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Abstract

Sparse landmark tracking can provide sparse, anatomy-specific constraints to help
establish correspondences between images being tracked. We propose to identify the
landmarks that are distinctive throughout the cardiac cycle and have a relatively large
deformation by a method that analyses the entropy of the self-similarity through singu-
lar value decomposition (SVD). We then track this sparse set of landmarks simultane-
ously with a 4D two-stage multiple label Markov Random Field (MRF). The framework
is evaluated on 47 cases, including data from normal volunteers and patients undergo-
ing cardiac resynchronization therapy (CRT). Compared to conventional dense motion
tracking (DMT), the tracking error of the proposed sparse motion tracking (SMT) and
the DMT initialized with the result of SMT are both reduced by 15.7% and 4.2% respec-
tively. The derived regional wall thickness systolic dyssynchrony index (SDI) for each
of the 47 cases agrees well with the clinical measurements of regional volume SDI.

1 Introduction

The accurate estimation of cardiac motion aids the quantitative assessment of both global and
regional wall deformation or strain, which is beneficial for the identification of the location
and extent of diseases like cardiomyopathy and ischemic injury [2]. Approaches based on
dense image registration and deformable model fitting techniques [6, 8] are very sensitive to
the initialization and often computationally expensive. Alternatively, sparse landmarks can
provide anatomy-specific constraints to establish correspondences between images being
tracked or registered [3]. However, landmarks on the endocardium are often characterized
by ambiguous appearance in cardiac MR images, which makes the extraction and tracking
of landmarks problematic.

In this paper, we propose to identify a sparse set of cardiac landmarks that are distinctive
throughout the cardiac cycle and have a relatively large deformation by an entropy-based
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measure of self-similarity and singular value decomposition (SVD). We then track this sparse
set of landmarks simultaneously by a 4D two-stage multiple label Markov Random Field
(MRF), which enforces motion coherence across space and time.

The accuracy of the proposed sparse motion tracking is evaluated by tracking a group of
manually marked landmarks on the endocardial border of the left ventricle (LV) in a dataset
of 47 MR image sequences and comparing to their manually tracked positions. To study
the clinical usefulness of the approach we assess the regional systolic dyssynchrony index
(SDI). The derived regional wall thickness SDI for each of the 47 cases are compared with
the clinical regional volume SDI measurements obtained using the TomTec system [5].

2 Detection and tracking of cardiac landmarks

2.1 Sparse Landmarks Identification

The motion of the heart is highly complex and is mostly characterized by the deformation of
the endocardium. We initially identify a set of landmarks on the endocardial boundary and
thereafter their counterpart on the epicardial border along the radial direction.

Many points on the endocardial boundary share similar appearance and shape features,
which leads to ambiguities when these points are being tracked. We use an entropy-based
landmark detector to identify landmarks that are recognizable in all frames throughout the
cardiac cycle. For each point in the end diastolic phase, the detector defines a similarity at
each location within a search region in all other frames. A low entropy of the distribution of
these similarities corresponds to a more discriminative feature point.

Moreover, we are more interested in points that undergo relatively large deformation; by
tracking them we are likely to capture the cardiac motion more accurately. A regional SVD
based approach is applied to distinguish points with relatively large deformation from those
which exhibit less complexity across frames. SVD seeks to find a low rank approximation.
Different regions of a cine sequence may have different approximation levels due to the non-
uniform complexity of the whole image and lower approximation ratios corresponding to
regions with larger deformations, such as mitral valve point and apex. By combining the
entropy and SVD based method, we select a set of sparse landmarks along the endocardial
which best represent the myocardium. This part of work is same as that of Wang et al. [9].

2.2 Sparse Motion Tracking

After we have identified a set  of distinctive landmarks in ED phase, our goal is to localize
the corresponding landmarks in each frame of the cine sequence. Let the whole sequence of
the image be modelled as a 4D MRF in which nodes are located pairwise at the endocardial
and epicardial borders. The neighbourhood of each node in slice k£ and frame ¢ includes
not only the neighbouring nodes in the same slice, but also those in slices k+ 1 and k — 1.
In addition, the neighbourhood also includes temporal neighbours, i.e. the corresponding
voxels at frame 7 + 1 and ¢ — 1 respectively. We call these neighbouring edges as endo-endo,
epi-epi, endo-epi, slice-slice and frame-frame edges. In our implementation, a total of seven
neighbours are used for each landmark with the exceptions of landmarks in the first or last
slice (or frame) of the short-axis image stack.

We associate each label of a node with displacements from its original position and
formulate the multiple landmark tracking in a multi-label MRF framework in which we
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Figure 1: The tracking of a point P, is modelled by a two-stage searching: a) towards centre
O and b) towards/away from neighbouring points £, and B,_.

minimise the following energy function:
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For the landmark tracking, the unary potential V;(-) is defined by the patch-based simi-
larity metric based on sums-of-squared differences (SSD) to compute the intensity similarity
between the landmark under study and its candidate matching point:

Vit) = Y @i(xi—yi)? @)
Q.0
Here Q, and €, denote the local patches centred around point x; and its candidate match-
ing point y; respectively. During the cardiac cycle, the myocardium may undergo thickening
and the regions outside myocardium usually remain unchanged. To compensate for this my-
ocardial thickening the SSD metric is spatially weighted and the weighting function ; is
built to a) be zero outside the myocardium, b) increase the influence of the blood pool for the
landmarks at the endocardial border and c) be zero inside the myocardium for the landmarks
at the epicardial border to ignore the influence of the wall thickening.
The pairwise potential V;;(-) of the energy function models the interaction between land-
marks to enforce the smoothness, both spatially and temporally. V;;(-) is defined as the
Euclidean distance of the displacements D(x) of a pair of neighbouring points.

Vij(xi,xj) = |D(x;) — D(x;)] 3

The intuition of this term is to maintain a coherent motion between points close to each
other. The magnitude of the constraints between neighbouring points is weighted by w;;,
which varies according to the location of the point. For instance, the motion of a point at
endocardial border correlates much stronger with that of its endocardial neighbours than that
of its epidardial neighbours, hence the weight for the endo-endo edge is larger than that for
the endo-epi edge.

The tracking is conducted in two stages: firstly along the direction towards the centre of
the LV, and then along the direction towards or away from its two neighbouring points. The
centre of the LV is defined as the intersection point of the middle slice of the short axis (SA)
image and two LA images.
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In the first stage of tracking, the main components of the deformations, i.e. the radial mo-
tion of the myocardium in the short axis slices, are best captured along the direction from the
landmark towards the centre. The pairwise smoothness term is therefore defined as the Eu-
clidean distance of the relative displacement along this direction of two neighbouring points.
In the second stage of tracking, we track points in a 2D region along the direction towards
or away from their neighbouring points in order to take into account the circumferential mo-
tion along the border. The penalty increases when two neighbouring points move towards or
away from each other. Likewise the penalty decreases when the two points move in the same
direction. The second stage of the tracking iterates several times to account for the large
circumferential deformation in some cases, because the position of the search region needs
to be updated after each iteration. At both stages, Fast-PD, a graph cut based algorithm is
applied as the optimisation method to find the optimal solution for the MRF problem [4].

3 Evaluation and results

We have acquired SA sequences from 44 CRT patients and three normal volunteers using a
1.5T MR-scanner. Five landmarks are manually marked on the endocardial boundary in the
middle slice at ED phase. In addition their corresponding positions are marked at the end
systolic (ES) phase. The positions of these five landmarks at ES phase are also automatically
tracked by the proposed sparse landmark motion tracking. Thereafter, the accuracy of the
motion tracking is computed as the distance between the tracked position of the landmarks
and their corresponding manually marked position at ES. For comparison we also tracked
the landmarks using dense motion tracking (DMT) (using non-rigid registration [6]) with
and without being initialised by the result from sparse motion tracking (SMT). The average
tracking errors in terms of root mean square (RMS) using the two approaches are shown in
Table 1. It can be seen that both SMT and DMT initialized by SMT outperform the DMT in
this dataset. Figure 2 shows the case-by-case tracking errors of the three methods.

P
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71 ™ DMT initialized by SMT
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Figure 2: The landmark tracking errors (mm) for 47 cases, using DMT, SMT and DMT
initialized with SMT

The LV contraction synchrony can be estimated via the change of wall thickness[7]. As
the landmarks at the endocardial and epicardial boundaries are automatic selected in pairs
along the radial line and tracked throughout the whole cardiac cycle, we can compute the
change of the myocardium wall thickness as the Euclidean distance between pairs. For each
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Table 1: Landmark Motion Tracking Error

DMT Sparse motion tracking | DMT initialized by SMT
RMS 2.41+1.22mm 2.03 £ 1.05mm 2.31+1.22mm
Improvement - 15.7% 4.2%

(a) (b)
Figure 3: This figure shows the wall thickness changing curves from (a) a normal subject
and (b) a CRT candidate.

of the 16 segments of the left ventricular myocardium according to American Heart Associ-
ation (AHA) model [2] there are around 2 to 8 endocardial-epicardial pairs of landmarks in
our experiment. We average the distances at each of the 16 segments and view this as the
wall thickness of that segment. Figure 3 demonstrates the change of the myocardium wall
thickness of each of the 16 segments throughout the whole cardiac cycle from a normal vol-
unteer and a patient respectively. As shown in the figure, the wall thickening for the normal
volunteer is more synchronous across the segments.

The synchrony of the regional deformation can be represented by systolic dyssynchrony
index (SDI), which has been previously reported to be a good indicator for selecting patients
who respond to CRT [1]. The SDI is defined as the standard deviation of the time taken
to reach the minimum systolic volume or maximum function for the 16 LV segments. We
use a commercial software tool (TomTec 4D LV analysis tool V2.0 [5]) which relies on
manual tracking within tri-plane projections and semi-automated border detection, to obtain

corrcoef = 0.73

Tomtec Regional Volume SDI %

5 10 15 20 25
4D Sparse Motion Tracking Regional Wall Thickness SDI %

Figure 4: Evaluation of wall-thickness SDI against the Tomtec’s regional volume SDI.
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16 segments regional volume SDI for all the 47 cases. For comparison, we calculate the
wall thickness SDI in a similar way: For the average wall thickness of the 16 segments
throughout the cardiac cycle, the wall thickness SDI is defined as the standard deviation of
the phases to reach the maximum wall thickness for each of the 16 segments, expressed as
a percentage of the cardiac cycle. We also computed the Pearson correlation coefficient to
measure the correlation with the regional volume SDI obtained by the TomTec software,
which is corrcoef = 0.73. The comparison of the two SDI indexes, as shown in Figure 4,
illustrates high correlation between them. It shows that it is plausible to use the proposed
sparse motion tracking to estimate the dyssynchrony index for the regional deformation.
Acknowledgements. This work was funded in part by EPSRC grant EP/H019847/1.
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