
RYAN CUNNINGHAM: AUTO MEASUREMENT OF CONTRACTION VIA ULTRASOUND 1

Automated Measurement of Human Skeletal
Calf Muscle Contraction via B-Mode
Ultrasound Imaging

Ryan J. Cunningham1

r.cunningham@mmu.ac.uk

Peter J. Harding2

p.harding@mmu.ac.uk

Ian D. Loram2

i.loram@mmu.ac.uk

Nicholas P. Costen1

n.costen@mmu.ac.uk

1 School of Computing, Mathematics and
Digital Technology
Manchester Metropolitan University

2 School of Healthcare Science,
Manchester Metropolitan University

Abstract

Traditionally surface Electromyography (EMG) has been used to non-invasively iden-
tify the activation of superficial skeletal muscle. We propose that the automated analysis
of Ultrasound (US) images can provide an alternative technique by which active and pas-
sive muscle movement may be classified. We present a method by which the change in
muscle shape can be extracted from pairs of sequential US images and used to classify
whether that shape change was caused by active or passive muscle lengthening. Re-
sults are presented which show that our method can correctly classify active and passive
movements with greater than 95% accuracy and is less affected by change in contraction
strength than EMG.

1 Introduction
There are many methods available that provide ways by which muscle activity can be anal-
ysed - most notably EMG (surface) or IEMG (intramuscular). Electrodes placed on the skin
(EMG) can measure activation of superficial muscle but there is an inherent level of noise
which can make it difficult to identify activation at small forces/velocities; this is particu-
larly true if a small activation co-occurs with a larger one. Filtering an EMG metric can help
in the extraction of meaningful physiological information about muscle activity, but often
the signal to noise ratio is too low to reveal anything at low force exertion [4]. Thin wire
electrodes inserted into the muscle through the skin (IEMG) can measure contraction in both
superficial and deep muscle, and is generally considered a more accurate representation of
activity than EMG. IEMG is more susceptible to external electrical noise, measures a small
volume within the muscle, and is invasive (IEMG requires a sterile environment; there is
also an inherent risk factor when measuring motor neurons near the spine and neck). Ultra-
sound has been considered by many as a possible alternative method of measuring activity in
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Figure 1: ASM segmented (blue contours) US of relaxed GM (Gastrocnemius Medialis;
superficial muscle in the calf) and array of point features (white dots) over GM. Sheer, thick-
ness and width (MS, MT, MW) are calculated as: the mean difference in x displacement of
the top and bottom row of point features, the mean difference in y displacement of the top
and bottom row of point features, and the mean difference in x displacement in the leftmost
and rightmost columns.

skeletal muscle [3, 4, 5, 6]. US is entirely non-invasive, risk free, cost effective, and has been
shown to be more sensitive to architectural changes (such as pennation angle, cross-sectional
area) resulting from contraction than EMG at low force exertion [4, 6]. US can also analyse
a much greater cross-sectional area of muscle tissue.

Recent work [3] has demonstrated that with the application of computer vision tech-
niques (such as ASM [1], and KLT feature tracking [7, 8]), useful information about muscle
architectural changes can be automatically derived from US. We propose that further to this,
measures derived from architectural changes of muscle can be used to correctly identify
whether the shape change was caused by external forces (i.e. passively) or by voluntary
contraction (i.e. actively).

2 Methodology

2.1 Segmentation and Motion Tracking

An ASM was used to segment 25Hz US video sequences of GM, then KLT features were
selected within the intramuscular area on a 7× 7 grid arrangement and tracked into the
next frame. The ASM segmentation was then updated and features re-selected to prevent
tracking drift beyond the image boundary. A square KLT feature window size of 55px was
used across all trials. Figure 1 illustrates the tracking process. GM contours in 450 images
(describing range of motion for each participant) were marked up and used to train the ASM.
The principal component model was constructed at runtime from the mark-up database.

A non-standard initialisation step was used with this model. At the start of each video
sequence, the most accurate mean shape was chosen from all known participant shape means.
This is done by iterating over each participant mean and calculating the Mahalanobis distance
from each contour point to the statistical models of gradient calculated during training. At
this point the best fit from the participant i.e. that with the lowest total Mahalanobis distance,
was used as the “mean shape” for the duration of that video sequence. Other than this change,
the ASM used was as defined in [1]. This method of segmentation and tracking is described
in detail in previous work [3].
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segmentation is then updated and features re-selected to prevent tracking drift beyond the
image boundary. A square OF feature window size of 55px was used across all trials. Fig-
ure 1 illustrates the motion tracking process. GM contours in 450 images (describing range
of motion per participant) were marked from trial 1a of 9 of the 12 participants, which were
used to train the ASM. The principle component model is constructed at runtime from the
image mark-up database and is parametric (Max Fitting Iterations; Maxit , Gaussian Smooth-
ing Kernel; Gs, K pixel contour joint profile derivative).

A non-standard initialisation step is used in this model. At the start of each video se-
quence, the most accurate mean shape is chosen from all known participant shape means.
This is done by iterating through each participant mean and calculating the Mahalanobis dis-
tance from each contour point to the statistical models of gradient calculated during training.
At this point the best fit from the participant i.e. that with the lowest total Mahalanobis dis-
tance, is used as the “mean shape” for the duration of that video sequence. Other than this
change, the ASM used is as defined in [2].

2.2 Model of Muscle Shape Change

Previous measures used to assess muscle shape change have included muscle thickness, and
muscle sheering [5, 7], in addition to these measures we also consider muscle widening in
our analysis (see Figure 1). We suggest that rather than distilling the muscle shape change
between two frames into two or three single value metrics, the use of grid sampling over the
entire cross sectional area of the muscle will provide additional information about the active
or passive nature of that shape change. We consider all of the 49, point features on a per
frame basis, in our analysis. Figure 2 shows examples of how we extracted information that
can be used to approximate width, thickness and sheering from the point features.

Xc=1 Xc=3 Yc=1 Yc=3 Xr=1

Xr=4

Figure 2: Left: A vector of X displacements per column (sheering). Center: A vector of
Y displacements per column (thickening). Right: A vector of X displacements per row
(widening).

To use the entirety of the data, would result in 198 dimensions which we considered to
be too many. For reduction of dimensionality we compute the mean sheering per column,
S̄c, mean thickening per column T̄c, and mean widening per row W̄r. Since the magnitude
of active movement over passive movement is ≈ 1 order greater [7], in order that we avoid
solving an ill-posed problem we remove velocity from the data by normalising on a per frame

Figure 2: Left: A 3-item vector of x-direction displacements per column (sheering). Centre:
A 3-item vector of y-direction displacements per column (thickening). Right: A 4-item
vector of x-direction displacements per row (widening).

2.2 Muscle Shape Change Modelling
Previous measures used to assess muscle shape change have included muscle thickness and
muscle sheering [4, 6], in addition to these measures muscle widening is also considered
in our analysis (see Figure 1). Rather than distilling the muscle shape change between two
frames into 2 or 3 scalar metrics, the use of grid sampling over the entire cross-sectional
area of the muscle provides additional information about the active or passive nature of that
shape change. All of the 49 point features were considered on a frame by frame basis, in
the analysis. Figure 2 shows examples of how information is extracted that can be used to
approximate width, thickness and sheering from the point features.

To use the entirety of the data would result in a 98-dimensional feature vector, where
the sample size is 6,672. For reduction of dimensionality the mean sheering per column, S̄c,
mean thickening per column, T̄c, and mean widening per row, W̄r were computed. Since
the magnitude of active movement over passive movement is≈ 1 order of magnitude greater
[6], in order to avoid solving an ill-posed problem, velocity was removed from the data by
normalising on a per frame basis, giving a relative velocity (shape of motion). Sheering,
thickening and widening measures (SS, ST, SW) are created as

SS = { S̄c }∀c = { Xcr }∀r
ST = { T̄c }∀c = { Ycr }∀r

SW = { W̄r }∀r = { Xcr }∀c.
(1)

This leaves 3 vectors containing 7 mean displacement values which are uses as a 21 dimen-
sional descriptor of shape change between each two frames.

2.3 Activity Determination
An SVM [2] was used for the classification of active and passive shape changes. The training
data was labelled using force exerted in active trails per participant to define when the muscle
is being moved actively, and corresponding frames of each following passive trial to define
when the muscle was being moved passively. The segmentation was defined as

s(v, t) =
(
( fvt > σv)∨

(
d ( fkt)

dt
> σk

))
¬
(

d ( fkt)

dt
<−σk

)
(2)

where v is the trial, t is the frame, k is a constant (k = 1), σv is the standard deviation of force
in trial v, and fvt is the force in trial v at frame t.
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Figure 3: SVM optimisation error surface, where the cost function E(D−,C,σ) (see Equa-
tion 4) is plotted against RBF σ and the SVM Box Constraint, C.

Leave one participant out cross validation was used to train the SVM, where a single
participant’s data was used to validate and all remaining participants’ data was used to train.
Both the training and validation data were created from the sheer, thickness and width mea-
sures according to

D = {|SSt ,STT ,SWt |}∀t. (3)

The SVM used here had a Gaussian Radial Basis Function (RBF) kernel and was trained
with the binary training signal of all participants, to differentiate between active and passive
shape changes. The SVM was optimised during training by varying the hyperplane margin
C and the RBF σ parameters. The optimisation function - where minimal distance between
the two errors reduces the bias on the training samples - is defined as

E(D−,C,σ) =
SσC(D−)error+SσC(D)error

2 + |SσC (D−)error−SσC (D)error|

Minimise : E(D−,C,σ) ∀C ∈ R : 0→ e4.5, ∀σ ∈ R : 0→ e4.5, ∀D− ∈ D
(4)

where D− is the validation set D− ∈ D, D is the training set D ∈ {x1,y1, ...xn,yn}−D− and
SσC (D)error is the error of the SVM (SσC) on the set D.

2.4 Data Collection
Simultaneous US and EMG measurements were made over 3 sets of 2 trials (20s duration)
with 12 participants, positioned upright with their backs against a stiff board, standing on
programmable foot pedals. For the first of each set (trial a) participants rotated the foot
pedals in a plantarflexion (increasing the joint angle between shank and foot) motion (with a
diminished level of force from trials 1–3), while maintaining their body posture; the pedals
automatically returned to level if no force was exerted. The force exerted (Nm) and foot pedal
angle (degrees) were recorded at 1000Hz. The force was used to actuate the motors on the
foot pedals which caused an ankle plantarflexion rotation. For the second of each set (trial
b) participants allowed their ankle angle to rotate freely with the pedals while maintaining
posture; the recorded angle from each participant’s trial a was used to drive the motors in
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SVM 95.11%
MS 62.69%
MT 55.03%
MW 52.12%
EMG 68.49%
Force 83.52%
Angle 50.06%
Equal Error

Figure 4: Left: SVM/EMG comparison showing accuracy at equal error over contraction
strengths for all participants. Right: ROC curves for all participants over trials 3a–3b (lowest
activity trials) only, showing accuracy at equal error.

trial b, resulting in passive muscle length changes occurring within the corresponding time
frame to the active muscle length changes in trial a. Data were recorded via EMG over
the GM muscle at 1000Hz, and an US probe secured to GM. All US video sequences were
collected at a static temporal resolution of 25Hz.

2.5 Data Processing

EMG was filtered with a sixth order high pass Butterworth filter, followed by rectification
and a second order, low pass filter. Cubic interpolation was used to re-sample the recorded
US measures (see Equation 1) from 25Hz–1000Hz. The data were realigned temporally via
cross-correlation of US and external measures, with a maximum possible US realignment of
15 frames (assuming that US measures will always lag behind force output). On average US
lags the external measures by ≈ 13 frames (0.52s).

3 Results

Receiver Operating Characteristics (ROC) (see Figure 4) were computed on the optimised,
cross-validated SVM and all other measures. An ROC threshold step interval of 1

500 was
used. After filtering the SVM time-series output with a low pass Butterworth filter, the
SVM shows a highly reliable classification accuracy of 95.11% at equal error. Independent
US metrics (MS, MT, MW) report reasonable accuracy, with fascicle sheering operating at
62.69% accuracy at equal error. EMG does prove reliable in the majority of cases, but for
some participants the noise threshold was enough to bring the accuracy down to 68.49% at
equal error. The significance of these results is in the fact that they represent the classification
accuracy of low force muscle activations. Figure 4 (Left) shows that the SVM (Ultrasound)
is more accurate over all trials, than EMG, with greater consistency at lower force exertions.
The average peak force exertion over all participants for trial 3a is 21.47Nm, and the average
peak foot pedal angle is 4.37◦. The average peak force exertion over all participants for trial
1a is 64.35Nm and the average peak for foot pedal angle is 8.51◦.
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4 Conclusions
It has long been established that there is a non-linear relationship of sensitivity to physio-
logical change under force between US and EMG, with US being more sensitive to change
at smaller activations in the isometric case [4]. It has previously been established that these
changes can be measured automatically [3, 6]. We have shown that it is possible to correctly
classify an active or passive muscle shape change from automated analysis of temporal skele-
tal muscle US, even when the joint rotation angle is identical. The technique presented here
has also been shown to offer a more accurate classification between active and passive mus-
cle shape change than surface EMG on this data set. This method establishes a starting point
in the construction of a comprehensive model of human muscle function, which combines
muscle length change, activation and joint angle. Future work will explore the wider ap-
plication of this technique to other, less accessible, muscles such as deep muscles near the
spinal cord and cervical muscles in the neck.
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