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Abstract
We present a novel tool for wrist pathology diagnosis by estimating the 3D poses

and shapes of the carpal bones from single view fluoroscopic sequences. A hybrid sta-
tistical model representing both the pose and shape variation of the carpal bones is built,
based on a number of 3D CT data sets obtained from different subjects at different poses.
Given a fluoroscopic sequence, the wrist pose, carpal bone pose and bone shapes are es-
timated iteratively by matching the statistical model with the 2D images. We propose a
method for constructing a ‘standard’ pathology measurement tool for automatically de-
tecting Scaphoid-Lunate dissociation conditions. Evaluation on simulated fluoroscopic
sequences produced 100% sensitivity and specificity. Evaluation on real fluoroscopic
sequences achieved 83% sensitivity and 78% specificity.

1 Introduction
The wrist joint is complex, and the maintenance of the normal relationship of the carpal
bones, both at rest and on movement is governed by intercarpal and extrinsic ligaments. No
tendons insert onto the carpal bones themselves, and their movements are therefore dictated
by the movements of the surrounding bones. Knowledge of the 3D configurations of the
bones in the wrist (carpal bones, radius and ulna) can lead to diagnosis of soft-tissue in-
jury. However, clinically it is infeasible to apply 3D imaging (e.g. CT, MR) routinely in
such cases. In particular, these are static images of a dynamic problem. The current method
of diagnosing these conditions is by examining 2D video fluoroscopy sequences showing
movement of the hand from full ulnar to full radial deviation and from full flexion to exten-
sion in two orthogonal views, in conjunction with plain-film radiographs at specific poses
(stress views). From these images clinicians can infer the three-dimensional translations and
rotations of the carpal bones that take place during wrist movement, and arrive at a differen-
tial diagnosis on the basis of variations from normal bone kinematics. The interpretation is
difficult and the accuracy of diagnosis depends wholly on the experience of the practitioner.
If the 3D bone positions could be determined automatically from 2D clinical radiographs,
the diagnosis of associated soft-tissue injury, could be significantly improved.
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A number of studies have represented the carpal kinematics using CT or MR data [2,
6]. More recently, van de Giessen et al. [7] introduced a 4D statistical model that locally
describes the relative positions of the carpal bones in pre-defined poses, with the aim of
detecting abnormal bone spaces. The work we present here is different from this, in that
we intend to detect abnormalities using 2D fluoroscopic sequences rather than 3D volume
data sets. In our previous work [3], we have described the method of estimating the 3D
kinematics from AP view 2D fluoroscopic sequences. In this previous framework, a 3D
statistical pose model (SPM) and statistical shape model (SSM), which were built from 25
subjects each at 3 radial-ulnar poses, are used to match with the 2D images by iteratively
finding the optimum pose. In this paper, we extended the statistical training data to cover
flexion-extension movement and build a unified shape model for all bones. More importantly,
we demonstrate the capability of using the estimated 3D kinematic poses for wrist pathology
diagnosis.

2 3D Kinematics Estimation from Fluoroscopy Sequences
Using the method described in [4], we generated a SPM based on transformation parame-
ters of each bone with respect to a common reference coordinate system, as well as a SSM
point distribution model. We extend the model building in [4], by using all the five poses
(neutral pose and four extreme poses in flexion-extension and radial-ulnar deviations) from
25 subjects to cover the full range of wrist motion. Additionally, instead of building SSM
for each individual bone, we build a single SSM that include all bones by representing the
shape points of all bones in a single column vector in a consistent order. This maintains the
nature of the relationships between adjacent bone shapes and reduces the number of shape
parameters. In our experiments, only the first two significant components of the SPM are
used, which keeps 90% of variation. The first component reflects the flexion-extension mo-
tion and the second component represents the radial-ulnar motion. The remaining deviation
of an individual from the pose model is compensated by a local pose refinement for each
individual bone. Based on the SPM and the SSM, a hybrid statistical mesh model can be
built by using the Crust mesh construction algorithm [1]. Figure 1 shows the poses of the
first two components of the SPM (represented by the mean shapes of each bone) and the first
mode of the shape variation.

The statistical mesh model is then used to match with each of the frames in the fluoro-
scopic sequence to infer the 3D motion and bone shapes. The position of the model is firstly
initialised interactively by indicating a central point on the radius in the first frame of the
fluoroscopic sequence. Then the poses of the bones in each frame are estimated in sequence,
the poses from the current frame being used as the starting poses of the next. The fluoro-
scopic image is iteratively matched with a simulated projection generated from an updated
pose of the mesh model. The cost function for optimising the global parameters for rigid
alignment, the SPM and SSM is the same as that described in [3], denoted E1, and consists
of the normalised correlation between the projected and fluoroscopic gradient images. The
cost function is modified in the local refinement procedure (Equation (1)), by adding a term
that keeps the estimated pose close to the pose model, preserving the topology of the carpal
bones when the intensity term E1 is weak. The local refinement accommodates deviations
from the linear motions imposed by the linear SPM model.

E = E1 +ωexp(−
1
p ∑p

i=1 ||xg
i −T l(xg

i )||2
2σ2 ) (1)
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Figure 1: Top row: The poses of the first component of the pose model (lateral view) that
mainly describes the flexion-extension movement. Middle row: The poses of the second
component of the pose model (AP view) that mainly represents the radial-ulnar movement.
Bottom row: the first component of the shape model. (Major shape variations occur in the
Ulna, Radius and Lunate.) In each case the mean ± 2 s.d. are shown.

In equation (1), xg
i represents the ith 3D mesh point after the global pose and pose model

estimation. p is the total number of mesh points of the currently evaluated bone (In our case,
p=1002 for each bone). T l is the local transformation matrix for that bone. ω is the weighting
parameter that balances the image intensity term E1 and the added geometric penalty term.
σ is the standard deviation of the Gaussian distribution. In our evaluation tests, ω = −0.2
and σ = 10 were experimentally determined and used.

3 Measurement Model for Pathology Detection
In [3], we have reported the relative positions of the carpal bones with respect to each other
can be estimated with an accuracy of about 1 mm. Here, we present a measurement tool
based on the estimated 3D wrist poses for pathology detection. One condition that may
be assessed using the measurement of relative bone distances is dissociation, where the 3D
distance between the bones is larger than normal. As an example of this, we investigate
Scapho-lunate dissociation, which is one of the most common of these conditions.

One important issue is the reliability of the 2D-3D registration, as it may give mis-aligned
results due to low quality of the fluoroscopic sequence. Since the pose determined by the
kinematic model (the ‘kinematic pose’) represents the ‘average’ pose of the carpal bones, the
local deviation from the kinematic pose should be relatively consistent across the sequence.
A particular frame showing a larger deviation from the kinematic pose than other frames
may indicate a failed registration at that frame. Hence, the 3D Euclidean distance between
the local refined bone pose and the kinematic pose is used to indicate the reliability of the
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registration, which is calculated by equation (2).

r =
1
p

p

∑
i=1

||xg
i −T l(xg

i )||2 (2)

In equation (2), xg
i , p and T l have the same meanings as in equation (1). Then the value

r is subtracted from the mean deviation r̄ of the whole sequence. This is denoted as δr.
The registration was considered as successful if the deviation δr is smaller than 1 voxel
(experimentally determined).

The 3D CT volumes of 17 subjects, assessed radiologically as not suffering from scaphoid-
lunate dissociation, were used to determine a ‘standard’ model, based on neutral and extreme
radial-ulnar poses. The statistical mesh model was aligned with these volumes by estimating
the global rigid transformation parameters, the SPM parameters and the local transformation
parameters for each bone. The kinematic poses at intermediate wrist positions were deter-
mined by cubic spline interpolation between the extreme and neutral positions, sampled at
every two integer values of the second (radial-ulnar) component of the SPM, giving 36 wrist
positions. In calculating the distance between bones we use the distance between corre-
sponding surface points. Each bone is represented by the same number of surface points
(1002), determined when the shape model was constructed using the minimum description
length method [5]. Correspondences are determined using the index of each point, giving a
consistent set of correspondences. Here we evenly sampled the points and used a reduced
number of surface points (N=100, rather than 1002 used in building the model) for improved
computational efficiency. Equation (3) and (4) show that we calculate the Mahalanobis dis-
tances (MD) using the means and covariances of individual pairs of corresponding points.
Letting lk

ϕ, j and sk
ϕ, j represent the jth surface point on the kth sample volume at the current

pose ϕ on the lunate and scaphoid respectively, the relative distance between the lunate and
scaphoid at point j is

dk
ϕ, j = lk

ϕ, j − sk
ϕ, j (3)

dk
ϕ, j is a 3×1 vector, so the mean mϕ, j and covariance matrix Cϕ, j of the jth point pair based

on all k samples at pose ϕ can be calculated. The Mahalanobis distance between the new test
data and the model at pose ϕ is calculated using equation (4).

mϕ =
1
N

N

∑
j=1

√
(dnew

ϕ, j −mϕ, j)TC−1
ϕ, j (d

new
ϕ, j −mϕ, j) (4)

To assess a new wrist, the 2D radial-ulnar fluoroscopic sequence can be registered with
the statistical model using the method described in section 2, and the wrist poses determined
by the SPM component. The Mahalanobis Distance (MD) can then be calculated (Equation
(4)) at each pose ϕ to measure the deviation from the ‘standard’ model. The results for the
25 (17 healthy and 8 abnormal) simulated sequences and 15 (9 healthy and 6 abnormal) real
fluoroscopic sequences are shown in figure 2. In this figure the triangles represent healthy
subjects and the squares represent abnormal subjects. In conducting this evaluation, a leave-
one-out method was used in assessing the normal subjects, while the complete model was
used for assessing the abnormals, as they did not contribute to the model. Since all 25
subjects contributed to the SSM, leave-one-out evaluation was used in all cases. The lengths
of the bars through the data points represent the reliability of each registration, as calculated
in Equation (2).
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4 Results and Discussion
As shown in figure 2, for the simulated data, most of the abnormal subjects (squares) have
larger MDs than the normal subjects (triangles). The distinction between the two groups
is less pronounced for the real fluoroscopic sequences. Additionally, the registration is less
reliable compared with the simulated data, due to blurring effects generated by the wrist
moving too fast.

By varying the threshold (the same threshold for all kinematic poses) of MD for classi-
fying the normal and abnormal cases, the Receiver Operating Characteristics (ROC) curve is
generated and shown in figure 3(a). The ROC for both the simulated data and real data are
presented, using only the successful registrations (Eqn. (2)). This resulted in using 89.3%
of the frames for the simulated sequences and 83.5% of the frames for real sequences. The
thresholds that produce the best error rate for simulated and real data are 2.75 and 2.86 re-
spectively. These values result in 87.0% true positive rate (TPR) and 14.0% false positive
rate (FPR) for simulated sequences, and 70.0% TPR and 30.0% FPR for real sequences.
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Figure 2: (a) The Mahalanobis distances of 25 simulated sequences for Scaphoid-Lunate
measurement. (b) The Mahalanobis distances of 15 real sequences for Scaphoid-Lunate
measurement.
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Figure 3: (a) ROC curve of the simulated data and real data for frame classification. (b) ROC
curve of the simulated data and real data for subject diagnosis.

Figure 3(a) represents the accuracy of classification of individual frames. The diagnos-
tic conclusion for an individual can be obtained, by combining the classification results for
all of the frames of the sequence. The test set for diagnosis is small, and the result rather
dependent on a judicious choice of values for the MD threshold and the method used of
combining the frames. We define the normal frame ratio (NFR) as the number of successful
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frames classified as ‘normal’ divided by the total number of successful frames in the as-
sessed fluoroscopic sequence. If the NFR is greater than a threshold, the particular subject
is considered as ‘healthy’, otherwise is diagnosed as having Scaphoid-Lunated dissociation.
Figure 3(b) shows the ROC curve obtained by varying the NFR, using a MD threshold of
2.5 (experimentally selected) for both the simulated and real data set. The highly quantised
nature of the ROC curve reflects the size of the test set. The best operating point on this ROC
curve is found at a NFR of 0.33 (requiring two thirds of the detected frames to be classed as
abnormal before returning an abnormal diagnosis) resulting in sensitivity and specificity of
100% for simulated data and around 80% (83% TPR, 22% FPR) for real data. Other choices
of MD threshold resulted in sensitivity-specificity combinations in the range (68%-90%) to
(85%-70%).

We have presented a complete framework that is able to infer the 3D motion of carpal
bones from a single view fluoroscopic sequence. It uses a hybrid statistical model to esti-
mate both the pose and bone shapes from the fluoroscopic sequences allowing the motion
of carpal bones during radial-ulnar deviation to be estimated. The major contribution of this
paper is that we conducted a preliminary evaluation of a method for constructing a pathology
measurement tool for automatically detecting Scaphoid-Lunate dissociation conditions. For
the simulated data, it produced 100% sensitivity and specificity. For the real data, it achieved
83% sensitivity and 78% specificity. This tool could be a generic method for automatic,
objective assessment of dissociation conditions. We have demonstrated its use with fluo-
roscopic video input. It appears that the limitation in accuracy arises largely from motion
blurring effects in the video sequences. The method could equally well be applied using 2D
radiographs at fixed positions. We would investigate the use of the model for diagnosis of
other wrist diseases in our future work.
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