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 Abstract  

We propose a framework for assessing the hippocampi on stroke patients and 

studies of small vessel disease, where sclerosis, perivascular spaces and infarcts on 

this structure are common. It includes hippocampal and cavity segmentations, 

hippocampal shape modelling, feature characterisation and statistical analyses, all 

which have been particularly developed for assessing extreme abnormalities on this 

small brain structure on clinical MRI datasets. The hippocampal segmentation uses 

FSLTM tools. We apply this approach to 48 datasets from a study of mild stroke and 

assess its relevance on a larger dataset of 189 stroke patients. Using shape similarity 

metrics we show that the hippocampal shape models generated by our method are 

accurate on this dataset. We estimate the prevalence and distribution of the features 

analysed on the samples to discuss the usefulness of our approach. 

1 Introduction 

The temporal lobe and, in particular, the hippocampus play an important role in cognitive 

processes. Advanced magnetic resonance imaging (MRI) techniques combined with 

histology have confirmed the presence of markers of small vessel disease in the 

hippocampus such as microinfarcts and perivascular spaces [1]. Some of them may 

represent a diffuse vascular process with adverse local effects and/or proxies for larger 

volumes of infarcts or mild or severe diffuse damage [2]. They appear as cavities of 

circular or ovoid shape hyperintense in axial T2-weighted [1] and, if >=2-3 mm diameter, 

hypointense in axial fluid attenuation inversion recovery (FLAIR) MRI sequences. In 
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addition, hippocampal sclerosis occurs in substantial number of older persons. It visually 

reduces the hippocampal size and causes extreme deformations in its shape.  

 We developed computational methods for quantitatively assessing hippocampal 

cavities and hippocampal shape deformities, and integrated them on a framework that 

gives as output a full characterisation of these structures ready to be used in statistical 

analyses. 

2 Methods 

2.1 Preprocessing 

Hippocampi were segmented from T1-weighted volume scans using an atlas-based 

segmentation approach based on FSL FLIRT and FAST [3], and an ageing template 

generated in-house from 97 brains of Caucasian individuals aged 65-70 years old. The 

generated hippocampal binary masks were all visually inspected and manually rectified 

using Analyze 12.0
TM

. FLAIR hypointensities in the hippocampi, of >=2mm diameter with 

circular or oval shapes, were, separately, semi-automatically masked also using the same 

software. They correspond to hyperintensities in T2-weighted and have been reported as 

small cavities [1]. Results were overseen by a trained image analyst and a neuroradiologist. 

2.2 Hippocampal shape modelling 

We developed a shape modelling method tailored to small and highly-variable shape 

structures like the hippocampus, based on the Laplacian surface deformation framework, 

proposed by Kim and Park [4]. This method is characterised by a non-rigid template 

deformation in a coarse-to-fine style to minimise the distortion of the point distribution of 

the template surface model during the target surface reconstruction. It encodes the point 

distribution of the template surface model as Laplacian coordinates representing the 

relative positions of each point with respect to the average position of their neighbours and 

preserves the Laplacian coordinates of the template model as rigid as possible to sample 

the target surface with the point distribution of the template model. Consequently, the 

preservation of this point-wise correspondence allows us to make comparative analyses on 

shape variations. 

      From the binary hippocampal masks of the sample, mean shape images are constructed 

via an iterative and non-linear image registration between the binary masks following the 

process described in [5]. From the mean shape images, the template surface models for left 

and right hippocampi are, then, generated as triangular meshes using spherical harmonics 

following by a point distribution model (SPHARM-PDM v1.11) [6]. Further, to recover 

each individual shape, the template models are rigidly aligned to each target volume (i.e. 

left and right hippocampal binary masks) via the iterative closest point algorithm [7], 

following non-rigid deformation. Under the definition of Laplacian coordinates as the 

difference between each point’s position and the centre of mass for their neighbouring 

points, the surface V  of the non-rigid template deformation is formulated as a quadratic 

form (equation (1)).      
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where V is the set of all vertices vi for the points (each point denoted as i), α is a weighting 

term that controls the rigidity of the deformable model, L  is a discrete Laplacian operator 

and bi  is the closest image boundary on the surface normal at each point, defined as:  

  iiii vvmb    (2) 

where im is the closest image boundary on the direction normal to the vertex and b  is a 

weighting term introduced to regularise the vertex transformation. 

      In order to preserve the Laplacian coordinates as rigid as possible, we employ a 

progressive weighting scheme for α as described in [4]. Under this scheme, the template 

surface model is deformed with as-large-as-possible α values until the points of the 

template model best fit the boundary. This iterative process decreases α in a stepwise way, 

together with the magnitude of the displacement of each vertex. We experimentally 

determined that the maximum α value for our purpose was equivalent to 10 times the 

volumetric ratio between template and target.  The optimal V  for equation (1) can be 

obtained by solving a linear system using a matrix form of the Laplacian operator via a 

linear least squares approach. The solution is described in detail elsewhere [4]. 

      We added the rotation and scale invariant (RSI) transformation proposed by [8] to the 

modelling process described in [4]. It constrains the vertex transformations only to 

rotation, isotropic scale and translation. This helps regularising the individual vertex 

transformation, derived by external factors, to the transformations of the neighbour vertices 

using them as reference. 

2.3 Analyses of shape and cavities 

A shape deformity map from the individual surface models is generated using the mean 

surface models of left and right hippocampi. The individual surface models are normalised 

via an isotropic rescaling of each shape model using hippocampal size and the generalised 

Procrustes analysis [9]. Local shape differences are determined by the displacement 

vectors between the corresponding vertices of the individual surface models and the mean 

surface model. The shape deformity at each vertex is computed as the signed Euclidean 

norm of the displacement vectors, projected on the vertex normal on the mean surface 

model to determine the direction of local shape changes. 

The number of hippocampal cavities (i.e. hippocavities) and their load per hippocampi 

are derived automatically by assessing the intersection between the hippocavities mask and 

the hippocampal binary masks after a “fill-hole” operation is performed. The count was 

determined by counting the isolated clusters of hippocavities on each hippocampal mask. 

The load per structure is the total relative hippocavity volume of all hippocavities within a 

hippocampus. The morphology of individual hippocavities is quantified by its volume, 

maximum in-plane extent, roundness and sphericity. The “clusterisation” of small 

individual hippocavities is determined through the assessment of “compactness” as defined 

by Bibriesca in [10]. 

3 Experiments and Results 
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3.1 Datasets 

We used MRI data from patients with lacunar or mild cortical stroke that presented with 

stroke symptoms to a teaching hospital between 2002 and 2013 and formally consented to 

participate on studies of stroke. All MRI data were acquired on the same 1.5T GE Signa 

Horizon HDxt clinical scanner operating in research mode with a self-shielding gradient 

set with maximum gradient of 33 mT/m, and an 8-channel phased-array head coil.  

      From a sample of 48 patients (14 women) mean age 66 (SD=10) years, we assessed the 

hippocampi and cavities as explained previously. To generate hippocampi binary masks 

we used T1-weighted spin-echo MRI scans of which 6 had matrix dimensions of 

256x216x256 and voxel size of 1.0156x0.9x1.0156 mm
3
 and the rest had matrix 

dimensions of 256x256x42 and voxel size of 0.9375x0.9375x4 mm
3
.  Cavities were 

assessed using FLAIR and T2-weighted images, only on 42/48 subsets in which images 

had matrix dimensions of 256x256x42 and voxel size of 0.9375x0.9375x4 mm
3
. In the rest 

(i.e. 6/48 datasets), these sequences had very anisotropic voxels (0.4688x0.4688x6 mm
3
) 

that were unsuitable for this purpose. 

We visually assessed the presence of hippocavities on T2-weighted and FLAIR MR 

images from 189 MRI datasets from patients with acute lacunar ischaemic stroke clinical 

syndrome and a relevant lesion visible on the diffusion-weighted image, to examine their 

prevalence, appearance and distribution. 

3.2 Results of the analyses of hippocampal shape and cavities on a 

subset of 50 stroke patients  

In the shape modelling, β was set at 0.3 and α was progressively reduced from 30 to 1. For 

the 6 datasets with nearly isotropic voxels, β=0.5 and minimum α=0.3 were preferred, but 

for cross-evaluation purposes the results obtained with these α and β values were 

discarded. We visually checked the results using the MITK Workbench 2013.06.00 (Figure 

1(a)) and calculated three similarity measures to quantitatively evaluate the modelling 

results (Table 1). 

   
Figure 1: Illustration of results obtained from the shape analysis: Screenshot of the 

hippocampi shape models (superimposed onto the binary masks and the T1-weighted 

image) for a subject (left), and regions of significant deformation differences between the 

hippocampi from patients that had cortical vs. lacunar stroke (pattern superimposed onto 

the mean shapes of left and right hippocampi) (right).  
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Measure Right Hippocampus Left Hippocampus 

Dice coefficient 0.9135 (IQR 0.0338) 0.8867 (IQR 0.0342) 
Hausdorff distance (mm) 4.6482 (IQR 3.3304) 7.8551 (IQR 2.5206) 

Mean distance (mm) 0.2006 (IQR 0.1711) 0.3595 (IQR 0.2450) 

Table 1: Median and interquartile range values of the shape similarity measurements 

between the surfaces of the individualised (i.e. fitted) shape models and the hippocampal 

binary masks (after converting the latter to voxel meshes). 

FLAIR hypointensities with intensity level 0 were found in 9/42 datasets, of which in 

4/9 were single voxels. In general, single voxel FLAIR hypointensities, were found in 

14/42 datasets, either scattered within the structure or in its periphery, or distributed in a 

line along the Cornu Ammonis 1 (dorsal hippocampi). Multivoxel structures of a single 

intensity value (of which 21 were elongated and 24 were ovoid) appeared on 25/42 

datasets. Multivoxel structures of different intensity and shape patterns appeared on 37/42 

datasets (Figure 2). The maximum hippocavity volume found was 49.22 mm
3
 (ovoid 

shape).  

 
Figure 2: Three examples of the distribution of FLAIR hypointensities/T2-weighted 

hyperintensities on representations of their respective hippocampi. Arrows point to 

hippocavities penetrating the hippocampi. Encircled are hippocavities on the surface. The 

blue surface is the 3D representation of the binary mask. 

3.3 Incidence of hippocampal cavities on a large sample of patients 

with lacunar stroke 

Hippocavities were observed on 86/99 patients with the index stroke lesion in the left (L) 

cerebral hemisphere, on 67/78 patients with the index stroke in the right (R) cerebral 

hemisphere and, in general, on 82% of the sample (155/189), with a median value of 2 

cavities per hemisphere regardless of the location of the index stroke. Only on two patients 

a hippocavity ovoid in shape with maximum diameter of 3-4 mm was observed. The rest 

were either round with 1-2 mm diameter or elongated small structures coincident with the 

appearance of perivascular spaces [11]. 

4 Discussion and Conclusion 

An integrated framework that includes shape modelling and cavity characterisation for the 

assessment of the hippocampus on clinical MRI datasets of stroke patients and patients 

with small vessel disease has been proposed here. The anisotropy of the imaging voxels, 

extreme structural deformations and prevalence of several abnormalities imposed a manual 
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editing step for obtaining hippocampal binary masks and cavities. The rest of the process 

was fully automatic. The shape modelling pipeline presented, preserved the individual 

shape details allowing the detection of morphological changes of this structure. Further 

work will involve 1) evaluating its robustness against other state-of-the-art shape 

modelling methods and on detecting subtle morphological changes of this structure and 2) 

combining the hippocampal and cavity masks using the latter as a constraint on the 

deformation process.  

Not all FLAIR hypointensities computationally identified by thresholding had the 

characteristics of those visually identified as hippocavities on the larger clinical sample. 

However, with the proposed framework, these could be identified. The prevalence and 

characteristics of those identified as possible hippocavities on the sample computationally 

analysed were in agreement with the visual assessment on the larger sample and with 

existent clinical reports [1,2]. 
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