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Abstract

To obtain optimal breast image quality during the image acquisition, a compression
paddle is used to even the breast thickness. Clinical observation has indicated that breast
peripheral areas may not be fully compressed, and may cause unexpected intensity and
texture variation within these areas. Such breast parenchymal appearance discrepancies
may not be desirable for tissue modelling within computer aided mammography. This pa-
per describes a novel mammographic image preprocessing method to improve the image
quality before analysis. Mammographic segmentation and risk classification were per-
formed to facilitate a quantitative and qualitative evaluation, using digital mammographic
images. Visual assessment indicated significant improvement on segmented anatomical
structures and tissue specific areas when using the processed images. The achieved risk
classification accuracies are 80% and 79% for Birads and Tabár risk scheme, respec-
tively. The developed method has demonstrated an ability to improve the quality of
mammographic segmentation, leading to more accurate risk classification. This in turn
can be found useful in early breast cancer detection, risk-stratified screening, and aiding
radiologists in the process of decision making prior to surgery and/or treatment.

1 Introduction
Within screening mammography, a compression paddle is used to even out the breast tis-
sue in order to obtain high quality mammographic images. However, when the breast is
subjected to compression, the peripheral areas may not be compressed due to a reduction
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of breast thickness. This results in air gaps above and beneath the uncompressed areas,
leading to X-ray scattering, degradation in contrast, and limitation of the quantitative useful-
ness of radiographic images [2]. Compression paddle related image quality issues vary due
to difference in breast size and composition; e.g. in extreme cases, the visibility of breast
parenchyma is too low in the peripheral areas to be examined. Therefore, it is necessary to
develop an image processing method to improve the visibility of peripheral uncompressed
area of the projected breast, which facilities presentation and can be beneficial to mammo-
graphic analysis [1]. Image processing (enhancement) methods developed to address the
aforementioned problem can be categorised into two groups; parametric [1, 8] and non-
parametric [9] approaches. Methods [8] and [9] are critically dependent on the accuracy of
interactive segmentation of the dense breast tissue and fatty tissue interpolation, whilst [9]
can only be applied to unprocessed digital mammograms before logarithmic transformation.
The reader is referred to [1, 8, 9] for the details of the developed methodologies.

Regarding mammoraphic risk assessment, Tabár et al. [10] proposed a model based on a
mixture of four mammographic building blocks representing normal breast anatomy, mam-
mographic risk is categorised into five classes along these building blocks (i.e. [nodular%,
linear%, homogeneous%, radiolucent%]). Pattern I [25%, 15%, 35%, 25%]; pattern II/III
[2%, 14%, 2%, 82%]; pattern IV [49%, 19%, 15%, 17%]; and pattern V [2%, 2%, 89%,
7%] [10]. Alternatively, American College of Radiology’s Breast Imaging Reporting and
Data System (Birads) [6] was developed, mammographic risk is categorised based on the
percentage of dense breast tissue in four risk classes: Birads 1, the breast is almost entirely fat
(< 25% glandular); Birads 2, the breast has scattered fibroglandular densities (25%−50%);
Birads 3, the breast consists of heterogeneously dense breast tissue (51%−75%); and Birads
4, the breast is extremely dense (> 75% glandular).

We present a novel mammographic image preprocessing technique, which models a
breast by estimating relative breast thickness ratios using both Mediolateral Oblique (MLO)
and Cranio-Caudal (CC) views, the correction process is marginally similar to [5, 11]. An
additional automatic selection method was developed to better target images requiring en-
hancement in a systematic way. A quantitative and qualitative evaluation was conducted to
assess the robustness of the method; all processed images were subjected to mammographic
segmentation and subsequent risk classification using both Tabár and Birads risk scheme.

2 Data and Method
A total of 360 digital mammographic images were used in the experiment. A consensus
ground truth was obtained based on three radiologists. Modelling Tabár’s mammographic
building blocks, a collection of mammographic patches consisting of a total of 344, 89 and
457 examples of nodular, homogeneous and radiolucent (similar to Birads dense, semi-dense
and non-dense) tissue was cropped to various sizes from randomly selected images from the
dataset. Note that the linear structure was not specifically included in the experiment, instead
this tissue type was considered part of the other tissue classes as it appears in combination
with all three classes. Therefore, only nodular, homogeneous and radiolucent tissues were
modelled and used in the segmentation process.

The developed methodology starts off with automatic image selection, the image prepro-
cessing consists of four steps; 1) X-ray penetration probability weighting map generation,
2) intensity balancing, 3) intensity ratio propagation, and 4) boundary stitching. All the pro-
cessed images were subjected to geometric moments based mammographic segmentation [3]
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and risk classification.

2.1 Automatic Image Selection
Thorough empirical observations of the collected data indicated that a mammographic image
may require processing if its automatically calibrated parameters acp (i.e. compression force
(CF), breast thickness (BT) and peak kilovotage (KVP)) are less than the mean values. It was
less robust to use the acp alone as a constraint due to large breast tissue density, composition
and size variations. Additional constraints based on prior knowledge were incorporated to
strengthen the selection robustness. Specifically, Otsu [7] automatic binary image segmen-
tation technique was used to separate the peripheral area (PA) and breast interior (BI). Three
properties were calculated: total peripheral area (TPA), vertical peripheral area coverage
(VPAC) in image rows and pectoral coverage (PC) in image rows. A mammographic image
(img) was selected to be processed if CFimg <= CF & BTimg <= BT & KV Pimg <= KV P
& 15% < T PAimg < 50% & V PACimg > 75% & PCimg < 30%. The threshold values were
empirically defined through trial and error, to achieve the best separation overall.

2.2 Mammographic Image Preprocessing
The X-ray penetration probability has a direct correlation with breast thickness. Due to
physical complexity (e.g. unknown combination factors in X-ray beam spectrum and breast
tissue composition), the X-ray penetration probability was modelled in a simplified way by
encompassing all other elements (e.g. dosage, filter, anode) in a “black box” only considered
as inversely proportional to the breast thickness. An X-ray penetration probability weighting
map was generated for each image by calculating and propagating the relative breast thick-
ness ratios based on its pair. For example, to a CC view, the relative breast thickness ratio (r)
can be estimated based on the projected physical contour of the compressed breast as seen
on MLO view. In particular, the skinline was firstly extracted from the MLO view and split
in two at the furthest pixel to the chest wall to form upper and lower skinlines (e.g. blue and
green lines in Figure 1 (c)). For each pixel in the top skinline, a corresponding pixel was
sought in the lower skinline, to form a parallel line (p-line) (e.g. red line in Figure 1 (d)) to
the chest wall by linking the two pixels. This process was repeated for all the pixels in the
top skinline, and resulting in a series of parallel lines (e.g. Figure 1 (d)(e)) . To the CC view,
the r at a given point (p) (e.g. ‘A’ in Figure 1 (a)) is calculated based on the boundary pixel
(pbase) (e.g. ‘B’ in Figure 1 (a)) which separates PA and BI as r = p−line(p)

p−line(pbase)
); both pixels

are on the thickest projected section (e.g. blue lines in Figure 1 (a)(b)) on the CC view. To
complete the X-ray penetration probability weighting map for the CC view, the remaining
pixels on the thickest projected section with the estimated breast thickness ratios were as-
signed in the same way, and the calculated ratios were propagated to the pixels that have the
same distance to the skinline (S) (e.g. pixels on the yellow lines in Figure 1 (a)(b)) .

To reduce the intensity distribution variation, a base weight (wbase) was firstly calculated

as wbase =
∑N

i=0 Wi(x,y)
N , ∀Wi(x,y)∈ S, where W and S denote the weighting map and the bound-

ary between PA (uncompressed breast peripheral area) and BI (breast area not part of PA).
For each pixel within the BI, the intensity value P(x, y) was altered as P′(x,y) = wbase

W (x,y)P(x,y).
After the intensity balancing, the local intensity ratio was propagated as a means of

improving tissue appearance in PA (similar to the process described in [11]). From pixels at
the boundary S to the skinline within the PA, each intensity value was altered by calculating
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(a) (b) (c) (d) (e) (f)
Figure 1: Image illustration, from left to right: (a) CC view, (b) its distance map (pixel to
skinline), (c) areas of PA, BI, and S (cyan line), (d) pair MLO view, (e) parallel lines proximal
to pectoral muscle and (f) proximal to nipple.

the propagation ratio (pr) for each pixel P(x, y) with distance to the skinline D(x, y) and
within an empirically defined 17 × 17 neighbourhood for the efficiency and robustness, as

IavgP1 =
∑M

j=0 Pj(x,y)
M ∀Pj(x,y) = D(x,y) + 1, IavgP2 =

∑N
i=0 Pi(x,y)

N ∀Pi(x,y) = D(x,y) + 2, pr =
IavgP2
IavgP1

, and P′(x,y) = pr×P(x,y); where D(x,y)+ 1 and D(x,y)+ 2 are pixel distances to
skinline 1 and 2 steps further away from the observed pixel.

Boundary stitching was applied to seamlessly normalise pixel intensity within boundary
S, thickened to 5 pixels band, in order to gradually smooth the transition from BI to PA; the
maximum and minimum intensity values were determined within an empirically defined 7
× 7 neighbourhood (see Section 3 for the effects of using different neighbourhood sizes).

2.3 Mammographic Segmentation and Risk Classification
A geometric moments based mammographic segmentation [3] was applied to all the images.
To be concise, this method is used to extract texture features from a set of mammographic
patches using geometric moments; the derived feature vectors are expected to contain not
only texture primitives but also geometric information. The methodology was modified by
incorporating a feature and classifier selection process using a collection of attribute selection
algorithms and classifiers available in Weka [4] through four stages: 1) A set of neighbour-
hoods (i.e. {7, 17, 27, 37, 47, 57, 67}) covering small to large anatomical structures were
predefined and used in the feature extraction process over mammographic patches contain-
ing different breast tissue examples (e.g. nodular, homogeneous and radiolucent). 2) The
raw feature vectors for all the patch pixels were filtered utilising all available filtering meth-
ods in Weka for reduction of attributes. Empirical testing indicated that the most frequent
and prominent features are within the top half of the output attributes list after filtering. 3)
The filtered feature vectors were then subjected to all available attribute selection (wrapper)
methods in Weka to select the most discriminative subset of the filtered features. The most
frequent attributes in the output subsets were used as the final selected optimal features. 4)
All the available classifiers in Weka were used to perform (10-fold) cross-validation based
evaluation over the selected optimal features. The classifier achieving the highest classifi-
cation results (random committee in this study) was used in conjunction with the selected
features in the mammographic segmentation using Tabár tissue modelling.

An unseen pixel’s tissue class is determined by the trained classifier. The relative pro-
portions of the mammograpic building blocks (tissue composition) were calculated from the
resultant mammographic segmentation as features, and used in a leave one-image out (10-
fold) cross-validation as a means of risk classification.
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(a) (b) (c) (d)
Figure 2: (a) original image (Tabár II/Birads 1), (b) segmentation of (a) with over segmented
glandular (i.e. red nodular and green homogeneous) tissue, (c) processed image, (d) seg-
mentation of (c) showing more segmented blood vessels in the peripheral area, segmented
glandular tissue is more realistic and fatty tissue (blue) is more correctly identified than (b).

Birads 1 2 3 4
1 149 21 0 0
2 17 100 6 0
3 0 12 23 8
4 0 0 7 17

Tabár I II/III IV V
I 122 21 4 0

II/III 19 128 1 0
IV 13 0 24 8
V 1 0 8 11

Table 1: Risk classification confusion matrices; Birads left, Tabár right.

3 Results and Discussion

Visual assessment was conducted to assess the quality of enhanced images. The majority of
cases showed processed images to have improvements in textural appearance and contrast in
the peripheral areas as expected; see Figure 2 (a)(c) for example. However, over and under
enhancement may occur in some cases if PA and BI are not separated correctly, or the breast
thickness ratios are wrongly estimated. During boundary stitching, undesirable artefacts may
be created when a larger neighbourhood is used. Incorrect local intensity alternation affects
textural appearance which can be perceived as an artefact. However, the processed images
seem to have minimum textural distortion and were suitable for the follow up image analysis.
The segmentation results have shown significant improvements in terms of correctness of the
segmented anatomical structures over the breast parenchyma and tissue specific areas.

The risk classification accuracies increased on average 7% when compared with the re-
sults obtained before the image preprocessing was applied. The total classification accu-
racies were 80% and 79% for Birads and Tabár risk scheme, respectively. Table 1 shows
the confusion matrices with respect to the two risk schemes when the developed methodol-
ogy was applied. In both cases, mammographic images in high risk classes seem to have
more misclassification (percentage wise), which may relate to the intensity over balancing
for homogeneous tissue with structureless densities. The achieved risk classification results
are in line with results achieved by the state-of-art method [11], but different segmentation
principle (e.g. two class fatty/dense segmentation) and datasets were used. Further segmen-
tation improvement can be made by widening the tissue patch variation, leading to a more
robust classifier which in turn could also improve risk classification accuracies. However,
this is outside the scope of this study and is considered focus for future investigation on
mammographic segmentation and risk classification methodology.
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4 Conclusions
The developed mammographic preprocessing can be used to reduce intensity and textural
appearance discrepancies. Results have shown more anatomically accurate and consistent
segmentation over the breast parenchyma when using the processed images in conjunction
with the selected feature and classifier. This in turn improved subsequent risk classification
accuracies. Incorporating the novel image preprocessing into mammographic segmentation
methodology could prove useful in quantifying change in relative proportion of breast tis-
sue, aiding radiologists’ estimation in mammographic risk assessment, and providing risk-
stratified screening to patients.
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