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Abstract

The importance of neuro-imaging as one of the biomarkers for diagnosis and prog-
nosis of pathologies and traumatic cases is well established. Doctors routinely perform
linear measurements on neuro-images to ascertain severity and extent of the pathology or
trauma from significant anatomical changes. However, it is a tedious and time consum-
ing process and manually assessing and reporting on large volume of data is fraught with
errors and variation. In this paper we present a novel technique for segmentation of sig-
nificant anatomical landmarks using artificial neural networks and estimation of various
ratios and indices performed on brain CT scans. The proposed method is efficient and
robust in detecting and measuring sizes of anatomical structures on noncontrast CT scans
and has been evaluated on images from subjects with ages between 5 to 85 years. Results
show that our method has average ICC of ≥ 0.97 and, hence, can be used in processing
data for further use in research and clinical environment.

1 Overview and problem statement
Linear measurements on axial CT scans provide clinicians and surgeons opportunity to ascer-
tain differential diagnoses of neuropsychiatric disorders, outcomes of clinical and surgical
interventions, geriatric changes and deleterious effects of drugs. Quantitative assessment
of neuro-images is an effective approach to reveal structural changes in conditions such as
Alzheimer’s disease (AD), Schizophrenia, Huntington’s disease, hydrocephalus and many
other neurological and psychiatric disorders [1, 2, 11, 12]. The typical measurements per-
formed on the axial CT scans (fig. 1a, details in table 1) are used to estimate indices and
ratios such as Evan’s Ratio (ER), Bifrontal Index (BFI), Bicaudate Index (BCI), Cella Media
Index (CMI), Frontal Horn Index (FHI), Ventricular index (VI), Huckman number (HN) and
3rd ventricle width (V3) [3]. Manual measurements of regions of interest (ROI) are still con-
sidered ’gold standard’, however, these are time consuming and a robust and efficient method
is required to assist the researchers and to our knowledge, there is no automated system for
performing measurements and calculation of these from CT scans.

Computer aided quantitative radiology and volumetry studies of the human anatomy and
pathology have been undertaken by many researchers and a surfeit of image segmentation
methods have been proposed [10]. However, in medical images an ROI can have dissimi-
larity of pixel intensity, inhomogeniety of background contribution and noise, and spatially
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(a) (b) (c)
Figure 1: Measurements on Axial CT Scans (a) and Manual Labelling (b, c).

blind methods in these cases can result in disjoint, quasi-homogeneous regions [9]. To pre-
serve the spatial relationship between the pixels and neighbourhood information, spatially
guided techniques such as region growing and merging, active contours and level sets show
better results [10].

The extensive and tenable integration of computational intelligence in medical problems
can be attributed to the fact that these systems can adaptively learn and optimize the rela-
tionship between inputs and outputs [4, 5, 6, 7, 8]. Medical images e.g., CT scans, usually
have inhomogeniety of background and noise; and recognition of ROI in images with similar
characteristics using ANN can give plausible results [13]. In addition, ANN’s can be trained
using a few images which have been manually annotated and labelled in order to learn to
recognize the ROI.

2 Methodology

The proposed methodology uses ANN to segment the input images into ROI. Measurements
of landmark regions are then used for calculating the various ratios and indices. The input
images are DICOM (Digital Imaging and Communications in Medicine) files and the training
set has been manually segmented and measured by radiology experts (Figure 1b, 1c). The
dataset used for training, validation and testing consists of noncontrast CT studies from
different subjects. The studies include subjects of both genders and between ages 5 to 85
years. Our method is used on axial CT slices.

2.1 Correction of Orientation of Head

The first step is to align the head into proper orientation on the CT image to ensure that the
reference points for measurements are properly identified. This is done by demarcating the
bony protuberance of the anterior and posterior falx cerebri attachments as these landmarks
are usually not affected in traumatic and pathological cases in which the brain tissue may
show abnormalities. The skull boundaries are extracted using Canny edge detection with
σ = 2 and threshold = 0.5 in our experiments, and properties of connected regions are
measured. Then the curve of the skull bone is modelled as a function of the location and
height of pixels and the extrema represent the protuberances which are used to find any shift
Pshi f t in the orientation.
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(a) (b) (c)
Figure 2: Correction of orientation of CT Scans.

Taking arctan of the Pshi f t with reference to the skull centroid calculated earlier, gives the
rotation angle θ ◦ to be corrected (Figure 2). An ideal midline can also be drawn using skull
centroid which, in normal cases, would pass through the septum pellucidum. Identifying
the septum pellucidum and its location with reference to skull can be used for measuring the
midline shift which is an important clinical feature in assessment of traumatic or pathological
conditions.

2.2 Detection of Candidates for Measurements
An input image is represented as an (n×m) matrix X = {xi j}, i = 1 . . .n, j = 1 . . .m, whose
pixels can either belong to a region of interest class Ω0 or to a non region Ω1. A function
ui j = φ (X ; i, j) reflects the brightness of the pixel xi j influenced constantly or variably by
the neighbourhood. The function is estimated in a rectangular window P, which is a (k× k)
matrix containing the central pixel xi j and r−1 nearest pixels, where r = k2. Then by sliding
the window P through the image X , every central pixel xi j can be assigned to one of the two
classes Ω0 or Ω1. The sliding window transforms the image X into an r×q matrix Z where
q = (n− k+1)(m− k+1) and the central element of a vector z ∈ Z, hence, represents the
pixel xi j of the input image. The matrix Z is fed to the ANN with one hidden layer and
the output neuron makes a decision yc = {0,1},c = 1 . . .q, on the central element of cth
column vector z(c), thus, classifying the image pixels to classes Ω0 or Ω1 as proposed by
[13]. The ANN is trained with standard back propagation technique aiming to minimize an
error function ε for a given number of training epochs. We use images whose pixels are
manually labelled and assigned either to class Ω0 or Ω1 by a radiology expert Fig. 3b and
the ANN is trained (Fig. 3c) to approximate these. The approach is implemented to identify
both ventricles and skull as ROI for subsequent measurements and estimations of indices.

The output from the neural network classifies pixels of the input image into ROI as
shown in Fig. 3e. In this binarized image, the discontinuities within the regions and the
non-smooth boundaries are further refined using active contours using output of ANN for
automatic seeding. The values of curve length µ and curvature κ are empirically estimated in
our experiments to ensure a good approximation of the edges of regions. This step generates
a binary image as output with the skull and ventricles’ boundaries clearly demarcated as in
Fig. 3f and 3g respectively.

2.3 Measurements and Estimation of Indices
The CT scan studies are viewed using ’brain window’ (width = 80, length = 40) with image
size of 512× 512 pixels and a reference ruler is overlaid on the images to calibrate our
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(a) Input image (b) Manual labelling (c) ANN Output

(d) Input Image (e) Segmentation (f) Skull (g) Ventricles
Figure 3: Segmentation of the ROI in Brain CT Scans.

measurement algorithm. An expert then provides multiple reference measurements in an
interactive session using a simple user interface and the averages are stored as benchmarks
Pcal for subsequent automatic measurements. There is an option to use Metric or Imperial
units for measurements. The contiguous image regions from step 2.2 are used to determine
measurements such as extrema, centroid, area, major and minor axes. The values of extrema
are used to draw reference points (Fig. 1a) around the ROI using same approach as section
2.1 and the number of pixels between relevant points is divided by Pcal to give measurements.
To estimate the indices, the distance between relevant reference points is counted in terms of
pixels and appropriate formula is applied from atlas [3].

3 Experimentation Results
The technique has been applied on 48 noncontrast CT studies from different subjects with
ages between 5 to 85 years including 14 subjects from the National Cancer Institute pub-
lic dataset. Two radiology experts independently performed manual segmentation and cal-
culated ratios and indices to be used for training and evaluation in our experiments. The
subjects’ personal information was anonymized and only age and gender data were retained.
Measurements of the maximum frontal horn diameter (A), inner skull diameter at the level of
frontal horns (D), maximum inner skull diameter (F), outer skull diameter at the frontal horns
(G), maximum outer skull diameter (H) and minimum width of the later ventricles separated
by the septum (I) were made by experts. Our method repeated the same linear measurements
after segmenting the ROI and using reference points and calibration information. The results
were compared with the measures in noncontrast CT scans from different age groups and
showed ICC ≥ 0.97. Correction of orientation of head showed 85% sensitivity and 75%,
while detection of brain midline shift > 5mm showed sensitivity and specificity of 80% and
86% respectively. The intraclass correlation coefficient (ICC) was calculated using MedCalc
to compare the results with experts to ascertain reliability of measurements. Linear mea-
surements show ICC range from 0.97 to 0.99 and the results are given in table 1. For both
the CMI and ER estimations, ICC was 0.98 compared to the experts. The optimum testing
performance of 88.9% of the ANN was observed with 10 hidden neurons to segment the
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Label Measurement ICC
A Maximum frontal horn diameter 0.99
D Inner skull diameter at the level of the

frontal horns
0.97

F Maximum inner skull diameter 0.97
G Outer skull diameter at the frontal horns 0.97
H Maximum outer skull diameter 0.98
I Minimum width of the lateral ventricles

separated by the septum (cella media)
0.98

Table 1: Measurements on the axial CT scans

(a) Transtentorial Arachnoid cyst (b) Metastatic lesions
Figure 4: Cases excluded from experiments.

image using 70% training, 15% validation and 15% test samples. Increasing or decreasing
the number of hidden neurons in ANN did not significantly improve the performance and
the average performance was 87.4− 88.9% in training and testing. The sliding window in
section 2.2 was evaluated with varying sizes of 3×3, 5×5 and 7×7 neighbourhood pixels,
however, the optimum output was achieved with 5× 5 pixels windows for extracting fea-
tures. The experiments were performed using Matlab R2013b on Mac OS X and Windows 7
platforms. The average time taken by our method to perform segmentation and estimations
of indices and ratios was≤ 20 seconds because the algorithm performs the segmentation and
measurements in toto without performance degradation. CT studies of patients with gross
deformity of the brain structure due to either neoplastic metastasis, pathology or trauma gave
less satisfactory estimations and resulting measurements were amiss. These 2 of the 34 cases
(fig. 4) were excluded from the performance analyses after preliminary experiments.

4 Conclusion
Manual demarcation of ROI by expert radiologists is still considered gold standard, however,
our proposed system has shown plausible results with 87.4−88.9% accuracy with ANN in
segmenting the ROI which are used as reference points for estimating various brain indices.
The error in linear measurements on noncontrast axial CT scans was less than ±1mm and
ICC results were ≥ 0.97 compared with experts. Correction of orientation of head and de-
tection of midline shift > 5mm showed sensitivity of 85% and 80% and specificity of 75%
and 86% respectively. The average time taken for measurements was also significantly re-
duced. Currently, the CT slice with pertinent anatomical landmarks is manually input to
the system for measurements. However, we are working on an algorithm to automatically
select the representative slice from the complete study of the subject. Interpretation of the
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medical images by the radiologists is fraught with errors and variations which represent the
weakest aspect of clinical imaging. Based on the results of our method, we propose that
integration of automated systems in clinical and research settings can significantly reduce
the radiologists’ workload and inter-observer variability in assessing normal development,
ageing, pathological and traumatic cases.

References
[1] S. Barker-Collo, M. Kahan, and N. Starkey. Computerised tomography indices of

raised intracranial pressure and traumatic brain injury severity in a new zealand sample.
The New Zealand medical journal, 125(1360):92, 2012.

[2] E. González-Reimers and F. Santolaria-Fernández. Brain atrophy in alcoholics. In
Handbook of Behavior, Food and Nutrition, pages 2993–3010. Springer, 2011.

[3] T. Keats and C. Sistrom. Atlas of radiologic measurement. Mosby Inc, 2001.

[4] T. Kondo and J. Ueno. Feedback GMDH-type neural network and its application to
medical image analysis of the liver cancer. In 42th ISCIE international symposium on
stochastic systems theory and its applications, pages 81–82, 2012.

[5] I. Kononenko. Machine learning for medical diagnosis: history, state of the art and
perspective. Artificial Intelligence in medicine, 23(1):89–109, 2001.

[6] V. Schetinin and J. Schult. A neural-network technique to learn concepts from elec-
troencephalograms. Theory in Biosciences, 124(1):41–53, 2005.

[7] V. Schetinin and J. Schult. Learning polynomial networks for classification of clinical
electroencephalograms. Soft Computing, 10(4):397–403, 2006.

[8] Z. Shi and L. He. Application of neural networks in medical image processing. In Pro-
ceedings of the Second International Symposium on Networking and Network Security,
pages 2–4, 2010.

[9] W. Tao, H. Jin, and Y. Zhang. Color image segmentation based on mean shift and nor-
malized cuts. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 37(5):1382–1389, 2007.

[10] S. Vantaram and E. Saber. Survey of contemporary trends in color image segmentation.
Journal of Electronic Imaging, 21(4):040901–1, 2012.

[11] R. Wilk, E. Kluczewska, B. Syc, and G. Bajor. Normative values for selected linear
indices of the intracranial fluid spaces based on ct images of the head in children. Polish
Journal of Radiology, 76(3):16, 2011.

[12] Y. Zhang, E. Londos, L. Minthon, C. Wattmo, H. Liu, P. Aspelin, and L. Wahlund.
Usefulness of computed tomography linear measurements in diagnosing alzheimer’s
disease. Acta Radiologica, 49(1):91–97, 2008.

[13] V. Zharkova and V. Schetinin. Filament recognition in solar images with the neural
network technique. Solar Physics, 228(1-2):137–148, 2005.

166


