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Abstract

Within a combined EEG-fMRI study of contour integration, weanalyze responses
to Gabor stimuli with a combined Empirical Mode Decomposition and an Independent
Component Analysis. Generaly, responses to different stimuli are very similar thus hard
to differentiate. EMD and ICA are used intermingled and not simply in a sequential way.
This novel combination helps to suppress redundant modes resulting from an application
of ensemble EMD alone. The simulation results show an improved mode separation
quality. Hence, the proposed method is an efficient data analysis tool to clearly reveal
differences between similar response signals and activitydistributions.

1 Introduction
It had been already noted by early Gestalt psychologists that the human visual system tends
to group local stimulus elements into global wholes. Such grouping is often based on simple
rules such as similarity, proximity, or good continuation of the local elements [3]. One
special instance of perceptual grouping is contour integration where local parts of Gabor
elements are re-integrated into a continuous contour line.Contour integration is typically
tested with a stimulus paradigm where arrays of Gabor patches are presented to the subjects
(see Fig.1). In 1998, N.E. Huang et al. [4] invented a heuristic tool for complex, non-
stationary signal analysis named Empirical Mode Decomposition (EMD). Soon afterwards,
EMD has been extended to Ensemble EMD [8], a noise-assisted variant to suppress mode
mixing, as well as to multi-dimensional EMD (MEEMD) [6], [9] including complex-valued
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data sets [7]. EEMD/MEEMD cannot guarantee completeness and orthogonality, and may
produce redundant components which affect the accuracy of the decompositions. Combining
Independent Component Analysis (ICA) with EEMD [5] allows to overcome some of the
above limitations. But MEEMD-ICA cannot reveal small differences between closely similar
signals. The aim of this paper is to introduce a new way to combine EEMD with ICA which
allows to fully suppress redundant signal components in different IMFs. Eventually, the non-
stationary signal or image can be decomposed and distinguished accurately, yielding a much
better decomposition and feature extraction performances.

2 Methods

2.1 EEMD/MEEMD
EMD was developed from the assumption that from any signal locally simple oscillations can
be extracted. The resulting component signals are called Intrinsic Mode Functions (IMF).
Such IMFs are obtained from the signal by means of a sifting algorithm resulting locally
in pure oscillations with zero mean. Amplitude and frequency of the IMFs may change
over time. Furthermore, IMFs are ordered according to theirfrequency content. In contrary
with wavelets, EMD is a data driven algorithm that decomposes the signal without prior
knowledge.

The decomposition of an image, for example an fMRI brain slice, starts by applying
EEMD to each columnX∗n ≡ xn of the M × N - dimensional data matrixX, whereM de-
notes the number of samples andN gives the dimension of the data vectors. The 1D-EEMD
decomposition of then-th column becomes

xn := X∗,n =
J

∑
j=1

C( j)
∗,n (1)

where the column vectorC(J)
∗,n represents the residuum of then-th column vector of the data

matrix. This finally results inJ component matrices, each one containing thej-th component
of every columnxn,n = 1, . . . ,N of the data matrixX.

C( j) = [c( j)
1 c( j)

2 · · · c( j)
N ] = [C( j)

∗,1 C( j)
∗,2 · · · C( j)

∗,N ] (2)

Next one applies an EEMD to each row of eqn.2 yielding

C( j)
m,∗ =

(
c( j)

m,1c( j)
m,2 · · ·c( j)

m,N

)
=

K

∑
k=1

(
h( j,k)

m,1 h( j,k)
m,2 · · ·h( j,k)

m,N

)
=

K

∑
k=1

H( j,k)
m,∗ (3)

wherec( j)
m,n = ∑K

k=1 h( j,k)
m,n represents the decomposition of the rows of matrixC( j). These

componentsh( j,k)
m,n can be arranged into a matrixH( j,k) according to

H( j,k) =




h( j,k)
1,1 h( j,k)

1,2 · · · h( j,k)
1,N

h( j,k)
2,1 h( j,k)

2,2 · · · h( j,k)
2,N

...
... · · ·

...

h( j,k)
M,1 h( j,k)

M,2 · · · h( j,k)
M,N




(4)

The resulting component matrices have to be summed to obtain

C( j) =
K

∑
k=1

H( j,k). (5)
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Finally this yields the following decomposition of the original data matrixX

X =
J

∑
j=1

C( j) =
J

∑
j=1

K

∑
k=1

H( j,k) (6)

where each element is given by
xm,n =

J

∑
j=1

K

∑
k=1

h( j,k)
m,n (7)

To yield meaningful results, componentsh( j,k)
m,n with comparable scales, i. e. similar

spatial frequencies of their textures, should finally be combined [9] according to comparable
minimal scale combination principle(CMSC). In practice, for two-dimensional data sets this
implies that the components of each row, which represent a common horizontal scale, and the
components of each column, which represent a common vertical scale, should be summed
up [9].

Hence, the CMSC - principle leads to BIMFs given by

S(k′) =
K

∑
k=1

H(k,k′) +
J

∑
j=k′+1

H(k′, j) (8)

which thus yields a decomposition of the original data matrix X into BIMFs according to

X =
K

∑
k′=1

S(k′) (9)

whereS(K) represents the non-oscillating residuum. The extracted BIMFs can be considered
features of the data set which, according to the CMSC - principle, reveal local textures with
characteristic spatial frequencies which help to discriminate the functional images under
study.

2.2 ICA
Independent component analysis(ICA) aims to find a linear representation of data based
on maximally non-Gassian components which renders them statistically independent. Con-
siderM statistically independent sourcesH = {h1,h2, ....,hM} andM sensor signalsX =
{x1,x2, ....,xM}. The goal of ICA is to find a de-mixing matrix which recovers the hidden
componentsH underlying the observationsX . The differentym are estimates of the latent
variableshm according to the following model

ym = Wxm = WAhm with WA = PD. (10)

whereW denotes the demixing matrix,P represents a permutation matrix andD a scaling
matrix. Examples of common ICA implementations are theJADE algorithm [2] and the
INFOMAX algorithm [1].

2.3 Proposed Method
As mentioned above, a combination of EEMD/MEEMD with ICA yields a signal decom-
position free of redundant remnants of other components in any extracted IMF. The newly
proposed methods works as follows:

1. Decompose the measured signal or imageX with EEMD and BEEMD resulting in
IMFs or BIMFs which are ordered according to their frequencycontent.
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2. Initializei = 1 andj = 1; wherei, j = 1.....K andK represents the number of extracted
modes.

3. Choose a pair of IMFs,IMFi andIMFj 6=i, and feed it into an ICA algorithm. After
decomposing the IMFs with ICA, we obtain two independent componentsICi and
IC j, respectively.

4. If i > j, choose the IC with higher frequency according to their Hilbert - Huang Trans-
form [4]. Otherwise, choose the IC with the lower frequency.

5. ReplaceIMFi with the selected IC.
6. Increasej by one and repeat the steps above untilj = K. This results in a new Intrinsic

Mode Component (IMC).
7. Increasei by one and repeat steps 3 to 6 untili = K.
8. This procedure yields IMCs/BIMCs which neither fulfill the conditions for an IMF or

a BIMF nor an IC.

3 Simulation
In order to demonstrate the performance of the proposed method, one EEG signal and a slice
of the related fMRI image collected during a contour integration task is selected. Such sig-
nals are illustrated for both stimuli,contour andnon-contour (see Fig.1). The EEG signals
and related fMRI images, as shown in Fig.1, are decomposed by EEMD in case of EEG
signals, and by BEEMD in case of fMRI images. Eight IMFs are extracted from the EEG
signals (but only three are shown), and six IMFs are obtainedfrom each fMRI image. The
resulting components are shown in Fig.2. As can be seen from the original signals, exhib-
ited in Fig.1, no noticeable differences between the recorded signals, following contour and
non-contour stimuli, can be detected. Even from the IMFs andBIMFs, obtained from an
EEMD/BEEMD decomposition (shown in the top row of Fig.2) no characteristic difference
can be noticed. A similar result is obtained if, after decomposing the recorded signals with
EEMD/BEEMD, an ICA is applied to the IMFs/BIMFs directly (see Fig. 2, middle row).
This is due to incomplete signal decompositions by these methods which leave remnants of
one components in others, causing some redundancy in the different components. Such re-
dundancies load a large subjectivity onto any diagnosis based on these methods. In contrast,
the IMCs/BIMCs extracted by our proposed method, can overcome this limitation and yields
clearly different characteristics corresponding to both stimuli. This can be seen clearly from
the bottom row of Fig.2. As a cross-check, we can obtain ICs identical to the ones shown
in Fig. 2, middle row, if we apply ICA to the IMCs/BIMCs obtained from our method. This
corroborates that no information loss has occurred during the analysis.

4 Discussion and Conclusion
In real applications, stimulus responses would most likelynot be identical under different
conditions. Rather some response asymmetries are to be expected. Because response differ-
ences are small, they become submerged in the background of the extracted modes. Hence,
such differences cannot be classified simply by visual inspection of the responses. We even
demonstrated that such small differences cannot be revealed by plain EEMD/BEEMD or a
sequential combination of EEMD with ICA. The reason is some partial mode mixing which
appears in noise-assisted ensemble EMD. Our proposed method is able to do so because it
helps to suppress remnants of other modes interfering in anyof the extracted modes. This
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Figure 1: Left: contour and non-contour stimuli.Middle: EEG signals and their corre-
sponding Fourier spectra.Right: stimulus-related fMRI images and their spatial frequency
spectra.

Figure 2: fMRI activity distributions and EEG recordings inresponse to contour (column 1
and column 3, red line) and non-contour (column 2 and column 3, green line) stimuli.Top:
BIMFs and related IMFs extracted with BEEMD and EEMD from fMRI and EEG record-
ings. Middle: ICs resulting from an ICA applied to BIMFs and related IMFs obtained from
original data sets directly.Bottom: BIMCs and related IMCs extracted with our proposed
method. For fMRI images, modes are sorted from left to right and from top to bottom ac-
cording to their spatial frequency content. For EEG time series, the three interesting modes
are shown together with their corresponding Fourier spectra.

results in clean modes with no interferences from other modes and thus improves the sepa-
ration quality considerably. The results showed that the proposed method can be applied to
efficiently extract features from biomedical signals and images. This is especially important
if different response classes need to be differentiated.
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Response classification of our proposed method has been evaluated against competing
methods like applying BEEMD to the raw data sets or applying BEEMD and ICA sequen-
tially. The study comprised 18 subjects where a combined EEG-fMRI analysis has been
performed within a contour integration task with contour and non-contour Gabor stimuli.
As classifier, a Support Vector Machine (SVM) using the LeaveOne Out Cross Validation
(LOOCV) technique has been employed . Dimension reduction has been achieved by pro-
jecting the extracted modes onto principal components and using the projections as input to
the classifier. A Student t-test was used to select informative features and the parameters of
the classifier were optimized by using a grid search approach. The values between square
brackets in Table1 show the number of selected features for an optimal performance and the
first column indicates the mode.

Table 1: Comparison of statistical measures (Accuracy, Specificity and Sensitivity) obtained
with different techniques evaluating corresponding classification results.

BEEMD BEEMD-ICA Proposed Method
♯ Acc Spec Sens Acc Spec Sens Acc Spec Sens
1 0.81[7] 0.84 0.79 0.84[34] 0.80 0.89 0.92[35] 0.89 0.94
2 0.82[4] 0.84 0.79 0.68[1,30] 0.68 0.68 0.63[1] 0.58 0.68
3 0.89[2,11] 0.89 0.89 0.79[23] 0.79 0.79 0.71[32] 0.78 0.63
4 0.84[3] 0.84 0.84 0.63[22] 0.68 0.57 0.84[3] 0.84 0.84
5 0.84[29] 0.89 0.79 0.66[18] 0.63 0.68 0.74[29] 0.74 0.74
6 0.79[26] 0.74 0.84 0.76[29] 0.84 0.69 0.71[21] 0.68 0.74

References
[1] T. Bell and T. Seinoswki. An information-maximization approach to blind source separation and blind decon-

volution. Neural Computation, 7(6):1004 – 1034, 1995.

[2] J.F. Cardoso, France Telecom Paris, and A. Souloumiac. Blind beamforming for non-gaussian signals.Radar
and Signal Processing , IEE Proceedings F, 140(6):362–370, 1993.

[3] Donderi DC. Visual complexity: a review.Psych Bull, 132:73–97, 2006.

[4] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu.
The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis.
Proc. Roy. Soc. London A, 454:903–995, 1998.
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