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Abstract
Subject-specific motion models have been proposed to address the problem of res-

piratory motion in image acquisition and image-guided interventions, but the need for a
dynamic calibration scan to form the model can interrupt the clinical workflow. Cross-
population models require no such calibration scan but lack the accuracy of subject-
specific models. To address these problems, we propose a novel personalisation method
for cross-population respiratory motion models. Unlike previous approaches, our method
selects a subset of the population sample that is more likely to have similar respiratory
motion to that of a new subject. The selection is based on anatomical features and there-
fore exploits inter-subject variability in motion to improve the accuracy of the resulting
model. We present results on cardiac respiratory motion using a sample of 23 MRI
datasets from healthy volunteers. Results show improvements in the median/95th quan-
tile of the motion estimation error of 20/17.2% compared to a standard cross-population
model and accuracy comparable to subject-specific models for some subjects.

1 Introduction
Respiratory motion currently limits the accuracy of image-guided interventions applied to
organs in the chest and abdomen, causing misalignments between the static images used for
guidance and the moving anatomy. A similar problem exists in image acquisition where res-
piratory motion can cause artefacts in acquired images. As described in [6], subject-specific
respiratory motion models represent a promising solution. Motion models describe the re-
lationship between the motion of the anatomy and some measurable surrogate data. When
forming the model, the surrogate data are acquired contemporary to dynamic calibration
images depicting the respiratory motion of the anatomy, and the motion is then modelled
as a function of the surrogate data. During model application, only the surrogate data are
acquired, and the model estimates the motion given the current surrogate data [6].

The dynamic calibration scan used to build the subject-specific model is typically ac-
quired using Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), depend-
ing on the application. However, the calibration scan is often impractical or even impos-
sible to acquire, due to dose issues, high cost, and patient considerations, such as bariatric
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patients or patients with MRI-incompatible implants. To overcome these limitations, cross-
population models have been proposed for the lungs [2, 5] and liver [8, 9]. These models
require no dynamic calibration scan and are formed from data acquired from different sub-
jects, averaging out the inter-subject variation in motion [6]. Typically, the cross-population
average motion model is personalised to an individual by registering a static population
anatomy image to a corresponding image of the new subject, and transforming the mo-
tion model accordingly. However, since respiratory motion can differ dramatically between
subjects, cross-population models are currently not as accurate as subject-specific models.
In [9] a technique was proposed for more selective personalisation based on surrogate sim-
ilarity for the purpose of making more accurate estimates of respiratory drift. However, to
date no work has demonstrated a personalisation technique that results in more accurate mo-
tion models based on information from static images alone. Because of these limitations of
subject-specific and cross-population models, there is still only one example (the Cyberknife
Synchrony system) of clinical translation of a motion model-based technique [10].

We present a framework for the personalisation of cross-population models that ad-
dresses these limitations. Our framework eliminates the need for a dynamic calibration scan
and provides motion estimates that are more accurate than those produced by a standard
cross-population model. This is achieved by learning the relationship between a vector of
anatomical features and the respiratory motion.

2 Methods and Materials
Our method is schematically represented in Figure 1(a). The input of the personalisation
process is a high resolution image of the anatomy of a new unseen subject, while the output
is a personalised respiratory motion model.

The cross-population model is formed as follows. Given a population sample of N
datasets consisting of a high resolution image of the anatomy, a dynamic calibration scan
depicting the respiratory motion and some surrogate data (see Section 2.1), an average atlas
of the anatomy is built using the N high resolution images, as proposed by [2, 5]. The respi-
ratory motion estimates derived from the N dynamic calibration scans and surrogate data are
then transformed to the atlas coordinate system to produce a motion atlas. This motion atlas
can subsequently be used to form a respiratory motion model. Unlike the cross-population
models proposed thus far [2, 5, 6, 8] where an average motion model of the N datasets is
used for any new unseen subject, we select a sub-set K of the population sample which is
more likely to represent the respiratory motion of the new unseen subject. In order to de-
termine K, we compare the respiratory motions of the N subjects in the motion atlas and
cluster them according to their similarity. A classifier is then trained to learn and exploit
the relationship between anatomical features derived from a static image and the respiratory
motions. The underlying hypothesis is that anatomical features can be used as predictors
of respiratory motion. To the authors’ knowledge, this is the first work to investigate such
a hypothesis. The idea is that, given a high resolution image of a new unseen subject, the
classifier will return the sub-set K that best describes the new subject’s respiratory motion.
This way, the inter-subject motion variation will be exploited to obtain motion estimates that
are more accurate than standard cross-population model estimates.

2.1 Materials
A sample of 23 cardiac MRI datasets acquired from healthy volunteers was used for this
study. All images were acquired using a 1.5T Philips Achieva MRI scanner. The details of
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Figure 1: (a) Overview of the proposed personalisation framework. (b) Clustering of the N
population respiratory motions based on their similarity.

the high resolution 3D MRI volume and dynamic 3-D MRI calibration scan used for forming
the motion model are:

• Dynamic 3-D calibration scan: 3-D TFEPI, ECG-triggered and gated at late diastole, typically
20 slices, T R = 10ms, T E = 4.9ms, flip angle = 20◦, acquired voxel size 2.7 x 3.6 x 8.0mm3,
reconstructed voxel size 2.22 x 2.22 x 4.0mm3, TFE factor 26, EPI factor 13, TFE acquisition
time 267.9ms.

• High resolution 3-D: 3-D balanced TFE, cardiac gated at late diastole, respiratory gated at
end-exhale, 5mm navigator window, typically 120 sagittal slices, T R = 4.4ms, T E = 2.2ms, flip
angle= 90◦, acquired voxel size 2.19 x 2.19 x 2.74mm3, reconstructed voxel size 1.37 x 1.37 x
1.37mm3, the acquisition window was optimised for each volunteer and was on average 100ms,
scan time approximately 5 minutes.

The dynamic calibration scan was ECG-triggered and gated, so one volume was acquired
for each heart beat. The images therefore represented the motion of the heart due to respi-
ration only. The scan acquired 40 images while the volunteer was breathing normally. The
superior-inferior (SI) displacement of the left hemi-diaphragm was employed as the respi-
ratory surrogate. The high resolution MRI image is a standard pre-procedure acquisition in
many clinical protocols and provides high spatial resolution information about the anatomy
and pathology of the heart.

2.2 Methods
Anatomical atlas. To eliminate anatomical variation from the comparison of the different
motions, an average shape atlas in its natural coordinate system was formed, using the ap-
proach described in [3]. To remove positional differences from the registrations, the high
resolution images were first translated so that the centres of mass of the heart of each sub-
ject were aligned. The centres of mass were computed over a manually positioned binary
mask covering the main cardiac chambers and vessels. The same mask was then employed
for motion estimation and evaluation purposes. Given the population high resolution im-
ages In,n = 1, . . . ,N, one image was randomly selected as a starting reference Ire f and all
remaining images were non-rigidly registered to it [1]. An average intensity image Iavg0 was
computed using all N warped images. Iavg0 was then employed as the new reference and
In,n = 1, . . . ,N were non-rigidly registered to it. By averaging the intensities of the new set
of warped images, Iavg1 was obtained and used as the new reference image. The registration
and averaging processes were repeated until the similarity measure between Iavgt and Iavgt−1
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was higher than a predefined threshold. We used Normalised Cross-Correlation (NCC) as
a similarity measure and 0.99 as the threshold. To remove any remaining bias towards Ire f ,
Iavgt was non-rigidly registered to In,n = 1, . . . ,N and then warped using the mean values
of the N resulting deformation fields. In this way, Iavgt is warped to its natural coordinate
system [3], which requires the minimal non-rigid deformation to explain the anatomical inter-
subject variability. Iatlas is the final average intensity image in its natural coordinate system.
Cross-population model formation. Denoting by Dnp the dynamic calibration image p of
subject n, the dynamic image of subject n having the highest surrogate value was selected as
the reference end-exhale image Dnre f . As described in [4], the images Dnp were registered
to Dnre f using an affine registration algorithm and a set of P affine transformations Anp was
obtained for each subject n. To localise the registration to the heart only, the dynamic images
were masked using the binary mask used for the atlas building. To compare the motions of
the different subjects, the transformations Anp were all transformed to the coordinate system
of Iatlas as follows. We denote by Rn the non-rigid transformation that maps each high reso-
lution image In,n = 1, . . . ,N to Iatlas. The transformation Ratlasnp

= Rn ◦Anp ◦R−1
n describes

the respiratory state p of subject n in the atlas natural coordinate system [2, 5]. Since Ratlasnp
results in a non-rigid transformation, but an affine transformation is considered sufficient to
model cardiac respiratory motion [4], a point-based minimisation algorithm was employed
to linearise Ratlasnp

, resulting in N ×P affine transformations R̂atlasnp
. These, together with

the corresponding surrogate data for each subject, form the motion atlas.
Motion clustering. This paragraph details the clustering of the N subjects’ respiratory mo-
tions based on their similarity, as shown in Figure 1(b). In order to compare the N motions,
the respiratory surrogates were normalised, so that their ranges were [-1,0] for any subject n.
Subject-specific affine motion models of the transformations R̂atlasnp

were then built as de-
scribed in [4]. To quantify motion similarities, 10 evenly distributed surrogate values in [-1,0]
were used to compute 10 motion model estimates for each subject n. Target Registration Er-
rors (TRE) between each pair of motion models were computed over the 10 motion estimates
using all voxels in the binary mask covering the heart of the atlas as target points. These TRE
values were used to cluster the subjects into groups with similar motions as follows. Using
the 95th quantile of the pair-wise TREs, a N ×N adjacency matrix W was built, where the
entries wi, j represent the TRE between subject i and j, indicating the degree of similarity in
their average respiratory motions. By employing a spectral clustering technique [7], the N
respiratory motions were grouped into clusters. The number of clusters was chosen to be the
maximum number of clusters for which all clusters contained at least 2 subjects.
Personalisation. In principle, a wide range of image-based and non-image-based data could
be used for the personalisation of the cross-population model. However, in this preliminary
work we used only image-based features, namely the affine parameters that relate the new
subject’s high resolution image to the atlas average image Iatlas. To compute the anatomical
feature vector for each subject, the non-rigid anatomical registrations Rn were linearised,
again using a point-based minimisation algorithm, to obtain affine anatomical transforma-
tions R̂n. The non-translational components of R̂n were considered only (3 rotations, 3
scalings and 3 shear angles), describing the different shapes and poses of the hearts. The
feature vectors were formed from the coefficients of the affine matrix representing this trans-
formation normalised by their standard deviation. A supervised random forest classifier was
trained providing the clusters C as outputs and the anatomical feature vectors as predictors.
Once the classifier was trained, the anatomical feature vector R̂unseen for a new unseen sub-
ject was classified into one of the clusters Ck. The P respiratory affine transformations Anp of
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the K datasets in the cluster Ck were warped to the coordinate system of the new unseen sub-
ject using the non-rigid transformation R−1

unseen. The personalised cross-population motion
model was then built as described in [4]. The final motion estimates were obtained using the
personalised model and the surrogate data of the new unseen subject.

2.3 Evaluation
For evaluation, a leave-one-out cross-validation was employed: each of the 23 subjects was
left out in turn and the remaining 22 datasets were used to construct the cross-population
model. An anatomical feature vector derived from the left-out subject’s high resolution im-
age was used to personalise the cross-population model. For a thorough accuracy evaluation,
we non-rigidly registered the dynamic images DLOp of the left-out dataset to the dynamic
end-exhale reference image DLOre f [1]. This process resulted in P gold-standard non-rigid
motion fields which were employed to evaluate the accuracy of the personalised motion
model. The TRE between the affine motion fields estimated by the motion models and the
non-rigid motion fields was computed over the binary mask covering the heart (see Sec 2.2).

We compared our personalised model with a standard cross-population model [2, 5, 8],
where all 22 datasets were used in the computation of the motion model for the left-out
subject, and to a subject-specific motion model. To build all models, we warped DLOre f

using the gold-standard non-rigid motion fields, obtaining a set of artificial images with
known, realistic motion fields. Affine registration and model building [4] was applied to the
artificial images. For completeness sake, the TRE of no respiratory motion estimate is also
computed. Results are provided in Section 3 .

3 Results
Results of the leave-one-out cross-validation are shown in Figure 2. The median and 95th

quantile of the TREs were computed for each left out subject for each technique compared.
For compactness sake, the mean and standard deviation are computed over all 23 subjects,
both for median and 95th quantile. Our method is more accurate than a standard cross-
population model proposed to date, with motion estimates closer to the subject-specific es-
timates. The last row of the table in Figure 2 shows an average improvement of 20% for
medians and 17% for 95th quantiles of TREs achieved by our method compared to an aver-
age cross-population model. The highest improvements of the 95th quantile were achieved
for subject 9 and 1 (58% and 52% respectively).
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Method Mean/std (mm) Mean/std (mm)
No estimate 3.5/2.3 11.6/4.5

Average pop model 2.0/1.2 5.8/2.5
Proposed pop model 1.6/0.8 4.8/1.8

Subject-specific model 1.1/0.6 3.6/1.4
Improvement (%) 20.0/33.3 17.2/28 .0

Figure 2: Results of the leave-one-out cross-validation. On the left, 95th quantiles of TRE
for each subject are shown. On the right, the table reports mean/std deviation of median and
95th quantile TRE values for the methods compared over all subjects.
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4 Discussion and Conclusions
We have proposed a novel personalisation method for cross-population respiratory motion
models. Our method exploits inter-subject motion variability by investigating the relation-
ship between the anatomy and its respiratory motion. We have presented results for cardiac
respiratory motion derived from MRI. Results showed the proposed model to be more ac-
curate than a standard cross-population model, with accuracy for some subjects comparable
to subject-specific motion models, but without the need for a dynamic calibration scan. The
proposed personalisation is particularly effective for those subjects with a respiratory motion
that differs significantly from the average cross-population motion.

Healthy volunteer datasets were considered in this work. Future work will investigate
the application of the technique to clinical data. For patients, a richer source of predictors
may be necessary to describe anatomical changes of the heart due to pathology, and we plan
to investigate the use of non-imaging data from the patient record for this purpose.

In this work we modelled and compared normal respiratory motion. Future investigation
might extend the method to different breathing patterns, as can often be the case during
acquisitions/interventions, and different clustering and classification techniques. Moreover,
different modalities such as CT or 3-D echocardiography could be employed to build and
personalise the proposed cross-population model.
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