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Abstract

Extracting histological parameters, especially macular pigment, from multispectral
images of the ocular fundus is a potential technique for the assessment of age-related
macular degeneration. Such approaches make use of a Monte Carlo radiation transport
model relating spectral reflectance of the tissue to tissue histology. We develop a proba-
bilistic surrogate for this computationally expensive physicalmodel using Gaussian pro-
cesses (GP). Further, we present a Bayesian inversion algorithm that uses the surrogate
model to recover model input parameters. This methodology is tested both on synthetic
data generated from the Monte Carlo model and on real image data. It is shown that
our inversion methods can recover macular pigment concentrations in human retina with
good accuracy and the spatial distribution is consistent with known physiology.

1 Introduction
A reduction in the quantity of macular pigment (MP) in the retina is thought to be posi-
tively correlated to the onset of Age-related Macular Degeneration (AMD), the most com-
mon cause of blindness in the Western world. There are no established objective assessment
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methods. Research techniques compare a spectrum measured at the fovea (where the macular
pigments are present) with a background measurement from nearby and deduce the macular
pigment optical density (MPOD) from the difference between the two measurements. An
important unresolved problem is to compensate for the effect of scattering by ocular tissues
and of absorption by other pigments (melanins, haemoglobins) present in the fovea region.

In [4], we proposed a solution which involves the use of a computational forward model
that predicts spectral reflectance for a histologically plausible set of retinal composition pa-
rameters. The model is parameterised by the quantities of pigments (MP, melanin in retinal
pigment epithelium and choroid, haemoglobins in retina and choroid) and assumes constant
tissue thickness and scattering properties derived from values found in the literature [2]. The
ability to isolate the effect of MP on tissue reflectance depends on being able to spectrally
separate MP from other pigments present in the sample. It has been shown [4] that this sepa-
ration can be achieved optimally through measurements at six wavelengths, namely 507nm,
525nm, 552nm, 585nm, 596nm and 610nm. Image data is acquired at these wavelengths and
the images are divided pixel-wise by the image at 610nm to normalise for uneven illumina-
tion to form so-called image quotients.MP concentration can then be estimated from this set
of spectral measurements by inverting the forward model.

The forward model is constructed by means of a Monte Carlo-based simulation of light
transport in the retinal tissue. Previous attempts to inverting such a mdoel have adopted a
lookup-table approach to compute MP values by interpolation [4]. This approach is sensitive
to image quality and underlying approximations in the model, and we are driven towards
a Bayesian inverse problem approach in order to subvert these difficulties. However, the
Monte Carlo simulation is costly and unsuitable for iterative inversion, which makes a robust
solution scheme for the inverse problem very challenging. A solution that could circumvent
this difficulty is to approximate the forward model by a computationally cheap surrogate
model.

We have employed Gaussian Process modelling (GP) [3] to approximate the functional
relationship between the histological parameters and the spectral reflectance. This surrogate
model is constructed using a set of parameter-reflectance pairs generated from the physical
forward model to learn the model’s parametrised mean and covariance functions. Within
the GP framework, the approximate forward model can be formulated analytically and its
computation is much more efficient. Moreover, the probabilistic nature of GPs allows us to
naturally adopt a Bayesian approach to our inverse problem providing a maximum a poste-
riori (MAP) estimate of the model parameters from reflectance measurements.

We first provide a description of our methodology in Sect. 2. In Sect. 3, we validate our
approach with tests on synthetic and real data. We conclude with a discussion in Sect. 4.

2 Methodology
Our approach to estimate macular pigment has three major ingredients: 1) a surrogate ap-
proximation of the forward model using GPss; 2) a Bayesian inverse model for estimating the
model input parameters; and 3) a spatial regularization scheme for the estimation of macular
pigment across pixels.

Mathematically, a GP is formulated as a probability distribution of functions f : x 7−→ y
with input x ∈ℜdx and output y ∈ℜdy . This distribution is characterized by a mean function
m(x) ∈ ℜdy and a covariance function cov(x1,x2;y1,y2). The mean function is modelled
by m(x) = Bᵀh(x) where h ∈ℜK is a multivariate regression function and B ∈ℜK×dy is its
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regression coefficient matrix. The covariance function cov(x1,x2,y1,y2) is approximated by
a product of output covariance Σ(y1,y2) ∈ ℜdy×dy and input covariance c(x1,x2) ∈ ℜdx×dx

specified by c(x1,x2) = exp{−(x1−x2)
ᵀdiag(r)(x1−x2)}with r∈ℜdx as a positive rough-

ness parameter vector. Note that B, r, and Σ are the hyper-parameters that specify a GP.
To train a Gaussian process model, a set of inputs S = {x1, ...,xn} is first selected,

and the corresponding output of each input in the set is computed by running the for-
ward model. The set of outputs D = (f(x1) · · · f(xn))

ᵀ ∈ ℜn×dy can be seen as the obser-
vations from which we infer the underlying GP. The hyperparameters B, r and Σ are esti-

mated by maximizing the likelihood p(D|B,r,Σ) ∝ exp(− 1
2 tr[Σ−1(D−HB)ᵀA−1(D−HB)])
(2π)ndy/2|A|dy/2|Σ|n/2 where

Hᵀ = (h(x1) · · ·h(xn)) ∈ ℜK×n and A ∈ ℜn×n with Ai j = c(xi,x j). To reduce the number
of hyperparameters to be estimated, B and Σ in the likelihood are both marginalised out:
p(r|D) =

∫
dBdΣ · p(D|B,r,Σ) · p(r) · p(Σ) with a log-logistic prior on r = ∏dx

i=1(1+ r2
i )
−1

and a Jeffreys-type prior on Σ ∝ |Σ|−
dy+1

2 . Let r̂ denote the estimate of r that maximize
p(r|D) and note that r̂ is the only hyperparameter that specifies the GP.

For any input x 6∈ S, the corresponding output f(x) is given in terms of a predictive dis-
tribution as p(f(x)) = Tdy(m̂, Γ̂,n−K), which is a multivariate student distribution with its
location vector m̂, scale matrix Γ̂ and degrees of freedom equal to n−K. For the expression
of m̂(x) and Γ̂(x), we refer to [1] but note that the evaluation of these expressions does use
the training sets (S,D), the multivariate regression function h(·) and the input covariance
function c(·, ·; r̂) which is specified by the hyperparameter r̂.

Let yi denote the multispectral image data. It is assumed that yi is the observed model
output y with noise contamination. Thus yi = f(x) + ε where ε is assumed to be i.i.d.
multivariate Gaussian noise with zero mean and spatially homogeneous error covariance
R. This gives rise to our definition of the likelihood as p(yi|f,x) ∝ exp

{
− 1

2 εᵀR−1ε)
}
.

However, the forward model f(x) is now approximated by a GP which is represented by
a probability distribution of f, i.e. p(f). Therefore, f in the likelihood is just a realiza-
tion of the GP p(f) and needs to be integrated out. The resulting likelihood is obtained
by p(x|yi) ∝

∫
df · p(yi|f,x) · p(f). The GP p(f) can be seen as a prior on f. A GP based

inversion maximizes the posterior distribution p(x|yi). Given x, p(f(x)) is a Student distri-
bution over f(x). Thus, we apply the fact that the student distribution can be represented as
an infinite mixture of scaled Gaussian distribution. The resulting posterior is now given by
p(x|yi) ∝ p(x)

∫
dλG (λ ,ν/2,ν/2) ·N (yi,m̂(x),R+λ Γ̂(x)) where ν = n - K. The gamma

function here is strongly localized due to large ν value. Note that the number of training data
n and the number of regression functions K usually differ by two order of magnitudes. Thus,
the computational cost for numerical integration over λ is negligible.

As it is assumed that the parameters vary smoothly across all pixels in the spatial domain
s ∈ I , the parameter field x(I ) needs to be estimated jointly from the image yi(I ). The
joint posterior is given by p(x(I )|yi(I )) = ∏s p(x(s)|yi(s)) · p(x(I )). The prior p(x(I ))
accounts for the smooth variation of each x-component in I and is specified by a Gaussian
Markov random field for each x-component with its regularization parameter ξ :

p(x(I )) ∝
dx

∏
i=1

ξ−|S |i · exp

(
−∑s∈S ∑m∈Ns (xi(m)− xi(s))2

2ξ 2
i

)
,

where Ns defines a neighbourhood of s in S . Here, such a neighbourhood represents the 8
adjacent pixels to every individual pixel.
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Figure 1: Plot of simulated vs emulated
spectral reflectance quotients for the Monte
Carlo model. Error bars indicate twice stan-
dard deviation of predictive error
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Figure 2: Plot of estimated vs true macu-
lar pigment concentration in the retina. Dots
and error bars denote the mean twice stan-
dard deviations of the estimates from inde-
pendently repeated observations.

3 Numerical Validation
In this work, we consider only three input parameters of the model: macular pigment con-
centration in retina, CMP, melanin concentration in retina, CRH , haemoglobin concentration
in RPE, CRM . Other parameters such as haemoglobin and melanin in choroid, are set to
typical values. The output is a five dimensional vector of image quotients.

To train a GP emulator for the Monte Carlo model, a set of 100 input-output pairs are gen-
erated by running the simulation for 100 input parameter vectors which are sampled from
the three-dimensional input space using a Latin hypercube algorithm that maximizes the
Euclidean distance between these input parameters. Further, the pivoted Cholesky decom-
position is applied to detect those vectors that are not sufficiently far apart. After training,
50 input vectors are sampled randomly and their corresponding output vectors are simu-
lated. The predictive mean and standard deviation of their emulator output are computed and
compared in Fig. 1. It is seen that most of the mean predictions are very close to the true
values. Those that clearly deviate are within of two standard deviations of the prediction
error. However, the level of prediction error is somewhat high (about 5%).

Next, we compare the estimated macular pigment concentration with its true value. The
other two variable input parameters are not further investigated. For each of 7 CMP-values
evenly sampled from its normal range, we have generated 10 repeated observations by adding
10 i.i.d Gaussian noise with σ2 = 0.01 to the true value. The mean and its twice standard
deviation of those CMP-estimates are displayed in Fig. 2. The large error bars indicate that
the estimate of CMP from a single observation is prone to random fluctuation. In practice,
however, one can use the observation on neighbouring pixels of the same image if we assume
CMP is constant. Equivalently, we estimate CMP jointly for all pixels on a retinal image while
imposing some smoothness prior on the parametric map of CMP. In this work, a Markov
random field prior is imposed on parameter maps.

The algorithm to jointly estimate the parameters across all pixels is tested on a set of ar-
tificial images of size 100 × 100, with an uniform distribution of all histological parameters
except for that of macular pigment. The spatial distribution of CMP is modeled by a super-
position of an uniform background concentration with CMP = 0.14 and a two-dimensional
isotropic Gaussian with its centre at (50,50) and its full width at half maximum around 10
pixels. The Gaussian is scaled so that its peak value is about CMP = 0.48. Also, we add i.i.d
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Figure 3: Numerical experiment with syn-
thetic data: the true macular pigment field
(upper panel) and the estimated macular pig-
ment field (lower panel)
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Figure 4: Contour plots of the estimated ma-
cular pigment field for two real images from
two subjects.

Gaussian noise with noise level σ2 = 0.01 to the signal at each pixel. The results are shown
in Fig. 3. It can be seen that the estimated CMPs show a spatial distribution very close to the
true one. Moreover, both the baseline and peak CMP values are estimated with good accu-
racy, not to mention that all parameter fields are initialized as a constant field with its value
randomly chosen from the corresponding permissible range. On average, the optimization
procedure is terminated after 500 iterations.

Finally, we apply the algorithm to 2 real retinal images of 2 healthy subjects. For each
image, a ROI of size 140 × 140 is selected so that the foveal region is located in the middle
of the image. The estimated CMP maps are displayed in Fig. 4. It can be seen that there is
a distinct peak of CMP in the foveal area for each subject, with CMP = 0.39 (upper panel)
and CMP = 0.45 (lower panel). It is believed that the estimated peak values are reliable.
This is because we also observe that the baseline CMP is very small (about 0.05) in both
cases. In addition, it is clear to see a rapid decrease of CMP from its peak to baseline. Both
observations are consistent with known physiology.

4 Discussion
We have proposed and tested a surrogate model based inversion method for analysing med-
ical images. The numerical experiments in Sect. 3 demonstrate that our methodology is
feasible and the reconstructed macular pigment map is consistent with known physiology. In
the following, we discuss issues to be addressed in follow-up work.

Our surrogate model for the Monte Carlo model needs to be improved with regards to
the large uncertainty observed (high prediction error). There are two possible explanations:
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1) The output of a Monte Carlo model is, in principle, stochastic whereas the GP emulator
method is developed for approximating a deterministic model; 2) due to the ill-conditioned
nature of the problem, only a limited amount of training data can be used. In this work,
those training data are generated by the Latin hypercube algorithm which does not take into
account the model itself. Clearly, the optimal choice of training data is model dependent.
Therefore, a more sophisticated algorithm needs to be developed.

In this work, we predict the model output vector of length dy using the optimized GP for
each pixel individually. In fact, we can also predict the multivariate output field jointly. This
can further reduce the prediction error as the former approach can be considered to be an
approximation of the latter by setting all off-diagonal blocks of size dy×dy in its predictive
covariance matrix to zero. However, the resulting covariance matrix is too large to be dealt
with in respect of the computing power. On the other hand, this matrix could be a low-rank
matrix as the parameter field is smooth. Therefore, low-rank approximation techniques could
be used here, in conjunction with the surrogate approximation method.

Applications of GPs as surrogate model in medical image analysis can go beyond the
model inversion problem which we have explored in this paper. A surrogate approximation
approach could also be useful in optimal design of experiments. For example, we can use the
surrogate model to determine the optimal set of wavelengths for multispectral imaging. For
Gaussian processes, some theoretical results have been developed in the area of experimental
design. More importantly, Gaussian processes can be used for simultaneously approximating
a forward model and accounting for model error. This is potentially useful because the
forward model used in a inverse problem may not adequately describe the full complexity
and variability of the problem. GPs can include such information statistically.
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