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Abstract

The validation of segmentation algorithms is often based on manual expert delin-
eations, but they are subject to variability. The standard approach of using a single
binary reference segmentation may therefore provide misleading results. While using
multiple references increases reliability, the effort required from the experts may become
infeasible. As a solution, we developed a tool that allows individual experts to create
probabilistic segmentations by expressing their uncertainty about the true segmentation.
An explicit distinction between statistical and semantic uncertainty is made. In a study,
we compared the results of three users using our new tool for delineating liver tumors
in CT with ten users drawing conventional contours. We found that with our tool more
variability could be captured by a lower number of experts.

1 Introduction
The development of segmentation algorithms for different anatomical structures and imaging
protocols is an important task in medical image analysis. The validation of these methods,
however, is often treated as a subordinate problem. Algorithms are often evaluated by com-
paring their results to a single reference segmentation which is considered to be the “ground
truth”, although it is well known that manual delineations even by experts always show
some degree of variability. This variability reflects the uncertainty of the experts about the
true segmentation.

For example, in a previous publication [3] we have analyzed the variability among ten
expert delineations for liver tumors in CT. Using the average segmentation as a reference, we
found that any subset of the experts makes a significant error. A closer look at the individual
delineations reveals that two kinds of uncertainty should be distinguished. Statistical uncer-
tainty can be modeled by a mean contour and an uncertainty margin of a particular width. It
can be caused by differing perception of the object size, for example due to different window
settings. If the contrast is low, some readers may tend to draw the outline around all possible
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object voxels, while others mark only the region that certainly belongs to the object. In this
case, it can be assumed that the experts essentially agree about the segmentation. An algo-
rithm that produces any of their segmentations and anything in between can be considered
correct. Semantic uncertainty, on the other hand, cannot be modeled by deviation around a
mean contour. Instead, larger regions, not just narrow bands of voxels, are included by some
experts and excluded by others, resulting in a fuzzy segmentation with distinct areas of a
particular probability. Then, a good algorithm should be close to at least one of the expert
delineations, whereas a compromise between them would not be desirable.

These observations suggest that the common approach of using a hard “ground truth” is
not adequate for validation. In cases where experts are not certain about the true segmenta-
tion, this uncertainty should be incorporated into the validation methodology. Unfortunately,
it is often infeasible to acquire reference segmentations by a substantial number of experts.
Even large validation initiatives such as LIDC [1] collected only four segmentations per case.
Most individual researchers do not have access to more than one or two experts. A common
restriction, however, is that experts are usually asked to draw a single contour as their best
estimate of the true segmentation. Variability is then measured in terms of the differences
between the best estimates of multiple experts. An aspect that is mostly disregarded is the
uncertainty of each individual expert. Before drawing a contour, each reader has to make
two decisions: where to draw the most probable boundary within an often blurred margin
and whether or not to include ambiguous regions which may or may not be part of the object.

The hypothesis of our work is that the variability between multiple experts can in part
be reproduced by a smaller number of experts, if they are given a tool to express their un-
certainty. Such a tool will be presented and evaluated in this paper. The evaluation uses the
same data as our previous study [3] and compares the results of three users with the new
tool to those of ten users drawing conventional contours. Although we focus on a particular
problem, liver tumor segmentation in CT, the methodology is easily generalised.

2 Related work
A related approach was presented by Restif [4]. He introduced a framework called Comets
that allows a single user to create a probabilistic reference segmentation. It was specifically
developed for 2d cytometry images where blurred boundaries and connected objects are
common problems. The user draws the most probable outline and adds inner and outer limit
pixels which are definitely inside or outside the object, but as close to the border as possible.
From this input a confidence map is computed by setting 0 on the drawn outline, ±1 on the
limit pixels and interpolating on all other pixels.

As compared to Restif’s work, this article presents three additional contributions. First,
the focus will be on 3d images. While transferring the concept to 3d is straightforward in
principle, efficiency becomes an issue when contours have to be drawn in each slice. The
concept of limit pixels may not be intuitive for all users and it might take some time to define
them on all slices. Therefore, we opted for a simpler and more efficient interaction based on
contours. Second, Comets does not distinguish statistical and semantic uncertainty but cov-
ers both by a single method and blends them together in the confidence map. For validation
purposes, however, it is advantageous to separate these two aspects. This is done explicitly in
our new tool. Finally, Restif does not compare Comets to other ways of generating reference
segmentations. Since our work was motivated by the goal to reduce the number of necessary
experts without losing information, we conducted a user study to evaluate this.
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(a) (b) (c) (d)

Figure 1: Illustration of the workflow of the new tool and the results it produces. (a) User-
drawn contour (yellow) and inner and outer contours (green and red) automatically con-
structed from the radius of the circle. (b) Probability map. (c) Additional region with confi-
dence 0.5 (blue). (d) Probability map.

3 Workflow
With our tool, implemented in MeVisLab [5], segmentation is done in two phases. In the
first phase, the most probable contour is drawn. The statistical uncertainty is modeled by
a rim around this contour. The inner boundary of the rim delineates all voxels which are
definitely part of the tumor. Analogously, all voxels outside the outer boundary definitely
belong to the background. The width of the uncertainty rim is set by the user before drawing
the contour. For simplicity, this setting is applied globally on each slice, but can be adapted
locally afterwards. The current width is visualized as the diameter of a circle displayed at
the cursor position and can be changed by turning the mouse wheel (Figure 1(a)).

Once the user has finished drawing, the inner and outer contours are generated by ap-
plying a distance transform to the user-defined contours and adding or subtracting the un-
certainty radius. These contours are displayed and can be edited. Although in many cases
a global uncertainty radius is reasonable, there are cases where a different value should be
set locally. For example, a tumor may have a blurred boundary to the liver parenchyma, but
a clearly defined one to a structure outside the liver. Editing is achieved by drawing new
partial contours which are inserted into the existing ones.

Now the contours are transformed into a probability map (Figure 1(b)). Voxels are as-
signed a value of 1 if they are inside the inner contour and 0 if they are outside the outer
contour. Between the contours, probabilities are linearly interpolated. Note that, unlike Res-
tif [4], the values are limited to [0,1] and do not decrease further outside the outer contour.

In the optional second phase, additional regions can be outlined and assigned a confi-
dence of belonging to the tumor (Figure 1(c)). For these regions, no uncertainty margin is
defined because that seemed to be too confusing for users, although technically it would not
be a problem. Regions are included in the probability map by using the maximum of the
value assigned in the first phase and the confidence set by the user (Figure 1(d)). Alterna-
tively, the results of the two phases can be stored separately for further analysis.

4 Evaluation
Our new tool was evaluated in a study with three experts (one radiologist and two radiology
technicians) and the same 13 liver tumors that were used in our previous study [3]. Four
example tumors are shown in the top row of Figure 2.
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Figure 2: Four example tumors from the study. Top row: Original images. Middle row:
Averaged probability maps created by ten experts drawing conventional contours [3]. Bottom
row: Average probability maps created by the three study participants with the new tool.
Additionally, the fuzzy self-overlap as defined in Section 4 is given.

The usage of the features offered by the tool varied across the participants. Readers 1
and 2 adapted the uncertainty width in each case, whereas Reader 3 always used the same
value (in voxels). Reader 3 also did not draw any additional regions. The two others added
three and eight regions, respectively, to eight of the 13 tumors.

We compared the new results to our earlier ones and found a high visual similarity for
many of the tumors. The middle and bottom rows of Figure 2 show some examples. The
chosen uncertainty widths correspond well to the statistical uncertainty among ten experts as
illustrated by tumors (a) and (b). Still, some interesting effects can be seen. In tumor (c), for
instance, a region was left out by one of the three readers although it had been included by
all ten readers in the earlier study. For tumor (d), on the other hand, there was slightly more
variability among ten readers than could be reproduced by three.

For a more quantitative analysis, we define a metric that captures the variability encoded
in a probabilistic segmentation. It is based on the fuzzy volume overlap, where the volume
of a segmentation is the sum of the probabilities of all voxels, with intersection and union
being defined by the voxel-wise minimum and maximum [2]. The fuzzy overlap of two
segmentations compares two aspects, the mean segmentations and the spread of probabilities
around them. Applying the fuzzy overlap to a probabilistic segmentation and its own mean
segmentation, defined by thresholding at 0.5, measures the variability as desired. We call
this the fuzzy self-overlap. It is 1 for a binary segmentation and gets lower the more the
probabilities are spread. Figure 2 gives these values for the example tumors.

Figure 3 compares the variability in averaged segmentations created from the ten conven-
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Figure 3: Variability in combined segmenta-
tions by different numbers of experts, using
conventional and probabilistic expert segmen-
tations. The lower the fuzzy self-overlap, the
higher the variability.

tional segmentations of our earlier study and from the three probabilistic ones of the present
study. In the plot, it is clearly visible that with the new tool more information can be acquired
using fewer experts. One expert using the new tool could replace three experts drawing con-
ventional contours. Together, the three experts in our study generated more variability than
ten in the previous study.

After the study, the participants were interviewed. They said that they felt unfamiliar
with expressing their uncertainty because usually they have to make a crisp decision. While,
however, the uncertainty width was adopted easily, the readers had difficulties defining ad-
ditional regions and quantifying their confidence. This shows that users need some training
to get used to the new way of thinking the tool requires. The reader who achieved the best
results was already interviewed in the development phase and probably had the best under-
standing of the concepts at the time of the study.

5 Discussion

The motivation for this work was to be able to reduce the number of experts needed for a
validation study without losing information and without increasing the workload per expert
too much. A basic decision was made to separate statistical and semantic uncertainties ex-
plicitly, both for reducing the effort and for making it available for further analysis. In the
study, the statistical uncertainties were captured well at virtually no additional cost because
the uncertainty width was set very quickly. A possible disadvantage of the conceptual sepa-
ration, however, is the fact that users typically decide to add a confidence region in the first
phase, but have to wait for the second phase before they can actually draw it. This requires
a high concentration and memory capacity and might be a reason why not many confidence
regions were added. A workflow that allows alternating the two phases on each slice might
improve this. As a further improvement, one might think about not just adding, but also
subtracting confidence regions from the initial segmentation. This might be more intuitive
than leaving out regions with a very high confidence in the first phase and adding them later.

The results of the study show that using the new tool expert uncertainty can be recovered
with a lower number of experts as compared to conventional contours. This was confirmed
both visually and quantitatively. It is interesting to see that in some cases confidence regions
were used that have no correspondence among ten experts. This shows that the explicit cap-
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turing of uncertainty can actually gather additional information compared to just averaging
over a large number of segmentations. But on the other hand, there are also some cases where
the complete variation cannot be reproduced with a lower number of readers. In Figure 2,
tumors (c) and (d) illustrate this duality.

The processing time was not measured, but from our observations during the study it
can be said that the new methods allows a considerable reduction of efforts. Assuming that
segmentation took 25 % longer than pure outlining, which is a very conservative estimation
since confidence regions are typically small and cover only a couple of slices, the overall
person time was still reduced by almost two thirds.

Future work is necessary to investigate how these probability maps can be used for al-
gorithm validation. Since they are not inherently binary, many common approaches are not
directly applicable. Some widely used metrics like the volume overlap can be easily gen-
eralized for probabilistic segmentations, whereas for surface distances there is no obvious
solution and different proposals have been made. Crum et al. [2] discuss their application in
medical image analysis. They focus, however, on the case where the algorithm result is prob-
abilistic rather than the reference segmentation. Further experiments should provide insight
into how suitable these methods are for validation. Also, common methods are not able to
make use of the explicit distinction between statistical and semantic uncertainty. The addi-
tional information that is becoming available calls for a completely new validation paradigm
that works not only on (a set of) random expert delineations, but builds up knowledge about
plausible and implausible segmentations.

We believe that it is important to work towards more meaningful and reliable validation
of segmentation algorithms. This article is a first step that shows how this can be achieved
with limited expert efforts.
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