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Abstract
This study aims to generate synthetic and realistic retinal fundus colour images, sim-

ilar in characteristics to a given dataset, as well as the values of all morphological param-
eters. A representative task could be, for example, the synthesis of a retinal image with
the corresponding vessel tree and optic nerve head binary map, measurement of vessel
width in any position, fovea localisation and so on. The presented paper mainly focuses
on the generation of non-vascular regions (i.e. retinal background, fovea and optic disc)
and it is complemented by a parallel study on the generation of structure and texture of
the vessel network. To synthesise convincing retinal backgrounds and foveae, a patch-
based algorithm has been developed; model-based texture synthesis techniques have also
been implemented for the generation of realistic optic discs. The validity of our synthetic
retinal images has been demonstrated by visual inspection and quantitative experiments.

1 Introduction
Retinal fundus imaging is a very helpful tool for the diagnosis of many diseases such as di-
abetes, glaucoma and cardiovascular conditions [1]. This is reflected by the large number of
algorithms for optic disc (OD) detection, vessel segmentation and width measurements [8].
In order to evaluate performance, limitations and clinical applicability of a medical image
analysis algorithm, a validation step is mandatory. Validation can be defined as the process
of showing that an algorithm performs correctly by comparing its output with a reference
standard [11]. Algorithm validation on manually annotated ground truth (GT) images is a
well documented and necessary practice. However, it is also well known that obtaining large
quantities of annotated medical GT images is an expensive and laborious task.

The main purpose of this work is the generation of synthetic high resolution retinal fun-
dus images (Figure 1a) in a controlled manner along with a synthetic GT free from inter-
observer variability. In the synthesised retinal phantoms, textural anatomical features can
be modified to simulate a wide range of parameters and different populations. Our syn-
thetic data would allow extensive validation of algorithms for segmentation and analysis of
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anatomical structures. The final goal is the public release of a new database containing syn-
thetic retinal images including OD and macula centre coordinates, vessel binary maps and
width at any position and artery/vein classification. All these measurements are of crucial
importance during the validation of retinal image analysis algorithms. Medical phantom im-
ages are extensively used in many medical imaging environment, but, to our best knowledge,
no previous work on the automatic generation of retinal phantoms has ever been proposed.

This initial project has been based on the publicly available High-Resolution Fundus
(HRF1) Image Database [7], which has 45 high-quality images at the resolution of 3504×
2336 pixels. The generated retinal phantoms have the same size, but images of every resolu-
tion can be synthesised by the presented method, given an appropriate dataset.

(a) (b) (c)

Figure 1: A comparison between a real retinal fundus image from the HRF dataset (a) and
two synthetic phantoms generated with our method (b) and (c).

This paper is organised as follows, in Section 2 we describe the proposed method provid-
ing details for both the patch-based (Subsection 2.2) and the model-based (Subsection 2.3)
texture synthesis algorithm we propose for the generation of background, fovea and OD.
Section 3 describes the conducted experiments and the achieved results. Finally in Section 4
we present our conclusions and some hints for future works.

2 Method

2.1 Overview
In order to generate convincing retinal fundus image phantoms, we started from the obser-
vation of real images. At a first glance, retinal images are showing three obvious elements
surrounded by an orange-red background: Optic Disc, Vessel Network and Fovea. The
background presents a variety of textures. Brightness is also non-uniform across the image,
usually brighter in vascular regions and darker in the fovea and in the image periphery. Intu-
itively the average colour distribution in retinal images could remind us of a horseshoe (see
Figure 2). Choroidal vessels are also sometimes visible in transparency, this effect creates
a real texture, very different from a mere smooth colour fill. In order to synthesise a new
background preserving both non-uniform colour distribution and texture characteristics, we
developed a patch-based tiling algorithm inspired by Efros and Freeman’s Image Quilting
technique [3], where novel images are synthesised by stitching together small examples of
existing images. On the other hand, for the generation of synthetic ODs a novel model-based
approach has been followed. This method relies on the idea of learning the distributions of
key morphometric quantities from real images and realistically reproduce them.

1The HRF database can be downloaded at http://www5.cs.fau.de/research/data/fundus-images/
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(a) (b) (c) (d)
Figure 2: An example of colour intensity distribution map (CM) in red (a), green (b) and
blue (c) channels and the correspondent clustering map (c-CM) (d).
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Figure 3: Block diagram depicting the overall method to generate synthetic retinal images.

2.2 Background and Fovea generation

In this section we will discuss about the generation of background and fovea achieved by the
previously described patch-based algorithm. As we can see (Figure 3) the tiling algorithm
needs three inputs: a) a Correspondence Map (CM); b) a consistent cluster-CM (c-CM) and
c) a suitable Tiles Dictionary (TD). For our purposes, a CM is a spatial map of the corre-
sponding colour intensity distribution over the real and the synthetic images. The CM allows
our tiling algorithm to recreate a realistic background texture. Different CMs have been cre-
ated by weighted averaging of 15 real preprocessed images (the healthy HRF subset). The
preprocessing consisted in a naive co-registration step followed by a more sophisticated fore-
ground (OD and vessel tree) inpainting. The co-registration step consists in a rigid rotation
and a translation of all the images in order to make them share a common polar coordi-
nate system centred on the OD. For the foreground inpainting step we took advantage of the
technique proposed by Criminisi et al. in [2]. An example of CM is shown in Figure 2.

The tiling algorithm can generate realistic backgrounds and foveae stitching together
blocks (tiles) collected from real images. For the generation of our retinal phantoms we
collected more than 300,000 vessel-free tiles 7× 7 pixels and we organised them in a TD.
To facilitate the research of matching blocks performed by the proposed tiling algorithm, all
the collected vessel-free tiles have been grouped into clusters using a pixel-wise K-means
algorithm. The number of clusters (4) has been optimised using the Akaike Information
Criterion [6] and the feature selected for the clustering were the red and green intensity value
of each pixel. Each tile has then been assigned to a unique cluster by means of majority vote.
To link this idea with the CM, a consistent c-CM, which shows the distribution of clusters in
the CM, has been evaluated as well.
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For the description of the proposed tiling algorithm a syntax consistent with [3] has been
chosen. To assess the colour similarity among the tiles, the original error surface e has been
replaced with a new error surface ε defined in Equation 1 (where the symbol ◦ indicates the
element-wise matrix product and the two indexes n<C1,C2> and γ<C1,C2> are, respectively,
the grey level and the chroma similarity indexes described in [5]).

ε<C1,C2> = 1−n<C1,C2> ◦ γ<C1,C2> (1)

The tiling algorithm workflow can be described as follows. Let Φ be the desired output
image and τk(i) the i-th element of the TD assigned to the cluster ωk. The final result can be
achieved going trough Φ in raster scan order in steps of the size of the tiles minus an overlap
(3 pixels) and iterating the following steps:

1. Randomly pick up successive τk(i) from ωk (where k is defined by the c-CM) until the
best match, defined as the tile that locally satisfies the two constraints below, is found:

• local consistence with the CM: the Euclidean distance between the picked-up tile
and the correspondent tile in the CM is less than a threshold T1;

• local consistence among the neighbouring blocks in the overlap areas: more than
the 90% of the pixels values of the evaluated error surface ε must be less than a
threshold T2.

2. Compute the Cumulative Minimum Error between the overlapping areas defined as
Ei, j = εi, j +min(Ei−1, j−1,Ei−1, j,Ei−1, j+1) where i = 2, . . . ,N j = 2, . . . ,M and ε is
N ×M.

3. Finally, place the new tile cutting out its edges as delineated by a Best Boundary Cut
(i.e. the minimum value in each row/column of E) and repeat.

The two thresholds (T1 and T2) have been heuristically determined (10 and 0.05 respec-
tively), as well as the default tiles and overlap dimension.

2.3 Optic Disc generation
The OD appears usually as a slightly irregular ellipse with a small inner depression, called
cup. The edge of the OD is more evident in the red channel, while the inner cup is usually
best highlighted in the green and blue ones. Therefore, to reproduce the same visual effect,
we developed two parametric intensity models, one for the red (Equation 2) and one for both
the green and the blue channels (Equation 3, where the meaning of the two parameter vectors
p̄ = [x0,y0,z0,a,σ1,A,ω] and q̄ = [p̄,x0,y0,σ2,k] will be clarified below):

fR(x,y, p̄) = z0 −
1

a+ exp
[
−
(

x−x0+Acos(ωt)
σ1

)2
−
(

y−y0+Acos(ωt)
σ1

)2] (2)

fGB(x,y, q̄) = fR(x,y, p̄)+ k exp
[
−
(x− x0

σ2

)2
−
(y− y0

σ2

)2]
(3)

The two models refer to a three-dimensional space, where the horizontal plane (x,y) is
the image plane and the vertical axis z is the colour intensity expressed in the (r,g,b) colour
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(a) (b) (c) (d)
Figure 4: OD intensity models on the red (a), the green and the blue (b) channels. Real OD
data on the red (c) and green (d) channels.

space. The OD generation workflow is described in the lower section of Figure 3. The pa-
rameters of the models have been estimated over 30 HRF images (15 healthy and 15 diabetic
retinopathy) using a weighted nonlinear least squares criterion. Looking at Figure 4 an ex-
planation of the meaning of the parameters could be provided as follows. While (x0,y0,z0)
simply control the translation of the surface along the axes, σ1 controls the spread of the sur-
face in the horizontal plane (similarly to the standard deviation in the Gaussian component,
σ2). Tuning a we can also modulate the amplitude of the surface. Figure 4a has a low fre-
quency oscillating sinusoidal term that models the irregularity on the OD edges (the cosine
in Equation 2 is evaluated in [0, · · · ,2π]). Equation 3 presents a symmetrical Gaussian sur-
face that models the inner cup pallor. A suitable probability distribution has been evaluated
for each parameter. Convincing ODs can be then synthesised by random sampling a set of
parameters from the relative estimated distribution and then evaluating with them Equation 2
and 3.

3 Results
This paper focuses on the generation of non-vascular regions; our preliminary retinal phan-
toms present synthetic backgrounds and ODs, but vessel networks collected from real healthy
HRF images using the provided manually segmented vessel map. Figure 1 shows a compar-
ison between a real retinal fundus image (a) and two examples from our synthetic phantoms
databases (b,c). The first results look promising: the generated retinal backgrounds seem to
reproduce a realistic colour intensity distribution and a realistic representation of the fovea
has been achieved as well. The synthetic ODs look also realistic, they show a natural colour
intensity with a correctly placed inner cup and their edge looks realistically merged with the
surrounding background.

The main intended purpose of our synthetic image generator is to provide a dataset along
with GT images (all parameters known) to validate retinal image analysis algorithms. As-
suming that the images are affected by additive Gaussian noise, we compared the estimation
of the noise variance σ2 (evaluated as suggested in [4]) between 15 real HRF and 15 syn-
thetic images. The obtained values are σ2

real = 0.020 and σ2
synth = 0.022. Then, we validated

our results proving that in the non-vascular regions no vessel-like patterns are created by
our method. No intensity adjustment has been provided for the vessel network, so the con-
sidered test only concerns the false positive values. We used the well-known algorithm by
Soares et al. [9] to detect vasculature maps on 15 retinal phantoms and on 15 healthy HRF
images provided with manual GT; then we compared the two obtained false positive rate
(FPR = FP

FP+T N ). Using a two-sample Komolgorov-Smirnov test no significant difference at
the 5% level can be observed between the FPR obtained from the vessel detection on the two
datasets. The average FPR is 0.0097 ad 0.0112 on real and on synthetic images, respectively.
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4 Conclusions
In this paper a novel technique for the automatic generation of synthetic retinal fundus im-
ages has been presented. A realistic representation of the non-vascular regions (background,
fovea and OD) has been achieved and we are currently working on the generation of structure
and texture of synthetic vessel trees as well as retinal abnormalities. To our best knowledge,
no similar method has been reported in literature. The validity of our retinal phantoms has
been supported by visual inspection and quantitative experiments. We are aware of the pre-
liminary nature of the conducted test and we plan a more complete analysis with automatic
estimates of further parameters using VAMPIRE [10] and subjective evaluations by clini-
cians. However, the presented results let us sense that we are correctly moving towards the
generation of a synthetic dataset for the validation of retinal image analysis algorithms.
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