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Abstract

Interpretation of histological images is often subjective and time-consuming. Au-
tomated approaches offer efficiency and objectivity along with increased precision in
results. We focus on the automated quantification of trabecular bone histology images,
which are used to study effects of critical illness in a rabbit model. The amount and ratio’s
of immature and mature bone tissue is of particular interest. We quantify these different
tissues through a per-pixel classification model using HSV values. These results are then
smoothed with a median filtering step and refined through spatial constraints encoding
domain knowledge in order to arrive at a well-performing final segmentation. This allows
precise staining areas to be calculated, and individual stain properties to be measured.

1 Introduction

Over the past decades, improvements in intensive care medicine has allowed a growing num-
ber of patients to survive previously lethal insults such as surgery, trauma or burn injury.
However, these advances also result in a larger population of patients that are in a state of
prolonged critical illness, remaining dependent on vital organ support for weeks or months
[5, 7].

Prolonged critically ill patients also have distinct alterations in their bone metabolism,
which can result in pronounced bone loss, impaired traumatic or surgical fracture healing,
and osteoporosis [8]. Our group studied bone degradation in a previously developed rabbit
model for critical illness. Hundreds of Masson Trichrome-stained images were obtained
from 15 critically ill and control rabbits at 10x magnification. These images show sections
containing both the immature bone (dark red) and demineralized, mature bone (blue); some
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examples are shown in figure 1. The relative presence of these types of tissue needs to be
accurately quantified to properly assess the effects of critical illness on bone metabolism [9].

However, manually evaluating these images poses known difficulties. Firstly, the amount
generated is often too large for an in-depth evaluation, so in practice all images are often
evaluated on a very rough scale (e.g. a discrete rating of 0-3 for presence of a tissue type).
Even so, evaluating these images is very time consuming. Secondly, it is very hard for human
evaluators to give an objective judgment due to the many different structures and color levels
present. Often, there exists some variation in interpretation given by different evaluators, or
by one evaluator over a period of time. One of the main problems is distinguishing immature
bone from bone marrow. The former is dark red and adjacent to blue-stained mature bone,
while the latter is present across the entire image and has a stained color ranging from dark
to bright red.

There exist some semi-automated approaches, such as measuring the fraction of image
pixels that crosses a threshold level on one of the images color channels (i.e. detecting a red
staining by quantifying the amount of pixels above a certain threshold on the red channel).
These methods might accelerate the process slightly, but still require a significant amount of
time and contain a degree of subjectivity.

Automatically processing these images is non-trivial because of the large variation in
morphology presented by the bone tissue. The structures are densely present in the image,
unpredictably positioned, shaped and sized, with variable staining intensity and imperfect
separation between the tissues’ stain colors.

We have opted for a machine learning method as they are known to be well suited to
detecting the underlying properties of large datasets (visual or otherwise). This knowledge
can then be applied in classifying new, unseen examples. Such methods have been shown to
have good results in the histological domain [4, 6].

We describe a methodology to segment these images in a fully automatic way by combin-
ing pixel-level classification through a machine learning model with larger scale morpholog-
ical domain knowledge. We compare this to existing semi-automated methods for trabecular
bone quantification such as described above and with manual scoring by domain experts.

Figure 1: Some examples of histological bone images.

2 Methodology

Our framework consists of two parts: a pixel-wise classification step and morphological
post-processing; we discuss each step in turn below. This approach can be contrasted with
the semi-automatic one, where the user splits the image into its red, blue and green channels,
and defines an image-specific threshold value for each channel, in order to extract the red
and blue stained regions. In such an approach no steps are taken to avoid the inclusion
of similarly-stained bone marrow in the immature bone area count, often resulting in an
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overestimation of the latter’s area. The two main advantages our method offers are the full
automation, and the capacity to take the above mentioned tissue difference into account.

2.1 Pixel-wise Classification

A suitably representative image is selected from the dataset and used to train the classifier.
We assign all its pixels a class label C = {Red,Blue,Other}. We choose these color-based
categories over tissue type because it is not yet possible at the single pixel stage to make
a full distinction between immature bone and marrow. A random forest classier [2] is then
trained on a randomly selected subsample of n = 10° pixels, as larger subsets were not found
to introduce any meaningful improvement in model performance.

In this model, each pixel is characterized by its Hue, Saturation and Value components.
Though this is a very limited feature set, the high level of class information contained in a
pixel’s color values results in a classification accuracy of 94.3%, measured by 10-fold cross-
validation. Though this evaluation was only performed on one image, the results extrapolate
well to others in the dataset, as we discuss in sections 3 and 4.

2.2 Post-processing

After the initial pixel classification a number of post-processing steps are applied to improve
the accuracy of the result. The pixel-wise nature of the classification leads to many isolated
pixel classifications, where the majority of its neighbors have a different class. These single
pixels can be assumed to be noise, since the desired cellular structures are presumed to have
an area on a scale of hundreds of pixels. Therefore we apply a median filtering step, giving
each pixel the class of the majority of its neighbors in an (2f 4 1)-by-(2f + 1) square around
it, where f typically is 1 or 2. This way, each pixel is assigned the most common class value
present it the set of itself and its 8-connected neighbors.

After this step, we impose a minimum and maximum size for identified bone tissue
structures. On the advice of the domain expert, we disregard all segments identified as
immature and mature bone under size 50px and 300px, respectively.

Finally we impose spatial constraints by only recognizing Red segments as being imma-
ture bone if they are directly adjacent to (i.e. have a shared border) with a remaining Blue
segment. This is necessary as it eliminates the visually very similar bone marrow segments,
that were also identified as belonging to the Red class.

After this post processing, we obtain our resulting segmented image. These steps are
summarized in figure 2.

Figure 2: Illustration of the different parts of our method: Unprocessed, after pixel classifi-
cation, after median filtering, after eliminating small red and blue segments, and finally after
elimination based on spatial constraints.
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3 Application

Our framework has been applied to the quantification of 341 trabecular bone images taken
from 15 critically ill rabbits. These processed images were evaluated and approved by do-
main experts. Sections from the right proximal tibia from 15 healthy controls and prolonged
critically ill rabbits were stained by Masson’s Trichrome stain in order to analyze the amount
of demineralized, mature bone vs. unmineralized osteoid or immature bone. These slides
were then imaged using fluorescence microscopy.

Of these images, 36 were also scored visually by three experts from our lab for presence
of immature and mature bone tissue, rated in discrete categories {light, medium, heavy}.
Figure 3 plots the results of our analysis against these scores to give an indication of the
agreement between these discrete expert evaluations and the continuous values derived with
our method. As the figure shows, classes are differentiated well (with a significance level of
p =0.05).
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(a) Immature bone (b) Mature bone

Figure 3: Human classification (median of three) of 36 trabecular bone images vs. relative
image coverage area as quantified by our method.

We also need to note that there exists a non-negligible variability in opinion between
these experts. We measure the inter-observer agreement by using Fleiss’ Kappa statistic [3].
A value of k¥ = 0 indicates no better agreement that would happen by random chance, while
Kk = 1 represents perfect agreement. For our three raters the quantification of the presence of
mature (blue) and immature(red) bone, rated with the three categories mentioned above, is
Kvature = 0.795 (95 % CI =10.760,0.831]) and Krmmarure = 0.289 (95 % CI=[0.251, 0.314]).

To compare our method to the more time-intensive manual threshold-based approach,
where the user selects appropriate thresholds on the image color channels, we use Bland-
Altman plots [1], shown in figure 4 for 50 images.

4 Discussion
We analyzed 341 images for the presence of mature and immature bone and compared this
to the evaluation given by experts with both a qualitative and semi-automated quantitative

method.
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(a) Immature bone (b) Mature bone

Figure 4: Bland-Altman plots for (a) immature (b) and mature bone. The horizontal axis
represents percentage of image area covered (mean of both measurements), while the vertical
axis shows the difference in measurement values (manual - automatic).

The results of this method were approved by domain experts and used for quantification
of bone tissue from a rabbit model [9], as they were determined to be more accurate than
both other methods.

This is confirmed by the plots in figure 4. They show that the manual threshold-based
method generally gives slight overestimation of immature bone tissue area are also slightly
higher (0.68% more, figure 4(a)) and they diverge in proportion to the image area covered. It
also gives a higher estimate for the mature bone tissue area (6.95% more, figure 4(b)). How-
ever, this method was designed as an ad-hoc solution, and shouldn’t be considered a gold
standard. As simple thresholding only takes into account pixel color and no structural infor-
mation, in some cases it can be impossible not to over- or underestimate the areas involved.
Since our results were visually confirmed to be more accurate by the domain experts, these
plots can be seen as evidence of the limited accuracy of even this more quantitative manual
method.

If we compare our method to the more granular categorical division made, we notice a
fair correspondence with the given ordinal labels (see figure 3). Though this distinction is
worse for the light and medium density immature bone, the low Fleiss’ kappa value there
indicates disagreement among the different raters as well.

Some user interaction is required in setting up the pipeline, as the post-processing steps
have to conform to the domain requirements, and the user has to be aware of their operation
and possibilities. However, once this pipeline is set up the algorithm can robustly classify
large batches of images. By using relatively simple features as we did in our experiment,
hundreds of images can be processed in a matter of minutes.

Despite only being trained and evaluated on one image, the robustness of the model is
demonstrated by its good performance on a wide variety of images with unequal staining
intensity and variable lighting. Though perhaps a wider variety in training images might
increase the performance even further, the fact that an expert only need label one image to
get usable results speaks to the user-friendliness of the algorithm.

To refine the results of our method, a logical next step would be to introduce some new
features and perhaps redefine the classes to map onto the tissue types instead of color. Tex-
tural or spatial information would also be beneficial.
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5 Conclusions and Future Work

We have developed a extensible framework capable of using information at the pixel scale
and morphological domain knowledge for detecting specific regions of interest in Masson
Trichrome-stained trabecular bone histological images. The tissue areas detected matched
expert opinion and were used to evaluate a rabbit model experiment [9].

We envision the possibility of this processing pipeline being of use in quantifying other
images with large variation in shape and size of regions of interest. The pixel-wise classi-
fication is independent of overall region shape of size, while the morphological rules after
this step do allow selections of regions based on their spatial properties and relation to other
regions.
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