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Abstract 

In this paper we describe methods suited for developing intelligent histological 

imaging procedures based on mathematical morphology and a discrete version of the 

Region Connection Calculus (RCC) known as Discrete Mereotopology. The 

implementation of the discrete versions of RCC5 and RCC8 relation sets enables 

computation of the spatial relationships between image regions and reasoning about 

those relations in segmented digitised images. It also opens the possibility of defining 

histologically relevant models of biological structures (cells and tissues) so the 

relations of their components can be assessed algorithmically. A Java plugin 

implementing the RCC5D and RCC8D relations sets for the popular imaging tool 

ImageJ was developed. We illustrate an application for automated cell sorting on 

cultured fibroblasts. 

1 Introduction 

The term “intelligent imaging” covers applications designed to perform a certain level of 

mechanical reasoning about image contents. The usefulness of such procedures for 

histological imagery relies on: 1) the possibility of relaxing the need for expert (human) 

supervision (e.g. in high throughput applications) where the size of the data or time 

requirements make it impractical to rely on observer-based confirmation of results and 2) 

enabling algorithmic quantification and categorisations of imaging results. For example, 

segmentation correctness could be mechanically tested against an expected model of image 

contents and used to qualify the performance of segmentation procedures. The methods 

presented here graft sets of relations defined in a spatial logic called Discrete 

Mereotopology (DM) [1, 2] onto Mathematical Morphology (MM). DM is a discrete 

version of the well-known spatial logic RCC [3]. These relations can be used to describe 

the topology and organisation of organelles, cells and tissue components in images. These 

relations comprise a set of contact, overlap and part-whole relationships in discrete 2D 

space that can hold between pairs of binary regions in a single image or between regions 

across different images. Two jointly exhaustive and pairwise disjoint (JEPD) relation sets 

(RCC5D and RCC8D) are factored out which are discrete versions of the RCC5 and RCC8 

relation sets well known in Qualitative Spatial Reasoning [1-4]. The RCC5D and RCC8D 
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relation sets were implemented as a plugin for ImageJ [5] written in Java [6]. These 

relations model “external contact”, “partial overlap” and “tangential” and “non-tangential” 

connections, among others. It has been shown [1, 6] that the discrete quasi-topological 

interior and closure functions defined within DM map directly to the erosion and dilation 

operators of MM respectively. Therefore, the DM relations can be implemented using 

standard morphological routines available in most image processing environments. In 

addition the nature of the logic enables imaging packages to be used as a front-end for 

Artificial Intelligence methods for querying and analysing images as well as exploiting 

automated, mechanical reasoning programmes. 

2 Implementing Discrete Mereotopology  

The domain is modelled using a two-sorted mereotopological logic [2] as a specification 

language. Here, pixels are denoted by lower-case letters (x, y, z,...) and regions by upper-

case letters (X, Y, Z,...). Predicates are strings of upper-case or lower-case letters prefixed 

with upper-case letters, and functions are strings of lower-case letters. Standard readings 

are assumed: the symbols: , ∃, &, ∨, , , ≡ are respectively read as for all, there 

exists, and, or, materially implies, not, and if and only if.  

In DM, regions mapping to digital images as a model are defined as (possibly empty) 

sets of pixels. The spatial relations are defined as follows. Inclusion is: X Y ≡ x (xX 

→ xY), and the mereological (non-null) part/whole relation is: P(X,Y) ≡ X  Y & X ≠ . 

The mereological proper-part relation is defined as: PP(X,Y)≡P(X,Y) & X≠Y and overlap 

is: O(X,Y) ≡ X ∩ Y ≠ . The connection (or contact) relation between regions is: C(X,Y) ≡ 

xy(xX & yY & A(x,y)). The dyadic adjacency relation A is axiomatised to be reflexive 

and symmetric. We additionally assume an 8-connected square-based pixel array so that 

two pixels x and y are adjacent if they are nearest neighbours or equal, meaning A(x,y) is 

satisfied if d(x,y)≤√2 where d: Z² x Z² → ℜ. The introduction of adjacency extends the set 

of overlap relations (used to define the RCC5D relations set) enabling the remaining 

discrete counterparts of RCC8 [6] relations to be defined. The “D” suffix is added to 

RCC5/8 to emphasise that the relations defined have models in discrete space. Models of 

the five relations of RCC5D and the eight relations of RCC8D are shown in Figure 1. 

The eight relations are defined below (Table 1) with their MM counterparts. For the 

latter, a structuring element B is assumed and defined as a filled 3x3 neighbourhood pixel 

array. The main relations are read as follows: DC (“is disconnected from”), EC (“is 

externally connected with”), PO (“partially overlaps”), TPP (“is a tangential proper part 

of”), NTPP (“is a non-tangential proper-part of”), EQ (“is identical with”), while TPPi and 

NTPPi are inverses of TPP and NTPP respectively. Using this approach, weaker JEPD 

relation sets become easily definable, for example the spatial constraint language RCC5 

with five base relations {DR,PO,PP,PPi,EQ}, with DR (“is discrete from”) as the least 

upper bound (lub) of DC and EC, PP (“is a proper part of”) mapping to TPP lub NTPP, 

and similarly for PPi as TPPi lub NTPPi. It is worth noting that the set of eight JEPD 

relations defined in RCC8D can be extended further, however here we restrict the 

relationships to RCC5D and RCC8D. 
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Figure 1. The RCC5D and RCC8D relations. Regions are shown as 2D discs (the bright 

disc is X and the dark is Y). The models for RCC5D cover the cases shown in RCC8D. 

Where one or both regions are null, the RCC5/8D relation DR holds. DR: discrete from, 

DC: disconnected from, EC: externally connected, PO: partially overlaps, PP: proper part, 

TPP: tangential proper part, NTPP: non-tangential proper-part, EQ: identical with, PPi, 

TPPi and NTPPi are inverses of PP, TPP and NTPP respectively. 

 

Table 1. The RCC8D relations implemented using mathematical morphology. 

Discrete Mereotopology Mathematical Morphology  

DC(X,Y) ≡ ¬C(X,Y) DC(X,Y):= (X⊕B) ∩ Y= Ø (1)  
EC(X,Y) ≡ C(X,Y) & ¬O(X,Y) EC(X,Y):= (X ∩Y=) & ((X⊕B) ∩ Y≠Ø) (2)  
PO(X,Y) ≡O(X,Y) & ¬P(X,Y) & ¬P(Y,X) PO(X,Y):= (X ∩Y≠) & (X-Y≠) & (Y-X≠Ø) (3)  
TPP(X,Y) ≡ PP(X,Y) & ∃Z (EC(Z,X) & EC(Z,Y)) TPP(X,Y):= (X-Y=) & (Y-X≠) & (((X⊕B)-Y)≠Ø) (4)  
NTPP(X,Y) ≡ PP(X,Y) & ¬∃Z (EC(Z,X) & EC(Z,Y)) NTPP(X,Y):= (X-Y=) & (Y-X≠) & ((X⊕B)-Y)= Ø (5)  
TPPi(X,Y) ≡ TPP(Y,X) TPPi(X,Y):= TPP(Y,X) (6)  
NTPPi(X,Y) ≡ NTPP(Y,X) NTPPi(X,Y):= NTPP(Y,X (7)  
EQ(X,Y) ≡ P(X,Y) & P(Y,X) EQ(X,Y):= (X-Y=) & (Y-X=Ø) (8)  

⊕: morphological dilation, B: structuring element, “-” is the diff or logical subtraction operation.    

 

2.1 Implementing RCC5/8D 

A plugin for ImageJ [5] was written in Java [6] to compute the set of RCC5D and RCC8D 

relations. The input is two binary images, X and Y, with the regions to be tested. These can 

represent, e.g. labelled cells, nuclei or tissue compartments segmented with separate 

procedures or imaging modalities. The image frame sizes are expected to correspond to the 

same scene position exactly. The relation between the objects in X and Y can be computed 

from a series of nested tests on the overlaps (logical AND) and set-theoretical differences 

(diff operation, Table 1) between various combinations of original and dilated versions of 

the images.  

An alternative, more efficient, practical approach consists of encoding the binary 

images with values 0, 1 for X and 0, 2 for Y, and inspect the histogram of the sum of the 

two images (which will have for values from 0 to 3). This gives an indication of which of 

the 5 RCC5D relations holds. From those, a further test provides the eight RCC8D 

relations. A diagram of this algorithm (implemented in our plugin RCC8D) is shown in 

Figure 2. An additional plugin was written to deal with multiple regions in each image and 

an application is described in section 3. 
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Figure 2. The alternative RCC algorithm. Images X and Y are encoded with pixel values 0, 

1 and 0, 2 respectively (0 is 'background', non-zero values are region pixels). The 

histogram H of the arithmetical sum of the images (X+Y, Test 1) can result in various 

combinations of zero and non-zero counts in bins H0 (background), H1 (pixels occupied 

only by region X), H2 (pixels occupied only by region Y), or H3 (overlapping regions). 

This allows finding the RCC5D relationship held. E.g. if the number of counts in 

histogram bins H1 and H2 is both 0 and for the sum (H3) is >0 (overlap), EQ holds. This is 

shown in the figure as (H1==0 H2==0 H3!=0). In the case of RCC8D, the relations PP, PPi 

and DR are subjected to an additional operation (Test 2), depending on the Test 1 result. 

D(X) and D(Y) symbolise the morphological dilation of images X and Y respectively. 

3 Intelligent imaging in the histological domain 

When performing tests between two images holding one region each, the RCC8D plugin 

results can be output to a text window or retrieved programmatically by querying the 

image via ImageJ’s image attributes (variables stored in the images). However, storing 

multiple object relations (between all pairs of regions in both images) requires a table. We 

developed an additional plugin (RCC8D_Multi) that generates a table of relationships 

between all the objects in the two images restricted to connected components. Those are 

stored as an 8 bit image (named “RCC”) where the pixel coordinates x and y encode the 

index of the regions in images X and Y and the pixel value is a numerical relation code. For 

example, row 0 in the RCC image table (Figure 3C) encodes the relationships between the 

first region (index 0) in image X and all the other regions in image Y; likewise, the relation 

between region index 4 of image X and region index 15 of image Y is given by the value of 

pixel with coordinates (4, 15). Again, attributes are set to the RCC table via the following 

keys to facilitate querying the table programmatically: mode (values indicating which logic 

was used RCC5D or RCC8D), imageX and imageY  (the images’ names).  
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3.1 Example – model-based cell sorting 

Figure 3 shows an example analysis based segmented images NIH/3T3 fibroblasts cultured 

on glass coverslips. Figure 3B represents the binarised nuclei obtained with a greyscale 

threshold, and 3C shows the cell profiles. We aim to extract cells which have been 

segmented successfully based on the relationship between their nuclei and cytoplasms. 

 

Figure 3. An image of cells in culture (A), the set of 90 segmented nuclei (B) and 97 

cell/cytoplasm profiles (C). To identify “model cells” (i.e. with a single associated nucleus), 

image D is computed by the RCC8D_Multi plugin to encode in a grey value the RCC8D 

relations between the nuclei (indexed in the x axis) and cytoplasms (y axis). This enables 

identifying cells without a nucleus (E), model cells satisfying the mereotopological 

relations EQ, TPP and NTPP (54 instances, composite in F) and cells not fulfilling the 

model (G). The latter contains several mismatching types (cells with >1 nucleus and cells 

sharing partially overlapping nuclei). Panel H shows the classified relations colour coded 

on the boundary of segmented objects: nuclei (green), cytoplasm of model cells with 1 

nucleus (in red), cytoplasm without a nucleus (yellow) and incorrectly segmented cells 

with multiple or overlapping nuclei (blue). 

 

A “model cell” is defined in this example as a region containing a single nucleus, even 

though, biologically speaking, multinucleated (e.g. osteoclasts, Langhans-type giant cells, 

etc.) and non-nucleated cell types (human erythrocytes, bacteria) also exist. In RCC8D the 

three “part” (P) relations (i.e. TPP, NTPP and EQ) are used to define a “model cell” such 

that CellBody(X) & ∃Y (Nuc(Y) & P(Y,X)), where a CellBody is a candidate cell profile 
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(regions in 3C) regardless of the relationship with any nuclei in 3B. By examining the 

relationships table generated by the RCC8D_Multi plugin (Figure 3D), we can query the 

relations of any nucleus with any cell to find those cases where P(nuci, cellbodyj) occurs 

only once combined with a single instance of nuclei relations with a particular cellbody 

(Figure 3F). Cell bodies with no associated nuclei can be identified as the rows in the table 

labelled only with DC relations (21 instances, shown in Figure 3E) All the other possible 

relations (Figure 3G) not fulfilling the "nucleated cell" model (i.e, cells with multiple 

nuclei or cell bodies sharing a nucleus, thus partially overlapping cells) can also be 

specified in DM terms. Note that while model cells could also be extracted using RCC5D, 

nuclei forming TPP or NTPP relationships with the cytoplasm would not be distinguished. 

One further advantage of these approaches is that knowledge of the relations between 

image regions can be enhanced by means of conceptual neighbourhood diagrams [2-4, 6]. 

These are pre-computed graphs encoding the possible changes in a relation between 

regions when one of the regions undergoes a “minimal change” (e.g. after a morphological 

dilation). Knowledge of these relation changes helps understanding which additional 

morphological operations in the segmentation process can be applied so the expected 

image content model is better fulfilled. 

4 Conclusions 

We presented an implementation of DM for two related sets defined by means of MM 

computations. Those relations can be used to model topological cell and tissue organisation 

in histological sections (further examples on tissue architectural features have been 

suggested in [6]). While histological imagery is commonly modelled as 2D discrete space, 

the models for DM are by no means restricted to 2D space and regions can in principle be 

modelled as volumes or include an additional temporal dimension.  
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