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Abstract

Despite of an increasing use of Confocal Laser Endomicroscopy (CLE) in gastroen-
terology, an objective interpretation of this data is not established and its processing still
states a very difficult task due to the high amount of noise and motion blur shown in
these images. Nevertheless, this imaging technique offers great opportunities in terms of
immediate in vivo diagnosis of histological alterations, e.g. in the case of cancer detection.
We present a new framework for joint segmentation, detection, and analysis of vessel
structures in CLE images requiring a minimal amount of user feedback. For this purpose
we introduce a new type of non-linear derivative operators, the Oriented Differences of
Boxes (ODoB) filter.

1 Introduction & Related Work
Endomicroscopic imaging has emerged to an established tool in gastrointestinal endoscopy
and allows to visualize microscopic alterations of the mucosa during an ongoing endoscopic
examination in order to improve diagnosis and to guide therapy. Recently, the representation
of mucosal vascularization has attracted substantial scientific interest as it contributes to the
pathogenesis of different diseases, such as gastrointestinal cancer and chronic inflammation.
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(a) CLE image of non-
pathological porcine ileum.

(b) Processed image with seg-
mented vessels (best seen in
colors).

Figure 1: (a) CLE images are likely to be cor-
rupted by pixel noise (A), blur (B), and intestinal
contents (C). (b) Desired result after processing.

Figure 2: Outline of our framework:
dashed and solid lines attached to trape-
zoids indicate optional and mandatory
user interaction, respectively.

However, the images obtained by Confocal Laser Endomicroscopy (CLE) imaging are inher-
ently corrupted by noise, blur, low contrast, and other types of disruptions, as exemplarily
shown in Fig. 3(a).

Traditionally, CLE images have to be evaluated manually, which is very time-consuming
and prone to errors. Hence, vessel segmentation in 2d as well as 3d data is in focus of
scientific research for many years, as indicated by literature surveys[2, 3]. While the majority
of these methods concentrate on retinal images with reasonable high resolutions and good
contrast, only a few approaches exist for noisy CLE images at low resolution. Contrary to us,
a remarkable group of approaches propose to use learning-based techniques. Socher et al. [6]
identifies pixels from retinal images as ridges to get an approximation of the vessel center-
lines. Xu et al. [7] classifies the output of adaptive local thresholding using SVM. The local
geometric structure around vessel pixels is measured by evaluating the corresponding structure
tensor by Zheng et al. [8]. Another approach more related to our proposal was presented by
Rouchdy et al. [5] who identifies endpoints of vessels and measures their geodesic distance in
order to find optimal connecting paths.

We propose a new framework for semi-automatic processing of CLE images. The amount
of user interaction is minimized to a few simple tasks. The remainder is structured as follows:
in Sect. 2 we describe the central steps of our approach as displayed in Fig. 2. Afterwards,
Sect. 3 gives a brief insight into the subsequent analysis of the segmentation results. In Sect. 4,
we discuss the performance of our framework to summarize and conclude in Sect. 5.

2 Preprocessing & Segmentation

2.1 Oriented DoB Filters for Local Structure Enhancement
Since the input images show a high amount of noise and are corrupted by blur—as exemplarily
shown in Fig. 1(a)—, preprocessing by non-linear bandpass filtering is mandatory before
segmenting vessel candidates. Following, will introduce Oriented Differences of Boxes
(ODoB) filters and further processing for segmentation of prospective vessel structures. In
order to suppress noise in non-vessel regions and simultaneously emphasize the vessel
structures themselves, we propose an gradient orientation-specific extension of Differences of
Boxes (DoB) filter.
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(a) (b)
Figure 3: (a) an input image and (b) the result
of traditional non-oriented DoB filtering. The
vessel structure is corrupted and noise is not
suppressed sufficiently.
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(b)
Figure 4: ODoB Filter for gradient orienta-
tion ϕ = 45◦: (a) in the spatial domain and
(b) in the frequency domain. This realizes
a complex bandpass filter.

 

 

π/2

π

3π/2

2π

(a) gradient orientations (b) small size (c) medium size (d) large size
Figure 5: Exemplary results of ODoB-filtering image Fig. 3(a): (a) gradient orientations (color
coded; best seen in the electronical version), (b)–(d) results for increasing filter sizes. Local
vessel structure is drastically enhanced by this operation, while noise and blur is suppressed.

As presented by Rodner et al. [4], DoB filters DoBm,M(g) = 1
m ∑m

i=1 gi − 1
M ∑M

l=1 gl for
1-dimensional signals g were designed to approximate Difference of Gaussians (DoG) or
Laplacian of Gaussian (LoG) operators usually employed to determine local structure in-
formation in a fast and efficient way. Prior knowledge about the target structure can be
incorporated by choosing appropriate values for the parameters m and M representing the
widths of the outer and the inner box filters, respectively.

Regarding 2d images, this approximation of isotropic LoG operators would destroy
structure information, as can be seen in Fig. 3. Therefore, we extend the original DoB filter
to align with the local structure tensor—which turns it into a non-linear filter—and call it
Oriented Differences of Boxes (ODoB) filter. Fig. 4(a) shows a ODoB filter mask oriented
by ϕ = 45◦, while its corresponding power spectrum in frequency domain is illustrated in
Fig. 4(b). It gets evident, that this filter realize a complex bandpass filter favoring a certain
direction and simultaneously suppressing its orthogonal counterpart. Following this idea,
vessel structure will be smoothed along the local gradient direction (cf . Fig. 5(a)) and thus
emphasized by approximating the local derivatives as shown in Fig. 4 (b)–(d).

2.2 Foreground Segmentation and Vessel Detection
The ODoB-filtered images show enhanced structures with more homogeneous intensities. In
order to detect connected areas within the vessels, we apply a parameter-free Seeded Region
Growing (SRG)[1] algorithm on these images which does not require predefined homogeneity
criteria and thresholds. This returns a binary foreground-vs.-background segmentation of the
input image as displayed in Fig. 6(a). While local maxima of the ODoB output are directly
used as initial seeds, no new seeds are created while expanding the regions. Prior this step, the
user is able to determine a free-form Region of Interest (ROI) in order to exclude bogus regions
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(a) (b) (c)
Figure 6: Results of rough vessel detection: (a) segmented regions obtained by Seeded
Region Growing and (b) the corresponding morphological skeletons; (c) the resulting forest
of Minimum Spanning Trees after Split-and-Merge simplification.

(a) sampled vessel areas from input image 3(a)
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(b) distribution of vessel diameters for five distinct
frames from the same image sequence

Figure 7: Sampled vessel areas used for further statistical computations.

from onward processing as well as to adjust the amount of objects regarded as foreground, i.e.
the number of seeds for SRG. Finally, the user is able to delete wrong objects or to close gaps
between segmented areas.

After segmenting the foreground hypotheses, their morphological skeletons already give
initial approximations of the vessel axes, as depicted in 6(b). These skeletons are obtained by
morphological closing operations iteratively repeated as long as not more than the middle
line of an object remains. By computing these skeletons, the still unrelated foreground pixels
are augmented by a neighborhood structure. Since vessels can split into parts, i.e. one vessel
might dissolve into several sub-vessels, hierarchical relations can be obtained in an optimal
way by concepts taken from graph theory. Therefore, we transform the skeleton points
into weighted graph trees G = (E,V ,w) of edges E and directed vertices V with associated
weights w. These graphs are further decomposed into a forest of Minimum Spanning Trees
(MST). In order to remove degenerated trees and to reduce the number of branches along the
vessels, we further simplify the MSTs in a Split-and-Merge way. Using these tree branches,
the final vessel boundaries are obtained for each pixel located at the vessel axes, as shown
in Fig. 6(c). As a further chance for feedback, we allow the user to manually select vessel
endpoints in order to include missed structures. An optimal path through the graph is obtained
by applying Dijkstra’s algorithmemploying a cost function based on locally enhanced ODoB
filter outputs.

3 Statistical Vessel Analysis
Given the detected vessel structure, we are able to derive a couple of statistics in order
to assist the diagnosis after endomicroscopic imaging. One key characteristic of mucosal
microvascularization is the distribution of vessel diameters within the examined region. Since
vessels might intersect, overlap, or occlude each other, those vulnerable regions should not be
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Table 1: Average runtimes of in-
dividual steps in our approach.

Process Step Elapsed Time

ODoB filtering 0.491 s
Seeded Region Growing 0.028s1

Minimal Spanning Tree 1.284 s
Split-and-Merge
Simplification

0.047 s

1per iteration

Table 2: Overview of statistical parameters derived
from our final segmentation of Fig. 3(a).

Parameter Symbol Value

Total vessel length lvessel 8633µm
Total vessel area Avessel 29773µm2

Total ROI area AROI 109369µm2

Mean vessel diameter µ(dvessel) 8.2432µm
Vessel diameter std. dev. σ(dvessel) 3.4339µm
Relative vessel area AFCD = Avessel

AROI
27.222522

Number of branches NB 158
Fractal dimension D 1.827129
Lacunarity Λ 0.152779

taken into account for further analysis. To overcome this problem, we draw representative
samples from the vessel tree (cf . Fig. 7(a)) to approximate the distribution of vessel diameters.
Fig. 7(b) exemplarily shows this histogram obtained for the image given in Fig. 3(a). In order
to compare or match histograms obtained from different frames or to monitor changes over
time in delayed recordings, we calculate the intra and inter class distances as well as the
Earth Mover’s Distance (EMD) of extracted vessel diameter histograms. These provide a very
robust similarity measure. Beyond this histogram, several other statistical or form-describing
parameters are obtained, as summarized in Tab. 2.

4 Evaluation & Discussion
The proposed system was implemented in C++ using the parallelization toolbox OpenMP
and tested on a desktop computer equipped with a Intel Core-i7 CPU running at 3.4GHz and
16GB of RAM. ODoB filters for all orientations are precomputed and stored into a look-up
table after start-up. As display in Tab. 1, all processing steps are able to perform very fast.
Hence, the user interaction steps shape the bottleneck.

Since ground truth data is rarely available for our test data, we show exemplary results to
evaluate the performance of the proposed framework qualitatively. Considering the images
shown in Fig. 8 one can see that our system creates accurate segmentation from CLE images.
It benefits from the early integration of prior knowledge during ODoB-filtering. Misdetections
can be strained off by further plausibility considerations.

5 Summary & Outlook
We presented a framework to process, segment, and analyze CLE images of mucosal vascular-
isation with minimal user interaction. For this purpose, we introduced Oriented Differences
of Boxes filters as combined non-linear smoothing and derivation operators to simultaneously
suppress noise and enhance local structure. Further processing steps include Seeded Region
Growing for foreground segmentation, morphological skeletonization, construction of Min-
imum Spanning Trees, and Split-and-Merge simplification. In a preliminary clinical study
it was shown that our approach provides excellent results and performs in real-time. The
statistical parameters we obtained were successfully verified by experts. Moreover, we are
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Figure 8: Exemplary results of our approach. Odd columns: original porcine ileum CLE
images, even columns: segmented vessel structure (red) and obtained trees (green).

currently evaluating the applicability of this algorithm for the evaluation of other imaging
modalities in gastroenterology and cardiology, e.g. images obtained by endoscopic retrograde
cholangiopancreaticography and coronary angiography, respectively.
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