts to find the optimal partition between spurious

nodes and valid structure. An experimental study using simulated Delaunay graphs clearly

shows that the graph reconfiguration approach provides the best performance. Explicit null

labelling in the optimisation phase proves to be the worst method, with constraint filtering

giving the intermediate performance.

In Chapter 5 a pattern-space model was proposed for the Delaunay graph which allows

the prediction of the average value of the matching criterion at a particular level of label-
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error probability. Comparison with the values returned from actual runs of the algorithm

demonstrated that the theoretical prediction is accurate for small values of the label error

probability. A method is also proposed for using this prediction to calculate the true level

of label errors at any particular stage of the matching process.

In the second part of Chapter 5, the analogy between labelling problems and statistical

physics methods was exploited to develop a suitable potential for performing simulated

annealing on the labelling. The entropy of the labelling was also derived.

Chapter 6 concerned itself with relating the consistency criterion developed in this thesis

to some alternative methods. It was shown how the linear approximation to the criterion

performs a similar operation to that of the Hopfield (Hopfield, 1984) network under certain

limiting assumptions. This linear approximation was also related to a special case of the

criterion of Boyer and Kak (Boyer and Kak, 1988); the condition being that Gaussian attribute

deviations are used. The Boyer-Kak cost function is in this situation similar to the linear

approximation of our criterion if differences in structural units are measured by the squared

distance between attributes rather than Hamming distance. In a third approximate criterion

the exponentials appearing in the criterion were approximated by delta functions. This

approximation was shown to be equivalent to the method of Shapiro and Haralick (Shapiro

and Haralick, 1981) when cliques are used as relations. A comprehensive experimental

comparison of all these methods demonstrated that the exponential criterion out-performs

the alternatives and exposes particular areas of weakness in the approximate approaches.

Finally in Chapter 6 a non-deterministic update method and simulated annealing were

compared to the standard gradient ascent approach to optimising the matching criterion. An

experimental comparison of the methods showed that there was no advantage to be gained

from a more complicated optimisation method in terms of the matching performance.

Using a similar topological corruption model to that applied to the development of

the discrete criterion, a scheme for the specification of compatibility coefficients has been

developed within the probabilistic relaxation framework of Kittler and Hancock (Kittler

and Hancock, 1989) . The compatibility coefficients in question were structurally based and

entirely free from parameters, and thus were applicable under a wide range of conditions.

The scheme must however be tailored to the type of neighbourhood relations present in
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the graph; for example tree-like graphs used compatibilities based on node-pairs, whereas

a fully triangulated planar graph such as the Delaunay graph used node-triplets. The

compatibilities were also shown to provide information concerning the power of constraints

operating within different graph structures. Again a set of experiments on real and synthetic

datasets showed that the schemes could effectively match relational graphs, although the

results were inferior to the discrete relaxation scheme.

Finally in Chapter 8 a discrete hierarchical criterion was developed using the same

structural models and topology-preserving mappings which were applied to the single

level case. The resulting criterion evaluated potential mappings with respect to a set of

structure-preserving mappings at a single level. In turn the probabilities of these SPMs are

evaluated in terms of the possible mappings of children and a previously know match at

the level of the children. However the results on hierarchical image graphs were inferior to

that produced by the single-level relaxation scheme.

9.2 Further Work

The control of the label-error probability is an issue which is potentially important to the

performance of the discrete matching algorithm. This quantity effectively controls the level

of smoothing applied to the criterion; if a dataset is under-smoothed the potential exists

for the update algorithm to become trapped in local minima of the criterion. On the other

hand if the function is over-smoothed, convergence to the solution becomes too slow and

the update process is unnecessarily time consuming. Although in Chapter 5 a method for

calculating the prevailing level of error-probability was presented, there are two problems

with this approach. Firstly there is inevitable uncertainty and variation in the data to which

the method is very susceptible, and therefore the resulting error-probability is unreliable.

Secondly it is not clear that prevailing level of error-probability is the optimal value to use

for Pe in the subsequent iteration; experimental studies suggest that this value is not optimal

in terms of creating a quickly converging algorithm. It is thought that it may be possible to

use a pattern space model to predict the expected depth of any local minima of the criterion

and to set the label-error probability Pe accordingly.
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A second unresolved issue is the poor performance of the hierarchical criterion on real

hierarchical datasets. The lack of improvement with application of the hierarchical method

is thought to be caused by a lack of reliable relationships in the hierarchical data. If this

is the case, further work is required to provide methods for extracting reliable hierarchical

relationships between elements of the scene. On the other hand, the hierarchical criterion

requires careful control of the relative power of constraints from the current level and a

previously labelled level. It may be this factor which is the cause of labelling problems; at

this moment the issue is still unresolved.

It is also thought that the method of optimisation used during the active graph recon-

figuration process (Chapter 4) has not been addressed; while we have shown that in terms

of matching alone the gradient ascent method is sufficient to locate the best match, it is not

clear that the method is suitable when modification of the graph structure takes place. Infact

the graph modification process is rather coarse in terms of it’s effect on graph structure -

a node is either wholly removed or wholly present and there is no provision for softening

the process in the same manner as the label-error process softens incorrect labellings. In

this case a stochastic optimisation process may be more suitable, and recently considerable

success has been achieved using a genetic search procedure (Cross et al., 1995). It may also

be beneficial to soften graph edges and allow them to exist with a probability between 0 and

1.
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Appendix A

Data Extraction and Graph Formation

A.1 Data Preparation

In order to study relational matching tasks we require data sets which are abstracted in

terms of graphs. This section describes the extraction of data sets which are to be used in

the experimental evaluation of the relaxation schemes. Two experimental data sets have

been chosen for analysis. These two data sources are gathered using different sensors

and therefore offer different challenges both in the set of features to be matched and in

the different types of relational graph abstractions used to represent them. The infra-red

example presented in section A.1.1 is relatively straightforward because the features are

easily detected and the relationships between them clear and easily abstracted into a graph

representation. In the SAR example (section A.1.2) noise and clutter are important factors

and the extraction of relationships is difficult and uncertain.

A.1.1 Infra-Red Images

Figure A.1 shows a pair of infra-red(IR) line scan images. These images have a number of

important features. The most salient feature of the images is the ability of the detector to

pick up areas of tarmac, particularly roads. For this reason we have chosen the road network

as the basic feature in these images. The images are distorted, they have a large degree of

cylindrical distortion in the x-direction. The y-direction is controlled by the motion of the

aircraft containing the scanner - the y-scale is dependent on the speed of that motion and
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Figure A.1: Infra-red images

Figure A.2: Low and high altitude lines

distortion occurs if the aircraft changes direction.

Roads appear in the image as high-intensity line features, and are segmented using a

line-finder. The line extractor, due to Kittler and Hancock (Kittler and Hancock, 1989),

applies orientational line filters at four different directions in the image to enhance intensity

ridges. The connectivity of the lines thus produced is enhanced by relaxation labelling using

a dictionary of allowable line structures. Details of this approach are given in Ref. (Wilson

and Hancock, 1993a). The output from the line detector is shown in Figure A.2.

The web of line contours is cleanly segmented from the background; there is little noise or

image clutter and the contours are strongly connected. Because the line-detector dictionary

explicitly encodes contour junction structure, these features are also detected with little

dropout.
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Figure A.3: Raw SAR Image

At the next stage a graph representation of the road network is required for relational

matching to proceed. For this task I adopt an approach similar to that in (Ayache and

Lustman, 1987) and (Herault et al., 1990), using the T-junctions and line-endings which

delineate linear segments as feature points. These features are easily identified using the

junction representation present in the line-finder. Arcs representing relationships in the

graph are therefore road connections between the junctions. Measurement information

is generated from the scene thus; each node is encoded with information about the line

segments forming the junction which the node represents. Each line is characterised by the

length of the arc between junctions and also the angle at which the line leaves the junction.

A.1.2 SAR Images

SAR(Synthetic Aperture Radar) images, in contrast to the IR data, have very little distortion

of the image plane, rather they exhibit a sever noise and anisotropies associated with the

directionality of the radar. The radar is sensitive changes in height at ground level - it detects

elevated features such as houses, woodland and hedges. An example SAR image is shown

in Figure A.3. Inspection of Figure A.3 also reveals a degree of shadowing.
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Figure A.4: Results of line detection and grouping

The most evident features in these rural scenes are the linear hedge structures along

field boundaries. Again we apply the relaxational line-detector to extract these features, but

with a number of refinements. The relaxational operator draws on an accurate noise model

for the SAR data, due to Evans and Hancock (Evans et al., 1994). The noise distribution is

specified with a Bessel function rather than the Gaussian which is used to model noise in

more conventional image domains.

The extracted line contours are considerably more noisy and fragmented than in the

previous IR data set. The gaps are caused by breaks in the image intensity profiles, and mirror

the fragmentary nature of real hedges, which also have gaps and breaks. For our purposes

we require a well connected line segment as the representation of a single continuous hedge.

To this end the contour grouping of Shashua and Ullman (Shashua and Ullman, 1988) is

applied to the ridge contours. The results are shown in Figure A.4.

After this processing, meaningful linear segments may be derived from the line contours.

These are shown in Figure A.5.

The objective is again to form a relational graph representation of the scene, however in

contrast to the IR data junctions are not well detected and lines are fragmented - the original

junction/road representation will not suffice for this type of image.

Two elements are required for the formation of a relation graph. Firstly we must abstract

the scene in terms of a set of ‘objects’ which make up the image. In Figure A.5 the image

is composed of line segments - we therefore adopt these as the objects which are the nodes

of the graph. The second element is a set of relationships between the objects. Ideally

these relationships should as robust as possible to segmentation errors, since the matching
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Figure A.5: Line segments

process is relation-based (Ranganath and Chipman, 1992). Geometric properties which are

invariant to rotation and scale are often used (Chipman and Ranganath, 1992; Tang and

Lee, 1992; Horaud and Skordas, 1989) since they have the desired robust properties over a

range of image transformation. We however propose to use purely topological relations;

two particular variants, Voronoi neighbours (Tuceryan and Chorzempa, 1991) and corner

relations are used in this study. Topological relations have the desired invariant properties

with the added advantage that their specification is purely symbolic. The choice of exactly

which relation set is best is an open topic of research; I discuss the value of different relational

graph structures in the thesis, within the context of relational matching tasks.

Geometric information is again encoded in the graph. In this case line lengths are

considered inaccurate because of line fragmentation and are not used. Angle information

is more reliable that in the IR images because of the lower level of image distortion. The

measurements therefore consist of line-angles only.

A.1.3 Map data

Ordinance Survey maps of the areas detailed in the above images are also available. These

are shown in Figure A.6.

These provide ‘ground truth’ information to which the image data can be matched. In

the case of the road network the OS map provides an accurate representation of the true

road network and can therefore be considered as an uncorrupted representation of the

corrupted and uncertain information in the images. For the SAR data we are interested
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Figure A.6: Map data

in hedges - these do not appear as a separate cartographic feature in the map and so some

clutter appears in the map(Figure A.6). Furthermore hedges are subject to seasonal variation

and disappearance and so the map is an intrinsically inaccurate scene representation. The

possibility exists of corruption in both the image and map graphs.

The maps exist in the form of vectors representing the lines present in the map. There is

no need therefore for a line-detection phase; graphs are extracted in the same fashion as the

corresponding image data.

A.2 Synthetic Data

While real data provides a concrete experimental test of the methods under study in this

thesis, there is an insufficient quantity and variation in these data-sets to provide a rigourous

examination of the performance of these matching algorithms. To achieve this end we need

to generate synthetic data-sets in which we can control the levels of noise and measurement

uncertainty.

The simplest and most controllable scheme we can use is the random dot pattern. Dots

which represent the nodes in a graph are places at random locations in the image plan.

Associated with each one of these dots is unary measurement which is used later to provide

the initial matching probabilities which seed the relaxation scheme. A set of relations

between these points is generated as before using the Voronoi tessellation. The output of
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this process is the uncorrupted model graph.

A second pattern of dots is then generated, identical to the first aside from two alter-

ations. The uncertainty in measurement information is incorporated by adding a Gaussian

measurement error to the second measurement, the variance being under user control. To

simulate corruption in the graph, a set fraction of points are removed from the graph and the

same number of new points are put in their place with random locations and measurements.

The Voronoi tessellation is then generated as before.

This scheme allows control over two aspects of the matching process, namely the quality

of the initial match and the level of relational corruption.

A.3 Initial Match Probabilities

The essence of the relaxation approach is to refine a set of initial labellings or matches by

incorporating information from neighbouring matches. In this fashion consistency can be

imposed on the labeling. An initial labelling is required in order to seed the relaxation

scheme; in the case of graph-matching these take the form of a set of initial, non-contextual

match probabilities between nodes in the two graphs.

The modelling of the initial probabilities draws on transformational differences between

the scenes under study, and is based on the geometric properties of the lines forming those

scenes. Both segmental inaccuracies and geometric distortion are present and so these must

be captured by the probability distributions proposed to explain the measurements.

The simplest case is that of the SAR images. Lines in these images are encoded only

with unary angle information. Furthermore line angle is unaffected by segmentation errors

such as line fragmentation. We need only account for uncertainties present in the process

of angle detection. The angle affinity between two lines is therefore given by the following

Gaussian distribution ��(u; v) = exp

"�(�u;v � �)2

2�2� # (A:1)
where �u;v is the angle between lines u and v, � is the relative rotation of the two images,

and �2� is the variance anticipated in the angle. Under the assumption of a uniform prior
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distribution of possible line matches, the match probability becomesP (0)(u; v) = ��(u; v)Xu2G1

Xv2G2

��(u; v) (A:2)
In the case of the junction matching problem presented by the IR images we need to

combine evidence from all the lines that form a junction. We have both angle and length

information for these lines and so have the added complexity of incorporating line-lengths

which are subject to segmentation error. In the graph description the line-sets making up

junction u are given by Lu = fe1ju 2 e1g.

Given two sets of arcs Lu and Lv we must consider the support these arcs offer to

a junction match. Since we do not know which arc matches to which we must compile

support over all possible match combinations; the probability of a junction match is then

given by P (0)(u! v) = Ye12Lu Xe22Lv q(e1 ! e2)Xw2V2

Ye12Lu Xe22Lw q(e1 ! e2) (A:3)
where q(e1 ! e2) is the support for a match between arcs e1 and e2. As before the

support based on angle is given by ��. For lengths the support is more complex; we begin

by postulating another exponential distribution in the absence of segmentation error�s(e1; e2) = exp

"�(Se1;e2
� S)2

2�2s # (A:4)
where S is the relative scaling of the images and Se1;e2

= l(e1)=l(e2) is the relative scale

between the candidate lines. The possibility of segmentation error is modelled by assuming

a uniform probability of line corruption p. The support is then summed over the possibilities

of correct segmentation and segmentation errorq(e1 ! e2) = ��
1� p��s(e1; e2) + p(1� �s(e1; e2))���(e1; e2) (A:5)

Finally the synthetic data is seeded simply using the probabilities generated from the

affinity

153



Figure A.7: Initial Probability criterion�(u; v) = exp

"�(xu � xv)2

2�2

# (A:6)
Null labels are given an initial probability equal to the null label probability i.e. P (f(u) =�) = Pn
With the synthetic data, the variance of the measurements is already known to be that

which was originally used to generate the data. For the other datasets determining the

transformation and variance parameters is more of a problem. In the experimental studies

here, these parameters have been determined using a sample of correct matches from a hu-

man observer. However the parameters can be determined approximately in an automated

way; we first define an initial match criterion which is the sum of the initial match affinitiesF = Xu2V1

Xv2V2

�(u; v) (A:7)
Example plots of this functional are shown in Figure A.7 when and S are varied for

the initial probabilities of the low road data to the high data. The correct orientation and

scale correspond to global maxima of the criterion. However in the plot of orientation there

are a number of local maxima; these correspond to rotational symmetries of many of the

road junctions. The variance in the angle can be roughly estimated from the width of the

principle maxima.
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A.4 Experimental Protocol

During experimental runs, unless otherwise stated, parameters of the relaxation schemes

are set as follows:� 10 iterations are used for the probabilistic relaxation scheme, 14 for the discrete ap-

proach. It should be noted that these values are rather higher that is usually necessary

for convergence, but are set thus to guarantee that the scheme has fully converged.� The null label probability, where used is set as follows; 0.12 for the road network data,

0.5 for the SAR data and equal to the level of corruption for the synthetic data.� The label error probability in the discrete relaxation algorithm exponentially decays

from an initial value of 0.3 to 0.0003 on the final iteration

With the synthetic data, four experiments are run at each level of corruption, the matching

performance being the mean of the runs. The standard deviation provides the error-bars on

plots of synthetic results.

Matching performance is characterised by the following measureFc = NcNp
where Nc is the number of correct matches which are found and Np is the possible number

of correct matches available. Clearly the algorithm cannot find more matches than the

number of uncorrupted nodes in the graph; using this definition the matching performance

is represented by an number from 0 to 1 for all matching problems, making them directly

comparable. The ability of the algorithm to reject matching noise is characterised byFn = NwN
where Nw is the number of incorrect matches which are found and N is the number of

matches produced. This quantity measures how much noise is present in the match. Again

the measure ranges from 0.0 to 1.0, however in this case 0.0 is the best performance (no

incorrect matches present).
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The numbers of correct and incorrect matches are calculated by comparison with a

’ground truth’ match. In the case of synthetic data, the correct matches are already known.

The set of correct matches for the real data must be generated by hand.
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