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Abstract

Optical Projection Tomography imaging has potential to enhance diagnostic analysis
of colorectal polyps. In this paper, the problem of feature extraction for automated clas-
sification of optical projection tomography images of colorectal polyp is addressed. 3D
patches are classified using the bag of visual words framework and support vector ma-
chines. We compare the utility of dimensionality reduction by random projections with
two prominent techniques for 3D texture analysis: independent subspace analysis and
volumetric local binary patterns. By analysing classification performance on a dataset
of 59 colorectal polyp images containing annotated regions of low-grade dysplasia and
invasive cancer we show that features based on random projection produce the best result
(area under ROC curve: 0.87) with lower computational cost than the other methods.

1 Introduction

Colorectal cancer screening has reduced mortality and detected large numbers of adenomas
and polypoid cancers. However, diagnosis using conventional 2D histopathology exhibits
marked inter-observer variation [12]. Recently, optical projection tomography (OPT) has
been used to image colorectal polyps in 3D [8]. This paper investigates automated classi-
fication of 3D patches in such images. Specifically, we focus on discriminating between
low-grade dysplasia and invasive cancer. Figure 1 shows example OPT polyp images with
regions annotated by a histopathologist. Regions of invasive cancer tend to have a more
dense and homogeneous texture than low-grade dysplasia.

We investigate the use of random projections in order to obtain feature vectors of re-
duced dimensionality [9]. This is compared with three alternative methods for feature ex-
traction: 3D local binary pattern descriptors [10, 11, 15] and two forms of independent
subspace analysis (ISA). ISA has previously been used for classification of H&E stained
histology images [7]. These methods represent contrasting approaches to low-level feature
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Figure 1: OPT virtual sections showing regions of (a) invasive cancer and (b) low-grade
dysplasia. (c) Volume rendering of a polyp. (d) Annotated region of polyp in (c). (e)
Combined volume rendering of the polyp and its annotation.

extraction, i.e., hand-crafted features (LBP) and learned domain-specific features (ISA). The
popular bag of visual words framework [14] was used; each 3D image patch was represented
by extracting local feature vectors from multiple 3D windows within the patch, quantising
these feature vectors using a learned visual word dictionary, and histogramming these visual
words. In the case of feature vectors obtained by random projection, we explore the effect of
varying their dimensionality as well as of varying the size of the dictionary.

2 Random Projection

The intensity values of the voxels in an n X n X n-voxel subvolume (3D window) can be con-
sidered directly to be elements in a vector of dimensionality N (N = n*). Random projection
(RP) can provide a simple yet surprisingly effective method to reduce the dimensionality
of such ‘raw’ features [2]. Liu and Fieguth [9] performed texture classification using such
a method. Let X be an N x T data matrix in which the 7 columns are the N-dimensional
window vectors. The RP method simply maps these vectors onto a D-dimensional subspace
using a suitably generated D x N random projection matrix R:

Xpxr = RpxnXnur (1
Each element in the projection matrix is a sample from a Gaussian distribution with zero
mean and unit variance. According to the Johnson-Lindenstrauss lemma and the proofs
in [1], the 7 data points in RY are embedded into a lower dimensional Euclidean space
RP such that the relative distances between any two of these points are approximately pre-
served. The complexity of this process is only O(DNT). In Liu and Fieguth’s 2D image
patch classification experiments they compared random features (Xp.7) with the use of raw
patches (Xyx7), and some hand-crafted feature extractors (LBP and filter banks with 38
filters). Surprisingly, the result based on random features with a simple nearest neighbor
classifier matched or even surpassed the state-of-the-art methods on three commonly used
texture datasets. Moreover, they observed that approximately one-third of the dimensionality
of the original patch space was needed to preserve the salient information contained in the
original local patch; any further increase in the number of features yielded only marginal
improvements in classification performance. Random projection of texture features has been
used previously in the context of tumor segmentation in 2D histopathology images [5].
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3 3D Local Binary Patterns

Local binary patterns (LBPs) are popular, computationally simple texture decriptors that
exhibit robustness to monotonic changes in intensity. They are computed by thresholding
each 3 x 3-pixel neighbourhood at the value of its central pixel, considering the result as
an 8-bit binary code, and histogramming these codes over a 2D image window. Ojala et
al. [11] found that the vast majority of the binary codes in a local neighborhood are so
called “uniform patterns”. To achieve rotation-invariance (around the central pixel) using
uniform patterns, all non-uniform LBP patterns are stored in a single bin in the histogram
computation. In a 3D volumetric image, LBP descriptors can be computed based on 3 x 3
neighbourhoods in each of three orthogonal planes (taken to be aligned with the image axes
for convenience) [15].

4 Independent Subspace Analysis

Independent Subspace Analysis (ISA) is a generalized version of Independent Component
Analysis (ICA) in which components are divided into subspaces; subspaces are assumed
independent, whereas components in the same subspace need not be independent of each
other [4]. Features learned by ISA show phase- and translation-invariant properties. An
input image x’ can be modelled as a linear combination of features:

=Y Y Als, @)

I meS(l)
where S(I) is the set of indices m of A!, that belong to the I-th subspace. We used a model
in which the non-linear filter A!, is represented by a two-level network with weights W and
V respectively [6]. The first level weights, W, represent filters within subspaces whereas the
second level weights, V, are fixed to represent the structure of subspaces. Features extracted
from this non-linear network can be expressed as:

sm(X'; W, V) = \/Zle le(zlj\-lzl W) S

in which W is learned from a training set {x',x?,...,x” } by minimising ¥, ¥#_,

sn(x'; W, V) subject to WW” =1, where N, L and M are the input dimensionality, number
of linear components in each subspace and number of subspaces respectively. Some learned
filters are visualised in Figure 2. After training, local descriptors are extracted by applying
Eq.(3) to each 3D image window. For comparison, we also used convolutional ISA in which
ISA networks are stacked in a convolutional manner, following the implementation described
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(a) (b) © (d)
Figure 2: 173-voxel 3D filters, W, learned from 9,000 3D OPT image windows using ISA.

S Experiments

Each 3D patch was represented by its bag-of-visual-words histogram. This histogram was
formed by binning the feature vectors extracted from each sub-window of a fixed size con-
tained within the patch. Histogram bins corresponded to the learned visual word dictionary.
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a (b) (© (d
Figure 3: 3D patches sampled from invasive cancer regions (a,b), and low-grade dysplasia
regions (c,d).

The window size used for feature extraction is an important parameter. Given a central pixel
located at (x,y,z) and window size n x n X n, the neighbouring pixels are defined within
the cubic region from (x — (n—1)/2,y— (n—1)/2,z— (n—1)/2) to (x+ (n—1)/2,y+ (n—
1)/2,z+ (n—1)/2). Linear support vector machine (SVM) classifiers were trained on sets of
3D patches sampled from the annotated OPT image regions. Testing was always performed
on OPT images not used for training. Thus the experiments reported in this paper are tested
for inter-polyp generalisation.

Classification experiments were performed on a set of 59 volumetric OPT images from
59 patients. These images were acquired using ultraviolet light and Cy3 dye. Each image
was of one colorectal polyp specimen and had 1024 x 1024 x 1024 voxels with aspect ratio
of 1:1:1. In 30 images, 3D regions judged to consist entirely of low-grade dysplasia were
annotated by a trained pathologist. In the other 29 images, 3D regions judged to consist
entirely of invasive cancer (IC) were similarly annotated. The 3D regions were annotated
as 2D regions in sequences of 2D slices using ITK-SNAP [13]. A polyp typically extended
across 700 ~ 800 slices of a volumetric image. The 2D regions were delineated every 4 or 5
slices and the region volume was interpolated in the intervening slices.

We randomly sampled 9,000 non-overlapping 3D image patches with size 21 x 21 x 21
strictly within the annotated regions for each image. Figure 3 shows some example patches.
In order to test the generalization capability of our approach across patients, we separated
the 3D patches sampled from different polyps during experiments. Samples from one polyp
were only presented in either training set or testing set. We used the Matlab interface of
L2-SVM]|3] for the SVM classifiers.

In our experiments, four different feature extraction methods are tested: 1) ISA with Bag
of Words, denoted by ‘ISA+BoW’; 2) RP with Bag of Words, denoted by ‘RP+BoW’; 3)
VLBP with Bag of Words, denoted by ‘VLBP+BoW’ and 4) Convolutional ISA, denoted
by ‘ConvISA’. In the ConvISA method, the output of one ISA model serves as the input
basis of another ISA model. These two ISA models in ConvISA could be viewed as a local
feature extractor and a feature encoder respectively (in analogy to BoW). Therefore, we
do not specifically embed ConvISA in the Bag of Words framework. Instead, the output
features of ConvISA are directly input to the classifier. For the RP method we reduced
the dimensionality of raw patch features to 150 using random projection. In convolutional
ISA and ISA with Bag of Words methods, the dimensionality was reduced according the
same rule but using PCA (exactly following [6]). For all Bag of Words encoding processes,
visual word dictionaries were learned using K-means clustering with K fixed to 200 unless
otherwise stated. To form a fair comparison, the number of second level ISA features in
convolutional ISA was also set to 200, the same value as K.

6 Results

Patch-level classification. We obtained Receiver Operating Characteristic (ROC) curves
for each method by varying thresholds of the linear SVM output. Figure 4 shows ROC
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curves for each method at the respective optimal window sizes, n, chosen according to the
best parameters reported in [8]. The classification experiment was conducted in a 10-fold
validation setting similarly to [8]. That is, we randomly divided the dataset into 10 folds,
with about 6 images per fold. For each fold evaluation, we trained models with 9 folds and
tested on the remaining one. With non-overlapping random sampling, for each evaluation
routine the classifier was trained with about 8,100 3D patches and tested on 900 3D patches.
For the SVM classifier outputs we also report the value of Area Under ROC Curve (AUC)

ROC curves of patch classification at optimal window sizes
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Figure 4: ROC curves given optimal window Table 1: AUC and EER given optimal win-
size. dow size.

and Equal Error Rate (EER) in Table 1. All feature extraction methods were implemented in
Matlab. The averaged computational time (in seconds) of feature extraction processes on a
2GHz Intel i7 CPU are listed in the last column of Table 1.

Random projection feature evaluation. The performance of classifier with RP+BoW
method was affected by two critical parameters: the number of visual words in the dic-
tionary (K) and the dimensionality of the random projection matrix (D). Given the optimal
window size of n = 9 for RP+BoW, the extent to which D and K affect OPT image patch
classification remained unclear. To test this effect, further experiments were conducted by
varying D and K. All the other parameters were set the same as in the previous RP+BoW
evaluation. The AUC values against D and K are reported in Figure 5. Note that D is shown
in a log scale in order to have a better illustration of the trend.

AUCs depending on random feature dimensionality and number of words
0.9 T T T T T T T ‘

50.85
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Figure 5: AUCs depending on random feature dimensionality (D) and number of words (K).

7 Discussion and Conclusion

We compared four methods for discriminating between invasive cancer and low-grade dys-
plasia in OPT images of colorectal polyps. Figure 4 suggests that the simple RP+BoW
approach outperforms domain-specific feature learning method (ConvISA and ISA+BoW).
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In comparison with hand-crafted features (VLBP), random features showed similar perfor-
mance but with significant reduction in computational cost (Table 1). In Figure 5, classifica-
tion performance (AUC) is dominated by number of visual words (K) when K is relatively
small (K < 50). The highest value of K tried (K = 200) gave the best AUC. The effect of
dimensionality (D) was apparent when K > 100. Liu and Fieguth [9] found that approxi-
mately one-third the dimensionality of the original 2D patch space was needed to preserve
the salient information contained in the original local patch. Our experiments indicated that
with 3D OPT image patches, given enough words, there is no harm to further reduce the

. . . 20 1 . . . ..
dimensionality to =55 ~ 75 the dimensionality of the original patch space.
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