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Abstract

Assessment of focal liver lesions (FLLs) in Contrast-Enhanced Ultrasound data re-
quires initialisation tasks that are currently performed manually by experienced radiol-
ogists. These tasks lead to subjective results, are time-consuming and prone to misin-
terpretation and human error. This paper describes an attempt to improve this clinical
practice by proposing a complete pipeline for the automation of initialisation tasks, such
as the identification of a frame where the FLL is well-distinguished, the segmentation of
the FLL and the conical area including the ultrasonographic image. The currently pro-
posed novel contribution to automate the FLL segmentation is a fast two-step method,
initialised only by a single seed-point, which firstly approximates the FLL by an ellipse
and then further refines its shape by iteratively classifying boundary pixels.

1 Introduction

Around 47,000 deaths occur annually in the EU due to primary liver cancer, the incidence
rate of which is 6.2 and 2.4 per 100,000 people for males and for females, respectively [3].
Contrast-Enhanced Ultrasound (CEUS) is recognised as the most cost-efficient imaging so-
lution for distinguishing between benign and malignant focal liver lesions (FLLs) [11], since
it is easy to perform, and uses portable and relatively low cost equipment that allows its
presence in every clinic and even at the bedside. Furthermore, CEUS has gained acceptance
for the detection and characterisation of very small FLLs —i.e. at the very early/premature
stages— with diagnostic accuracy exceeding 95% for the evaluation of malignancies [9].
Radiologists routinely detect, localise, monitor and evaluate FLLs in CEUS video record-
ings manually, through a very time-consuming series of tasks. These include the identifica-
tion of a reference frame, where the FLL is sufficiently represented and well-distinguished
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Figure 1: Pipeline of the proposed two-step method for the FLL segmentation.

from the remainder of the image plane in order to manually segment it, and eventually clas-
sify it as benign or malignant by monitoring the relative changes of brightness intensity of
different regions of interest (ROIs) over time, i.e.their dynamic behaviour[12]. Each of
these tasks requires a high level of expertise and provides operator-dependent results, which
discourage radiologists from using the technique.

The tasks of monitoring and evaluating the dynamic behaviour of an FLL over the du-
ration of a CEUS recording have been addressed by different solutions [1, 7, 10]. However,
all of them assume the existence of prior initialised ROIs, such as the FLL and a larger
area (i.e. US mask) including both the FLL and the surrounding healthy liver tissue (i.e. the
parenchyma) in a reference frame. The selection of such a frame, as well as the automatic
segmentation of the US mask have been addressed in [2] and [1], respectively. However, no
solution has ever been suggested specifically for segmenting the FLL shape in a single frame
of a CEUS recording. Thus, an expert is still needed to manually annotate the FLL in a
frame, after following the standard care protocol. This manual procedure leads to subjective
results, is time-consuming, and prone to misinterpretation and human error.

Therefore, automation of the process is highly desirable. Current approaches for segmen-
tation of different tissues in medical images (e.g. snakes [4], level-sets [5]) are impractical
due to either slow convergence through the need to optimise a large number of coefficients,
or their dependence on a manual initialisation close to the actual boundaries [6]. This paper
describes a complete pipeline to automate the initialisation tasks required for evaluating an
FLL, whilst focusing on the FLL segmentation, in an attempt to improve the clinical practice
by assisting the radiologists to make a diagnosis more easily and with greater confidence.

2 Methodology

The proposed pipeline first segments the US mask, by considering an intensity change detec-
tion as in [1] and then automatically identifies the optimal reference frame as in [2]. Accord-
ing to radiologists, this frame is expected to be the one with the maximum contrast between
FLL and parenchyma.

A novel two-step method is then proposed to segment the FLL boundaries on the ref-
erence frame. Firstly, an enhanced version of a fast active ellipse model (AE) is used to
approximate the FLL by an ellipse, initialised only by a single seed-point. Such an approx-
imation is appropriate due to the FLL being roughly an ellipsoid by definition[11]. Thus,
any 2D representation of an FLL results in an approximately elliptical shape. Secondly, the
FLL segmentation is further refined automatically by iteratively classifying boundary pixels
according to a probabilistic model of the FLL and the parenchyma intensities.
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2.1 Ellipse Approximation

A Gaussian distribution model (G(I4g)) with mean p and standard deviation o is used to
describe the pixel intensities within the AE. The concept of this AE is to iteratively expand
or contract on each major axis independently, according to four different forces.

An AE was first introduced for medical ultrasound in [6], where the forces were based
on modified Gaussian functions. However, such smooth functions may not be appropriate
to distinguish the FLL boundaries precisely. Furthermore, contraction was not allowed, but
only expansion, as its force functions were non-negative (Fig.2(a)). Therefore, we propose
alternative force functions for updating the AE on each iteration based on a rectangular
function (Rectz (I(px))), which is positive for pixel intensities within one standard deviation
o of the mean u of G(I4£ ), but negative otherwise.

+1 ifu—o<I(py) <pu+o

Rectys(I(pr)) = { —1 ifl(py)<p—o.,orl(pp)>p+o (D

where I(py) is the intensity of the pixel p; and 20 specifies the width of the rectangular
function. After considering that the boundary of the AE is divided in K equally-spaced
points, then the pixel py is in the k" of the K points in this boundary.

The sharpness of Rectrs(I(py)) is more appropriate for emphasising the FLL’s bound-
aries than the modified Gaussian function proposed in [6], and should allow faster expansion
and contraction. The force proposed here is defined as:

S k
fe= Z Rectyo (I(pr)) - W <K> , Vg e {xyx_yiy-} 2
k=1

where x and y are the horizontal and vertical forces with the ‘4’ and ‘—’ subscripts depicting
the direction of each of them, and W, are the weightings used on each force as defined in [6].

The method is initialised by one seed-point within the FLL region. An elliptical shape
model e(x¢,y¢, 7y, ry) is then employed, where x.,y. define the centre of gravity (CoG) and
Iy, 1y the semi-major axes of the AE. For updating the CoG and the semi-major axes of the
AE, at each iteration i, we propose the following equation.

Axe i o —a 0 0| [fir
Ayei| _ |0 0 o —of |fai- 3)
Ary a a 0 0 j
Ary; 0 0 a a]|fh-

where each A represents the change in the corresponding quantity during that iteration and
o is an acceleration parameter. This allows an automated update of the AE, based entirely
on the forces obtained directly from the intensity distribution of the image.

Updating the position and shape of the AE terminates if either a maximum number of
iterations is reached or if the sum of the magnitudes of the forces and the values of u and
o all converge, i.e. the changes in them each stay below a specified tolerance over three
successive iterations. The final output ellipse (e4r) of the AE process covers the area Asg.

2.2 Boundary Refinements using a Probabilistic Model

This probabilistic boundary refinement (PBR) step is initialised by e4z and considers a non-
parametric generic shape model of a closed contour with K points. Initially, another ellipse
is created (egx7), concentric with e4r but with double its semi-major axes and covering an
area Apxr (Fig.2(b)). The annular-shaped area A,;,, = AgE NAgxr is then defined, and the
pixel populations inside each of Ay and A,;,, are assumed to describe the classes of the
FLL and parenchyma, respectively, 1.e. Cr or Cp. The segmentation of the FLL’s boundary
is then treated as a binary classification problem, allocating pixels to either Cr or Cp.
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Figure 2: (a) shows the 2 different force functions applied to the AE. In (b) the red (inner)
ellipse is eqg and the concentric blue (outer) ellipse is egxr. The green (irregular-shaped)
contour depicts the final segmentation of the FLL by the proposed method (Fy). (c) shows the
histogram of the pixel brightness intensities of the two areas of interest (Axg and A,jp,). (d)
shows an FLL not well-distinguished due to acoustic shadow. (e) gives the comparison of Fy
(green) compared with the manually annotated ground truth Fg7 (yellow) giving J = 84%.

Two distinct Gaussian probability distributions are used to model the pixel intensities
inside A4g and inside A, respectively (Fig. 2(c)). Specifically, the proposed approach pro-
cesses samples from the population of each class separately, and models the class-conditional
probabilities (Pr(I(py)|Cr) and Pr(I(py)|Cp)) by fitting a Gaussian model, using Maximum
Likelihood Estimation to find the mean and standard deviation, for each class.

Consequently, at each iteration, the intensity /(py) of each boundary point py is assessed
and Pr(I(py)|Cr) compared with Pr(I(py)|Cp). This point py is classified into Cr or Cp
according to the larger of the conditional probabilities. (This is equivalent to a Bayesian
classification with equal priors for the two classes.) The contour is then expanded or con-
tracted along the radial line from the CoG to py, based on the above classification decision.

The updating of the position and shape of the closed contour terminates if either a maxi-
mum number of iterations is reached or if the contour’s length converges over five successive
iterations, i.e. the changes in the length stay below a specified tolerance.

3 Data and Evaluation Metrics

Data of 60 real clinical cases of a multi-centre study with patients in different physical
conditions were provided. 5 cases had to be excluded from the evaluation since the FLL
was not well-distinguished from the remainder of the image plane due to acoustic shad-
ows (Fig.2(d)). All data was acquired using Siemens ACUSON Ultrasound (US) systems
(Mountainview CA). 46 cases were captured at King’s College Hospital in the UK, at spatial
resolution 1024 x 768 pixels, using an S2000 US system equipped with 4 (or) 6 MHz curvi-
linear transducer. The remaining 14 cases were captured at Evgenidion Hospital in Greece,
at spatial resolution 768 x 576 pixels, using a Sequoia C512 US system equipped with 6-
2 MHz curvilinear transducer. In all examinations the second generation contrast medium
SonoVue [8] (Bracco S.p.A., Italy) was used in a 2.4ml bolus intravenous injection (into an
arm vein), which allows excellent depiction of the FLL vascularity and perfusion [12]. Spe-
cific acquisition parameters of the equipment for each patient are unknown, as they were
set by the radiologist individually at the start of each examination. The acquisition method
of this data reflects true clinical practice and leads to increased variability. Examinations
were performed by radiologists with 13-16 years of experience using CEUS. All data were
obtained without prior knowledge of subsequent processing by a software tool and without
any specific instructions being given to the radiologist beforehand. Appropriate ethics and
confidentiality procedures have been followed at all times.
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Figure 3: Jaccard index for assessing the overlap between Fir and Fy for the original AE [6],
the Level-Set method [5] and the proposed method across our datasets.

To evaluate quantitatively the proposed method at the pixel level, the ground truth sil-
houettes of the FLLs (Fgr) were manually annotated by a radiologist in the reference frame.
These silhouettes are then compared with the areas segmented by the proposed method, Fy

(Fig.2(e)). The metric considered for evaluating the similarity and difference between Fgr
|ForNFy|
) — [FGrUF[ > ™ ]
Pxy € For NF; and penalises pixels misclassified as either FLL or non-FLL (py., € For AFy).

and Fy is the Jaccard index (J = ), as it strictly accepts information only from pixels

4 Experiments and Results

Our proposed methods, along with the original AE [6] and a Level-Set method [5] for com-
parison, were implemented in Matlab v.7.12 without parallelism on an Intel 17-2620M plat-
form with 8GB RAM and applied to 55 cases where the FLL was well-distinguished. The
value of the acceleration parameter & in Eq.3 was set equal to 1 in all cases.

Comparing the median values and inter-quartile ranges (IQR) of J between our enhanced
AE and the AE of [6] justifies the proposed improvements (Fig. 3). In addition to the prin-
cipal improvement, which is the increase in the value of J, the enhanced AE needs on aver-
age only 59.4% of the time required for the AE of [6] to converge, namely 1.2 rather than
2 seconds on average per case, as the rectangular force functions lead to faster ellipse fitting.
This could be significant where a large number of cases are processed.

Applying the proposed PBR step to the output from the AE (eqg) gives further improve-
ment to J, indicating a much better segmentation of the FLL (Fig. 2(b)). The results from the
application of PBR are compared with results of a Level-Set method [5], again initialised by
eag . Both the median and IQR of J across all cases are higher for PBR than for the Level-Set
method, showing that the FLL segmentation is superior when using the former. Last but not
least, our method converges in a small fraction (2.2%) of the time required by the Level-Set
method, e.g. 5.9 seconds rather than 4.4 minutes on average per case.

5 Conclusions and Future Work

In this paper, we proposed a complete pipeline to automate the initialisation tasks required for
the evaluation of FLLs in CEUS data. In particular, a novel two-step method was proposed
for automating the FLL segmentation based on a probabilistic model. The first step consists
of an enhanced AE using a rectangular force function, to approximate the FLL by an ellipse.
The second step is used for refining this approximation by iteratively classifying boundary
pixels according to a probabilistic model. Experimental comparison of the proposed version
of AE to the original one [6] justifies the proposed enhancements. In addition, the second
step of our method demonstrated better performance and lower computational time when
compared with Level-Sets [5]. However, its performance is dependent on the manual input
of one seed-point and the ROI should be in a form which can be reasonably well-bounded
by a closed contour. The proposed method should also be appropriate to other modalities
and application areas, e.g. breast US. Last but not least, coupling of the proposed pipeline
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with an existing tracking method [1, 7, 10] could lead to an automated framework for FLL
evaluation providing a second-opinion tool to radiologists.
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