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Abstract

In recent years many automated methods for detection aokirigpof sub cellular
structures in live cell fluorescence microscopy have beepgsed. Because dependable
ground truth from real data sets is difficult to obtain, mdgbéthms are tested on syn-
thetic data where the ground truth is known. Differences/ben real and synthetic data
sets can lead to imprecise judgement about an algorithnferpgance. In this paper
we present a method for generating realistic synthetic esezps of live cell confocal
microscopy images that simulate the image formation as agethodelling the motion
of dynamic structures during image acquisition using veiidamic models. Sequences
generated using this framework realistically reprodubescomplexities existing in real
confocal microscopy sequences.

1 Introduction

Confocal microscopy is a fluorescence microscopy techniged for imaging sub cellular
structures in three dimensions (3D). Its optical sectigrdapability gives confocal micro-
scopes a much higher resolution along the axial (z) dired¢tian conventional fluorescence
microscopy, as well as a slightly superior lateral (x-y)otetion [10]. High speed confo-
cal microscopy is particularly well suited for imaging iatellular traffic, such as vesicle
dynamics as part of the endocytic pathway. Such studiesvievacquiring large amounts
of 3D data (tens to thousands of images) which typically aiont- 10 to ~ 10° dynamic
fluorescent vesicles which appear as spot like featureslysiseof such large amounts of
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data via manual inspection is a painstaking and subjectivegss which has motivated the
development of automated analysis techniques such, &.[Because the ground truth of
the trajectories of features in real images is not availaifle performance of automated
detection and tracking techniques is quantitatively est&d using synthetic data. The math-
ematical models for the dynamics of vesicles motion have lhaely well established and
are easily simulate®] 8]. However, currentimage simulations used for validatiomlzased
on simplistic assumptions about the imaging system andaimpke features. For example,
most simulations use fixed-shape Gaussian distributiorept@sent the particles of interest,
use either a constant background or simple backgroundstas; and have a spatially con-
stant signal to noise ratio (SNR). In recent work § frame work for generating synthetic
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Figure 1: (a) Orthogonal views of a single 3D confocal stdudwgng fluorescently tagged
vesicles. (b) The schematic of a confocal stack array.

sequences of total internal reflection fluorescence (TIRIEyorcopy has been presented.
These synthetic TIRF images are very realistic becauseedfolfowing advances: the im-
age formation process of a TIRF microscope is simulatedd @ginamic models for vesicle
motion are used; shape deformation of vesicles in motionadetied; and spatio-temporal
varying background extracted from real TIRF image sequeix@sed. In this paper we
use the same concepts for modelling the image formatiorggsoaf a confocal microscope.
In particular, the microscope image formation model presgiproperly incorporates mo-
tion artefacts caused by vesicle motion during image ad@uns which are seen in real
microscopy images and are not accounted for in other simukat

2 Methods

2.1 Confocal Microscopy

Whereas conventional fluorescence microscopes illumithatevhole sample at one time,
confocal microscopes use highly focussed laser light tallpdluminate the sample in order
to minimise the illumination volume. Any light emitted frothe sample and back towards
the objective lens is passed through a pinhole aperturesibalk focal plane of the optical
system before falling onto a photosensitive detect6t.[ The purpose of the pinhole is to
limit the observation volume to the small region at the fqmaiht and thus to prevent light
from out-of-focus planes from reaching the detector. Tleispts what is known as ‘optical
sectioning’ of a sample. It is this capability that gives famal microscopes the advantage
over conventional epi-fluorescence microscopes; becantbelie illumination volume and
the observation volume are confined to the focal point of thjeaiive lens which results in
an overall better resolution, especially in the z-direttio
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2.2 Confocal Measurement Model

The image formation process for confocal microscopy candseribed mathematically by a
convolution of a function describing the object being imége with a function describing
the point spread function (PSF) of the systdmand then distorting the image with the
appropriate noise model. In 3D live cell confocal microsc@3D space is sampled through
series of parallel 2D rectangular x-y planes, at a set nuoftegually spaced intervals in the
z direction. Usually, when describing the image formatié80 microscopy systems, the
function describing the object, is assumed to be a static three-dimensidnal f (x,y,2)
function with no time component] 11]. In this paper where we are modelling dynamic
sub-cellular motion, the image formation model needs to atmsider the evolution of the
function during the time that the image is being acquirediced = f(x,y,zt). The point
spread function of the objective lerfgyj(u,v), is modelled using an analytical expression
for the diffraction pattern of light through a circular pupith a perfect aberration free lens
[3]. The point spread function (PSF) for confocal microscoigeapproximately equal to
the point spread function of the objective lens squénggi(u,v) = ‘hobj(U,V) 2, this is due
to the fact that both the illumination and observation voésnare reduced to a diffraction
limited sized spot1Q].

2\ 2

) )

where: u = 2nNA?z/A; v = 2riNAr/A; 1 = /x2+y2; P(p) is a pupil function with an
aperture radiuR, Jo(.) is a first order Bessel functiop;=r /R; NAis the numerical aperture
of the lens;A is wavelength excitation light used. This function is isgic in thex—y plane
and anisotropic in thg — zandx — z planes giving it a characteristic ‘bobbin’ shape along
the z-axis. Typically the physical resolution of a confarétroscope istyy ~ 200nm, andr,

= 0.6 to 2um, depending on the physical resolution of the diffractivéagof the particular
microscope, as well as the diameter of the pin hole (whichbeawaried on most systems)
[20.

Recorded images represent discretized point intensitgarements of the sample space
in digitized array form. A complete data set for a live celliging experiment consists of
J, 3D image stackdgp(x,Y,2);, j = {1,2,..,J}. A 3D confocal image stack, consists of a
set of,\N, 2D image slice$,p(x,y)i slices corresponding to different cross sectiaralanes
through the sample;, i = {1,2,..,N}. A single 2D slicelop(X,Y)i, is represented by a 2D
digital array of sizen by m pixels. Often, in an attempt to increase the signal to naiie r
(SNR) of a 2D image slice, several scans of the same crosss@fta sample are made
in quick succession and the average of the point intensigstmrements are used for pixel
values, this is referred to as ‘slice averaging'.

Because the functiorf,= f(x,y,z 1), is constantly changing over time, an image of a 2D
slice formally corresponds to the summationref,of four dimensional (4D) convolutions of
the function space centredztwhereng is the number of complete scans of the laser acros
the 2D cross section of the sample. The image formation ntbdetfore becomes:

1
heont(U,v) = |h0bj(U7V)|2 = <‘2/0 P(p)Jo(pv) exp(iupz/Z)pdp

1o (%.Y): oz — nis Zsl/tt“e/‘//f (X.Y.Z,0)-h(x=X.y—y.z —Z) dXdydZdt  (2)

We also denote the following relevant temporal variables:ihstant before the first slice of
stack,j, is acquired a3, the time taken to complete a laser scan across a 2D x-y slice
te; the time taken to move the sample along the optical axis dé&tvadjacent image slices
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(from z to z1) asts; the time taken to move the sample from thgosition of the last slice
of the stackzy, to the position of the first slice in the next image stagkasts. Therefore

the instant before acquiring, slidejn stackj ist! = Tsjtack+ (i—1)-(te-ns+ts).

BN . EE .EN .

Figure 2: Examples of motion artefacts during image acquisition ofila esolution vesicle on 3
consecutive time frames of a confocal microscope. For eacd point thex —y image shows an
average projection of the images slices in thdirection. (a) The vesicle of interest stays relatively
stationary during the acquisition of the image stack, tlueeeits appearance in the—z andz—y
views, is the classical ‘bobbin’ shape of the confocal psimtead function. In (b) the same vesicle
moves significantly in the y direction during the acquisitiof adjacent image slices; as a result the of
the ‘bobbin’ appearance is sheared in the z-y plane. In &yésicle stays relatively stationary again,
and shows a similar appearance as in (a).

2.3 Dynamic Models

Movement of vesicles within cells is either due to diffusiarthe cytosol, or along micro-
tubules via motor proteins. The non-linear stochastic omotif vesicles can be simulated
using a mixture of two linear dynamic models: random wallanheconstant velocity with
small accelerations3]. Switching between these models resembles the tethenidglack-
ing, and linear motion of vesicles as they are trafficked withe cell R]. The state of
particlek is defined by the vecto = [x,vx,y,vy,z,vz]T, which describes the particles po-
sition and velocity in each dimension at tihe The particles state changes over time ac-
cording the linear Gaussian moded = Fx¢ ; +.4(0,Q), where: F = diaglR,F,F] is
the dynamic model, and/"(0, Q) is a zero mean Gaussian white noise process with covari-
anceQ = diag[Qi, Qi,Qi], i = {1,2}, i = 1 for random walk, and= 2 for constant velocity;
Whereq; andqp are constants which control the noise levels.

) (3)

10 T2 0 1T i
F].:(O 0)7 Q1:q1< 0 T2)7 F2:(0 1), QZ_QZ(Z
2.4 Image Simulation

In order to produce a sequence of simulated images first & fat trajectories of vesicles
are generated using the two dynamic models defined aboveefiporal sampling factor is
chosen as the smallest temporal variable of the sydteonts, as defined above. Since the
typical slice scan speet, for high speed confocal microscopesds.0-2 to 102 seconds,
and the maximum velocity of vesiclesislums 1, we can assume that the that the sample is
approximately stationary during the time a single slicendsaerformed, therefore equation

2 changes to:

o
N7

20 0oz = 3 [ [ [TV 2o - Xoy—y 2 —2)diaydZ (@)

Ss=1
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The vesicles positions are plotted in at the time point ofheglice scan in a 3D array
f(X,y.,Z) |t=t_,-+(s_1)te, and then convolved as in equatidnt. f is updated with the new

particles positions for every slice scan. The trajectasfébe simulated vesicles are confined
to the region defined by an estimated background of a celiiwhas been extracted from a
real image sequence. Background structures can be edinnsitey the MPHD methodd.
This method is based on greyscale image reconstructionrimathematical morphology; it
identifies spot like peaks and 'cuts’ them off at the backgublevel [6]. The result of the
convolution is added the background image to form the fimalted image.

Fluorescence microscopy images are corrupted by a mixfuRoigson and Gaussian
noise. The main source of noise is photon counting noise,igdverned by a Poisson
distribution2?(-). An additional source of noise is read noise, which is antagdGaussian
process,# (u,0?), with meanu and standard deviatio. a > 0 is the detector gain. A
noisy image is thus represented as:

L(%,Y,2t), = a2(1(xy,2,t)) +.4 (4,0?) (5)
3 Reaults

(a) (d)

Figure 3: A simulated mage: (a) Orthogonal views of a single 3D stack simulated image with a
background extracted from a real confocal image. (b) A si2d) slice from the 3D stack. (c) and (d)
demonstrate motion artefacts from 2 consecutive imag&staey views are average z-projections)
(c) The highlighted vesicle is relatively stationary. (djd®/s the next time frame where the simulated
vesicle moving at- 1us~1. The motion artefacts resemble those in Figtire

A sequence of images was produced using the proposed meittodhe parameters
based on those from a real sequence acquired using a high-spsonance scanner con-
focal microscope (see Figu®. The PSF was generated using Equatidor a lens with
numerical aperture (NA) of 1.49, using an excitation wangta of 520im Vesicles were
simulated as sub resolution 3D ellipses with a diameter @nm The lateral (x-y) and
axial (z) pixel resolution is @um. The number of z-slicegy = 20, withns = 2 scans per
slice. The temporal variables (in seconds)= 1/60,ts = 1/60 andt; = 1/60. For vesicle
motion dynamics: the temporal sampling facloe te, g1 = 0.9 andg, = 0.7. The maxi-
mum possible vesicle velocity was settdlus 1. Vesicles were allowed to switch between
dynamics as in{]. The background used was extracted from a sequence ofitagkis using
the MPHD method as irg] using 5 frame temporal averaging.

4 Discussion

This paper has presented an accurate model for the imagatiomprocess of dynamic
confocal images. Because the state of each partifjés known for the duration of any
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sequences, they can be used to determine the detectioreakihty accuracy of automated
detection and tracking algorithms. For quantitativelyleating the performance of a detec-
tion algorithm, metrics such as: true positive rate (TP&gd positive rate (FPR) and others
as presented irf] can be used. For tracking accuracy the root mean square&®)Rkor
between any tracks produced by a tracking algorithm andetiobshe known trajectories
of each particle can be calculated. RMS can either be caézliiasing only the particles
position, or the state vectors directly if tracking is penfred in state space (like in most
probabilistic algorithms). An additional/alternativesiarity measure for detection/tracking
accuracy is the Jaccard similarity indef.[

The resulting simulations provide more realistic groundtrfor validation of particle
detection and tracking than has been previously proposefiiture work we intend extend
the framework to model the dynamics of larger structuref siscendosomes.
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