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Abstract

Phase contrast microscopy (PCM) is routinely used for the inspection of adherent cell
cultures in all fields of biology and biomedicine. Key decisions for experimental proto-
cols are often taken by an operator based on typically qualitative observations. However,
automated processing and analysis of PCM images remain challenging due to the low
contrast between foreground objects (cells) and background as well as various imag-
ing artefacts. We propose a trainable pixel-wise segmentation approach whereby image
structures and symmetries are encoded in the form of multi-scale Basic Image Features
local histograms and classification of them is learned by random decision trees. This
approach was validated for segmentation of cell versus background, and discrimination
between two different cell types. Performance close to that of state-of-the-art specialised
algorithms was achieved despite the general nature of the method. The low processing
time (<4s per 1280×960 pixel images) is suitable for batch processing of experimental
data as well as for interactive segmentation applications.

1 Introduction
Phase contrast microscopy (PCM) is widely used as the de facto light microscopy modality
for the inspection of adherent cell cultures. Segmentation of PCM images is challenging
due to the low contrast between the cell objects and the image background: generic thresh-
olding approaches (e.g. Otsu’s [9]) do not usually produce satisfactory results. Specialised
approaches for PCM image segmentation that rely on a priori knowledge of the structure
and properties of the images have been developed, including methods based on contrast
filters [2, 6, 7, 14], active contours [1, 12], weak watershed assemblies [3], and image for-
mation models [16]. More recently, trainable segmentation methods for microscopy images
based on statistical learning of image features (e.g. intensity, texture) have been gaining trac-
tion [8, 13, 15]. Random forest classifiers were found to be suitable for segmentation tasks
due to low computational complexity and their ability to accommodate large datasets such
as images [11, 13]. Typically, trainable segmentation involves using the responses to a bank
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of linear and non-linear filters computed at multiple scales as feature vectors for pixel-wise
classification. However, the vector for a given pixel typically contains only a single value per
scale for a given feature and thus does not encode for potentially valuable local information
and context.

In this contribution, we describe a framework for PCM image segmentation whereby
local histograms encoding image features at multiple scales were used as the input to random
decision trees classifiers. This was achieved by computing Basic Image Features (BIFs), an
image representation whose pixels take one of seven values depending on local features and
symmetries [4]. This small range of possible pixel values allowed efficient construction
of local histograms and classifier training was computationally tractable even in the case
where multiple scales were considered. The segmentation performance is assessed using
two separate PCM images dataset with distinct challenges. It is also compared to specialised
PCM segmentation algorithms.

Figure 1: PCM pixel classification based on local histograms of BIFs.

2 Trainable segmentation

2.1 General approach

PCM images were segmented based on local histograms of Basic Image Features (BIFs) (Fig.
1). First, BIFs of the input image were computed at various scales. Local BIFs histograms
were then computed for windows centred at each pixel of the image. The feature vector
for classification was constructed by concatenation of the local BIFs histograms obtained
for a given pixel of the input across all scales considered. The dimensions of the pixel
feature vectors were thus M×7 where M is the number of scales considered. For comparison
purposes, the situation where a single value per scale per pixel was considered, effectively
corresponding to a window width of 0 pixel. Pixel feature vectors for classification were
then of dimensions M×1.

The classifier used was a random forest with 20 trees and
√

F features sampled at each
split where F is the total number of features. The output of the classifier was a binary label,
with 1 for foreground objects (i.e. cells) and 0 for image background. This output was used
as is for segmentation without further processing or refinement.
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2.2 Local Basic Image Features histograms computation
The computation of Basic Image Features (BIFs) consisted in classifying the output obtained
from convolution of an image with a bank of derivative-of-Gaussian (DtG) filters into one
of seven categories. These categories corresponded to distinct local image structures, as
defined by local symmetries [4]. The response of the convolution of the image I with one of
the DtG filter was denoted ci j where i and j represented the order in the x and y directions,
respectively. Scale normalised response si j was then computed as shown in equation 1.

si j = σ i+ j
B ci j (1)

Based on the scale normalised response, an intermediate calculation is carried out as shown
in equations 2 and 3.

λ = s20 + s02 (2)

γ =
√
(s20 + s02)2 +4s2

11 (3)

Both λ and γ were computed for each pixel of the input image I. Pixels were then classified

in one of seven categories based on the largest of {εc00,
√

c2
10 + c2

01,λ ,−λ , γ+λ√
2
, γ−λ√

2
,γ},

resulting in a BIFs image IB. BIFs computation was thus controlled by two parameters: the
scale (standard deviation) σB of the DtG filters and a value ε that controls when a pixel
should be considered flat (i.e. no specific structure). For this work, ε was kept at a constant
value of 0.03, which was empirically found to produce good results regardless of the feature
scale considered.

Soft-edged local BIFs histograms were computed by convolution [5]. First, seven binary
masks b(k) were generated as shown in equation 4, one per Basic Image Feature.

b(k)(x,y) =

{
1 if IB(x,y) = k
0 otherwise

for ,k = 1,2, . . . ,7 (4)

Images C(k) were obtained by convolution of each binary mask b(k) with a Gaussian kernel
Gσw of standard deviation σw equal to the desired window size as shown in equation 5.

C(k)(x,y) = Gσw ∗b(k) for k = 1,2, . . . ,7 (5)

The histogram at location (x,y) was then constructed by concatenating the values of obtained
across the seven C(k) images for that location, as shown in equation 6.

H(x,y) = [C(1)(x,y),C(2)(x,y), . . . ,C(7)(x,y)] (6)

2.3 Datasets and segmentation performance evaluation
Two datasets were used for segmentation performance evaluation (Fig.2). The first one was a
set of 50 250×250 pixel mouse embryonic stem cells (mESC) PCM images [6]. This dataset
was used to evaluate the performance of the algorithm for a simple foreground versus back-
ground segmentation task. The second dataset comprised 20 500×500 pixel PCM images of
human embryonic stem cells (hESC) co-cultured with mouse embryonic fibroblasts (MEFs).
This dataset was used to evaluate algorithm performance for the discrimination between two
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foreground object types with similar visual features. This second dataset was used in a previ-
ous study [10] where a preliminary, unoptimised implementation of the approach described
here-in resulted in promising results but at the cost of long processing times (∼40s per im-
ages). Due to the nature of the cells imaged, it was not possible to segment individual cells.
Instead, the goal was the classification of pixels as either foreground or background.

Segmentation performance was evaluated by comparison of the algorithm output with
ground truth images annotated by human experts. The agreement between the two was calcu-
lated using the F-score (i.e. Dice’s coefficient). A leave-one-out cross-validation (LOOCV)
approach was taken whereby the classifier was trained using 50000 pixels randomly sampled
across N−1 images before being used to predict the labels for each pixel of the left out im-
age. This was repeated N times so that all images were left out once. The reported LOOCV
F-score was thus the mean F-score across the N images.

Figure 2: Datasets used for segmentation performance evaluation: mouse embryonic stem
cells (mESC) and human embryonic stem cells (hESC) PCM images. The last column shows
the agreement between the segmentation output using optimal parameters and the ground
truth.

3 Segmentation performance
Segmentation performance was evaluated for both the mESC and hESC PCM images datasets
over a range of parameter values. The width of the local histogram window (σw) was varied
between 5 and 400 pixels. Five base BIFs scales (σB) were considered: 1, 2, 4, 8, and 16. All
31 permutations of these scales were evaluated for each window size σw. For both datasets,
the best performance was obtained using local BIFs histograms computed at three scales:
σB1 = 1, σB2 = 2, σB3 = 8 (Table 1). The optimal window width was found to be 15 and 100
pixels, for the mESC and hESC PCM datasets respectively. This difference was most likely
due to the nature of the textures to discriminate between in both cases.

These optimal results were compared to those obtained by using different feature types
and encoding methods (only the best results obtained for each condition after parameter val-
ues optimisation are reported). For both datasets, using single-scale BIFs as features resulted
in a slight drop in performance. Likewise, using single BIFs values instead of local BIFs his-
tograms resulted in marked decreases in mean LOOCV F-score of 15% and 51% for the
mESC and hESC PCM datasets, respectively. Finally, alternative feature types were consid-
ered: raw pixel intensity values and pixel intensity values after application of a contrast (i.e.
standard deviation) filter. Both feature types were encoded using 10 bin local histograms.
The same scales permutations and window widths were investigated as in the case of BIFs.
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Using intensity pixel values as features resulted in a pronounced decrease in segmentation
performance for both datasets. In contrast, standard deviation features fared well, especially
for the hESC datasets where it approached the performance of single-scale BIFs.

Our results were then compared with those obtained using previously described PCM
image segmentation algorithms for the same mESC PCM images dataset (Table 1). Our
trainable segmentation approach outperformed two of the three specialised algorithms it was
compared to and produced results approaching those obtained using the third (best perform-
ing) one. It is important to note that those algorithms were specifically devised based on a
priori knowledge of PCM images properties and specificities whereas trainable segmenta-
tion employed a generic framework solely based on BIFs and the user-set hard constraints.
Interestingly, the classifier learned how to properly label halo artefacts around foreground
objects as background pixels without being explicitly designed to do so (Fig.2).

Table 1: Optimal segmentation results compared with those obtained by alteration of various
components of the algorithm: single BIFs scales in place of multiple scales, a single pixel
value instead of local histograms, and intensity or contrast features instead of BIFs. Our re-
sults for the mESC dataset were also compared to specialised PCM segmentation algorithms.
All results shown as mean F-score ± standard deviation after leave-one-out cross-validation
(LOOCV).

mESC dataset hESC dataset
Optimal 0.92±0.05 0.90±0.07

Single-scale scheme 0.91±0.05 0.88±0.10
No histogram 0.78±0.15 0.44±0.22

Intensity features 0.83±0.12 0.71±0.24
Contrast features 0.85±0.15 0.87±0.10
Jaccard et al [6] 0.95 ± 0.04 -
Juneau et al [7] 0.85 ± 0.10 -

Topman et al [14] 0.84 ± 0.11 -

4 Summary and conclusion
In this work, we described a trainable segmentation algorithm for PCM images based on
multi-scale local BIFs histograms. It performed well in foreground versus background seg-
mentation tasks, approaching performance of state-of-the-art specialised algorithms. Indeed,
the random forest classifier implicitly learned how to correct halo artefacts, which is usually
done as an extra post-processing step in said algorithms [2, 6]. It also produced good re-
sults for a more complex segmentation task consisting in differentiating between two types
of foreground objects with similar visual attributes. The fact that two significantly different
problems could be suitably addressed using the same algorithm demonstrated the versatility
of trainable segmentation approaches in general, and that of the proposed method in partic-
ular.

Processing a standard microscopy image (1280× 960 pixels) took less than 4 seconds
using a single thread on an 3.7 Ghz E5-1620 CPU, including the computations of BIFs at
three scales and the construction of histograms for each pixel of the image. Using BIFs as
features had the advantage of requiring only 7 bin histograms per scale, which allowed their
rapid computation for each pixel. It also significantly reduced the computational complexity
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of the offline phase (i.e. classifier training) as memory requirements and training time both
increase with the number of features. In contrast, when using local 256-bin intensity feature
histograms, computation time soared to more than 45 seconds for the same image and con-
ditions. Specialised algorithms took on average about a second to process the same images
[6].

These low processing times using BIFs make this method suitable for batch segmentation
of large number of PCM images or that of time-lapse movie frames. To generate the results
presented in this paper, the classifier was trained based on 50000 pixels sampled across the
entire dataset (minus the left out image), or less than 1.6% and 1% of the total number of
pixels for the mESC and hESC datasets, respectively. Combined with the low processing
times, the ability to handle sparse annotations could enable the use of the proposed approach
for interactive segmentation of PCM images.
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