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Abstract

We propose a semi-automatic framework for fitting a continuous, parametric surface
to cranial boundaries in 3D fetal ultrasound (US) images. The user provides an initial
alignment of the surface so that it respects anatomical brain regions. The surface is then
deformed to adhere to the cranial boundary, respecting its non-ellipsoidal shape while
maintaining the user-provided anatomical alignment. Our framework has applications in
preprocessing images for 3D fetal brain image analysis, and for the extraction of clini-
cally useful cranial measurements. We evaluated our framework on 45 fetal US images.
An average user time of 1.44 minutes was required for initialization and a visual inspec-
tion of results is presented.

1 Introduction
The goal of brain image analysis is to investigate intracranial structures using image infor-
mation from different subjects and different time points. To achieve this, it is necessary to
establish a common coordinate frame between test images. The typical approach for neu-
roimage preprocessing involves skull stripping followed by registration, in order to deform
the images into a common image domain. This inherently relies on the anatomical delin-
eation of internal brain structures within the images.

In developing brains, registration is complicated by absent, underdeveloped, or incon-
sistent anatomical landmarks for alignment [5]. In particular, analysis of ultrasound (US)
images is further complicated by the thickening of cranial bones which results in the ob-
struction of the intracranial landmarks necessary for registration. However, the skull is re-
liably visualized due to its echo-bright appearance in comparison to its surrounding tissues.
This property of fetal brain US images potentiates the need for a method of obtaining image
alignment on the basis of a “cranial domain” as opposed to a “voxel domain”. To achieve
this, we propose a semi-automatic framework to fit a continuous parametric skull surface
into each test image. The domain of the surface acts as the cranial domain, allowing image
information to be anatomically queried from any subject based on skull position.
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(a) (b) (c)
Figure 1: Surface Model (a) The control mesh (green) defines its underlying surface (pink).
(b) The control vertices and faces are color-annotated with the anatomical regions with which
they will align, and (c) these annotations are propagated down to the surface.

In our framework, the user provides a rough alignment of the skull surface to the imaged
brain (Sections 2 and 3). The surface is then minimally deformed to the inner skull bound-
aries without changing the topology of the surface points (Sections 4 and 5). A discussion
of the framework follows in Section 6.

2 Surface Model

A biquadratic B-spline surface specified by control vertices X 2 RNX ⇥3 and control mesh
T models the skull surface. A point p on the surface is parametrized by u 2 W, where
W ⇢ R2, so that p = M(u,X) with M : W⇥RNX ⇥3 ! R3. The surface normal at u is defined
by n = Mf (u,X) with Mf : W ⇥RNX ⇥3 ! R3. Exact analytic evaluation of M(u,X) and
Mf (u,X) for any control mesh is achieved using Doo-Sabin subdivision [2].

The skull control mesh was crafted to be approximately spherical with 96 vertices and 98
faces (Figure 1(a)). To facilitate the manual initialization process, the vertices and faces of
the control mesh were color-annotated with four anatomical landmarks discernible in fetal
brain US images: right hemisphere (red), left hemisphere (green), frontal cortex (yellow),
falx cerebri (junction between red and green), and base of the brain (gray) (Figure 1(b)). The
annotations associated with each point on the control mesh then define the coloring of the
underlying surface (Figure 1(c)).

3 Surface Initialization

To initialize the surface control vertices (X0) the user rigidly aligns the default skull surface
to the imaged brain using a multi-view graphical user interface (GUI). This is achieved by
manually:

(a) Displacing the center point of the default surface (Figure 2(a)) to roughly align with the
center of the brain, and

(b) Rotating and anisotropically scaling the surface such that the surface annotations are
roughly aligned to their anatomical positions, approximating the cranial dimensions
(Figure 2(b)).
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(a) (b) (c) (d)
Figure 2: Surface Deformation Axial view of an example fetal head with (a) default anno-
tated surface, (b) user-initialized surface, (c) deformed surface. (d) 3D rendering of deformed
cranial surface.

4 Surface Deformation
For a given test image, candidate interior skull positions C 2 RNC⇥3 and normals F 2 RNC⇥3

are generated using standard US edge detection techniques — Feature Asymmetry [4] with
an isotropic log-Gabor filter followed by non-maximum suppression.

Given a matrix U of NU surface points, the energy defining the fit of the surface to some
selection l 2 NNU of boundary candidates is given by 1:
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where N is the set of edges over the surface points and is derived from the Doo-Sabin
subdivision procedure and L = (l1,l2,l3,l4) controls the influence of each term.

Stepping through Equation 1, Eunary quantifies the position and orientation mismatch
between each surface point ui and its corresponding boundary point li. Epairwise models the
fact that boundary points are spatially correlated so that neighboring surface points prefer
boundary points which are close. Euser encourages minimum deformation from the user
initialization but more importantly removes the problem of finding multiple local minima
that may arise from the geometric symmetry of the near-ellipsoidal shape. Ereg encourages a
smooth surface by penalizing large displacements between the surface control vertices.

To make the model robust to missing boundary information over large sections of the sur-
face, we augment C with “phantom” boundary candidates which are located at each surface
point pi = M(ui,X) and incur a fixed unary penalty z if chosen:

Ei
robust-unary(l,u,X) =

8
<

:

Eunary(l,u,X) li  NC
z li = NC + i
0 otherwise

(2)

This robust unary Ei
robust-unary replaces Eunary in Equation 1, and the augmented candidate

matrix is used in place of C in Epairwise(l).
1Note that upper case letters denote matrices and lower case bold letters denote row vectors.
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We find a local minimum to Equation 1 by performing alternating discrete and continuous
optimization steps (Figure 3). Initializing X to X0 and U to a regular sampling of W, we use
belief propagation with a subset of edges in Epairwise to solve for an approximate l which is
then refined using QPBO [3]. Next, given l, Equation 1 is minimized jointly with respect to X
and U using the Levenberg-Marquardt algorithm. Note that if robust labels are chosen during
the discrete step, Epairwise is also dependent on X and U because of the “phantom” boundary
candidates. It should be emphasized that we do not fix U or restrict boundary candidates
to be perpendicular to the model surface, which is typically done in “Snakes” and Active
Contours. In conjunction with Ereg, this strongly discourages surface folding and stretching.

5 Experiments and Results
The cranial deformation model framework was applied to 45 randomly-selected 3D US im-
ages of the head from healthy fetuses at 22 weeks of gestation. Each image was typically
of dimensions 215 ⇥ 230 ⇥ 151 with a resolution of 0.2 ⇥ 0.2 ⇥ 0.2mm3. An operator2 ini-
tialized a surface mesh into each individual image, spending an average of 1.44 minutes per
image. Solving time took approximately 2-3 minutes, dominated by the two discrete opti-
mization steps (Figure 3). Identical model parameters of L = (8.0,3.0,0.25,1.0), z = 600.0,
and NU = 1536 were empircally selected and used for all test images. Small changes to L
and z did not result in drastically different recovered surfaces.

Cranial Deformation Our framework updates the control mesh geometry so that the un-
derlying surface matches the cranial boundary. This is evidenced by Figure 4 in which the
deformed surfaces are displayed on orthogonal image slices for four of the 45 examples,
showing the variability of fetal head pose. Each example highlights that the surface is ca-
pable of deforming such that it closely adheres to the inner skull boundaries, respecting the
skull’s non-ellipsoidal shape.

Anatomical Consistency The deformation process modifies the geometry of the control
mesh but preserves topology. To demonstrate this, we first specified cutting planes in the
cranial domain. Next, using the deformed surfaces in each image we evaluated these cutting
planes in image coordinates (Figure 5). It is evident that the same intracranial structures are
visible within the different images, with consistent anatomical positioning. The surfaces pro-
vide a cranial parametrization which retains anatomical consistency between images, void-
ing the need for transformation of the images into a common image voxel domain. However,
the anatomical positioning is reliant on a correct anatomical alignment provided by the user
initialization.

6 Discussion
We have developed a framework to fit a parametric surface into 3D fetal US scans. This
relies on the user to provide a prior for each model surface which is then deformed to fit the
interior skull boundary. Our method recovers detailed structure of the skull and anatomically
consistent skull surfaces. However, fine-grained alignment is still desirable and our results

2The operator did not partake in the development of the graphical user interface or the surface deformation
framework.
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Figure 3: Example Convergence (z = •) Each iteration of discrete optimization (n = 0,10;
orange lines) solves for l, affecting only Eunary and Epairwise. Subsequent continuous opti-
mization steps minimise U and X jointly until convergence, affecting all energies except
Epairwise. Note the increase in Eunary at n = 10 is accompanied with a larger decrease in
Epairwise.

Figure 4: Cranial Surfaces Four example cranial deformations for the orthogonal image ac-
quisition slices: coronal (first column), transverse (second column), and axial (third column).
The resulting deformed surface (right) is shown for each example.
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Figure 5: Slice Extraction Axial (first row) and coronal (second row) slices extracted from
deformed surfaces of six different images at planes defined by 3 points (white). Color anno-
tations display the anatomical consistency between different slices.

show that this should be possible by modeling geometric and appearance similarity between
the frames, leading to simultaneous fitting of all model surfaces.

The fact that the surface deforms to adhere to the inner skull boundaries means that it con-
veniently separates the brain from extracerebral tissue such as the skull, skin, and maternal
tissues. Thus, this framework may prove useful as a preprocessing technique for neuroimage
analysis algorithms such as segmentation and registration. In addition, the delineation of the
cranial outline may allow for the extraction of clinically useful biometric measurements for
applications in fetal growth monitoring and detection of craniofacial dysmorphology [1].
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