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Abstract

In medical imagery, traditional deformable models often face substantial challenges
due to fine structures and image complexity. Recently, based on magnetostatic theory, a
new deformable model, namely MAC, is proposed for improving the ability of the active
contour in dealing with complex geometries and segmentation difficulties. A Laplacian
diffusion scheme is proposed in the MAC model to tackle excessive image noise which
can interrupt image gradient vectors and in turn affect the external force field. In this
paper, a derived vector potential field (VPF) is employed to obtain magnetic force and
thus a diffusion tensor can be applied to diffuse VPF in terms of both magnitude and
directional information, instead of directly diffusing the magnetic field as in the MAC
model. Our diffusion is carried out both in spatial and temporal aspects of VPF so that
the performance of the deformable model is significantly improved while images are
with low signal-noise ratio (SNR) and poor contrast. In addition, the proposed diffusion
enhancement can lead to evolving the curve smoothly and thus level set evolution is
adapted to approach genuine object of interest. By applying in several medical image
modalities, the results demonstrate the effectiveness of the proposed method.

1 Introduction
Due to natural biological variability and pathological conditions in medical imaging, various
challenging problems arise in image segmentation, particularly low signal-noise ratio (SNR)
and poor contrast. Over the decades, a substantial amount of methods have been developed to
deal with these segmentation problems. Among many others, methods such as conventional
active contour models, e.g. snake [6], gradient vector flow snake (GVF) [11] and geodesic
active contours (GAC) [2], Markov random field (MRF) models [4], graph cuts [1], and
piecewise constant models, e.g. Chan-Vese model [3], have been widely applied to medi-
cal image segmentation. It is generally perceived that region based approaches are more
robust towards image noise and artefacts compared to edge based ones. However, region
based approaches may suffer from inhomogeneity in regional characteristics, e.g. intensity
or texture. Methods that have the properties of both approaches may offer a better solution
in certain applications, particularly where object boundaries can not be simply described as
discontinuities in intensity or regional characteristics.
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Active contour model is a promising technique to medical image segmentation, due to its
ability to handle complex object geometries. Numerous works have been reported in the liter-
ature. Explicit active contour models are usually represented by using parameterized splines
such as snake [6], GVF [11], which are inadaptable to topological changes; in contrast, im-
plicit active contour models are to embed the contour into a higher dimensional function so
that these models can temporally adapt to contour propagation and topological changes. The
level-set representation of the deforming contour has proved a powerful technique for nu-
merically implementing the implicit active contour models such as GAC [2], the Chan-Vese
model [3]. However, in medical imagery, these methods often face substantial challenges due
to fine structures and image complexity, particularly convergence issues such as deep con-
cavities, weak edges and broken boundaries. Recently, physics-inspired deformable models
have been proposed for coping with these difficulties. For example, a charged particle model
(CPM) [5] based on electrostatics was applied to localize object boundaries by assigning
opposite charges to edge pixels and free particles. Another example is the elastic interaction
based snake [9] which a long range interaction force based on the elastic interaction between
line defects in solids is used as an external force in active contours. However, these meth-
ods still meet difficulties in dealing with the mentioned problems because weak edges can
result in broken contours and noise can lead to curve evolution in wrong directions. Most
recently, a new formulation for active contours based on magnetostatic field, called MAC,
was introduced by Xie and Mirmehdi [10]. Instead of assigning fixed charges, MAC allows
the charges flow through the edges and then a magnetic field is generated by the charge
flow. Thus, the active contour is attracted towards the edges under the magnetic influence.
Although the model is derived from simplistic edge based assumption, i.e. object boundary
collocates with intensity discontinuity, the magnetic field computed from the interactions
of those image gradient vectors behaves very similarly to a region based force. The MAC
model shows significant improvements on the previous active contour models.

However, inevitably the MAC model will suffer from extensive image noise interference,
which can disturb the gradient vectors and cause the inaccurate computation of the magnetic
flux that will in turn affect curve evolution and lead to the deviation of the contour from
genuine object boundaries. In [10], the authors proposed a Laplacian diffusion scheme to
refine the magnetic field before contour evolution. In this paper, a derived vector potential
field (VPF) is employed to obtain magnetic force and a diffusion tensor is then applied to
diffuse VPF in terms of both magnitude and directional information. Thus, the diffusion is
carried out both in spatial and temporal aspects of VPF so that the performance of MAC
can significantly be improved for images with poor contrast and low SNR. In addition, the
proposed diffusion enhancement can lead to evolving the curve smoothly and thus level set
evolution is adapted to approach genuine object of interest. We apply the proposed method
in two medical image modalities, angiography in eyes and urinary cast. The experimental
results demonstrate the effectiveness of the proposed method. The remainder of this paper
is organised as follows: In Section 2, a derived VPF is introduced and the calculation of
magnetic flux with VPF is presented, and then tensor diffusion scheme for VPF is described.
In Section 3, we present the experimental results in various medical image datasets. Finally,
a conclusion is given in Section 4.
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2 Method
2.1 Vector potential field
As described in [10], the direction of the currents, flows of charges, running through object
boundary is estimated based on edge orientation, which is obtained by a 90◦ rotation in the
image plane of the normalized image gradient vectors (Îx, Îy), where I denotes an image. The
image plane is considered as the X-Y plane in a 3D space Ω whose origin coincides with
the origin of the image coordinates. Thus, the direction of object boundary current, O(x), is
estimated as: O(x) = (−1)λ (−Îy(x), Îx(x),0), (1)
where x denotes a pixel position in the image domain, λ = 1 gives an anti-clockwise rotation
in the image coordinates, and λ = 2 provides a clockwise rotation. In terms of the level
set representation, the direction of current for the active contour, denoted as ϒ, is similarly
obtained by rotating the gradient vector ∇Φ of the level set function Φ. Let f (x) be the
magnitude of image gradient, the magnetic flux B(x) generated by gradient vectors at each
x is computed as:

B(x) = µ0

4π ∑
s#=x

f (s)O(s)× R̂xs
R2

xs
, (2)

where µ0 is the permeability constant, s denotes an edge pixel position, R̂xs denotes a 3D
unit vector from x to s in the image plane, and Rxs is the distance between them. The active
contour is assigned with unit magnitude of electric current. The force imposed on it is derived
as:

Fm(x) ∝ ϒ(x)×B(x). (3)
The magnetostatic active contour (MAC) model is then formulated as:

Ct = αg(x)κN̂+(1−α)(Fm(x) · N̂)N̂, (4)

where g = 1/(1+ f ), κ denotes the curvature, and N̂ is inward unit normal. Note, Fm lies in
the image domain and its third element equals zero, which can be ignored.

Furthermore, the magnetic flux density B shown in (2) can be described by its magnetic
vector potential A(x):

B(x) = ∇×A(x),A(x) = µ0

4π ∑
s#=x

f (s)O(s)
Rxs

. (5)

where A(x) can be expressed as (Ai(x),A j(x),0) in Ω:

Ai(x) =
µ0

4π ∑
s#=x

f (s)
−Îy(s)

Rxs
, A j(x) =

µ0

4π ∑
s#=x

f (s) Îx(s)
Rxs

, (6)

where we consider λ = 1 (see (1)). It does not make any theoretical difference if λ = 2 is
used, which simply leads to B(x,λ = 2) =−B(x,λ = 1). (Ai,A j,0) is referred to as vector
potential field or VPF for convenience. Equation (5) indicates that we can indirectly refine
the magnetic field B by diffusing VPF, instead of post-processing B as proposed in [10]
which, as we show in the experimental section, is problematic in noisy situations.

2.2 Tensor diffusion for vector potential field
For the vector potential field, referring to nonlinear diffusion techniques introduced in [8],
we propose a tensor diffusion of the potential field before computing its circulation density.
Thus, we diffuse the VPF by considering not only their magnitude but also their orientations
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and then the magnetic flux B is calculated using the refined VPF according to (5). This will
efficiently alleviate the disturbance of image noise or artefacts because the Laplacian diffu-
sion used in [10] merely performs the scalar process in the magnetic flux B. The following
tensor diffusion scheme is employed for our purpose:

∂
∂ t

u−∇ · (D(∇u)∇u) = F (u0), (7)

where u(t,x) is the diffused version, t can be considered as the “scale parameter”, D =(
a b
b c

)
is the diffusion tensor (a positive definite symmetric matrix), F can be consid-

ered as a penalty function which forces the diffusion result to conform to certain criteria, and
u0(x) = u(0,x) denotes the initial state. In our case, the VPF A = (Ai,A j,0) is a vector field.
Thus, the nonlinear diffusion takes the following coupled form:

{ ∂
∂ t Ai −∇ · (D(∇Ai,∇A j)∇Ai) = F (Ai),
∂
∂ t A j −∇ · (D(∇Ai,∇A j)∇A j) = F (A j),

(8)

where Ai(0,x) = Ai(x), A j(0,x) = A j(x). The diffusion tensor can be decomposed into two
orthogonal components, one of which is parallel to the local potential vector and the other
is perpendicular to the local vector. The orientation of a vector in the potential field can be
denoted as (cosθ ,sinθ) and its orthogonal unit vector can be obtained as (−sinθ ,cosθ).
Thus, (8) can be re-written as:

∂
∂ t

A −∇ ·
(

RT
(

ω 0
0 γ

)
R∇A

)
= F (A), (9)

where R =

(
cosθ sinθ
−sinθ cosθ

)
, ω is the diffusion function in the direction of the VPF and

γ denotes the diffusion function orthogonal to the field. Note the divergence and gradient
operations are applied to each spatial component of A separately.

Considering the fact that we aim to have larger diffusion where potential vectors have
smaller magnitude and preserve large potential vectors that are spatially consistent, we se-

lect the weighting function ω: ω(A(x)) = e−
|A(x)|3

K′ , where K′ is the parameter controlling the
amount of diffusion (K′ = 0.25 in our experiments) and |A| ∈ [0,1]. In addition, the diffu-
sion perpendicular to local potential vectors plays a critical role in propagating the potential
vectors from strong edges to regions further away from them, which may be dominated by
image noise. We wish to increase the diffusion in this perpendicular direction according to
the magnitude of the VPF, thus we choose the square root of the VPF magnitude, |A|0.5,
as a measure of degradation along this perpendicular direction and then similarly define the
diffusion function γ = e|A|0.5 .

For obtaining the solution with a nontrivial steady state in (9) and avoiding the problem
of choosing a stopping time [7], we define the conformity function F as F (A(x)) = A(x)−
A (x). Moreover, a weight is used to exert substantial diffusion for desirable regions, i.e. the
larger ω is, the less constraint is imposed on conformity. Thus, F is given as:

F (A(x)) = (1−ω(A(x)))(A(x)−A (x)). (10)

3 Experimental results
The proposed diffusion method has been applied in refining the magnetic flux of the MAC
model for extracting the ROIs in medical images. The controlling parameter K′ is set to



H. ZHANG, X. XIE: MEDICAL IMAGE SEGMENTATION ���

0.25 in the experiments. We compare this indirect diffusion method with the Laplacian
diffusion method used in [10]. The first image modality used is from the angiography in
eyes, which is usually with low SNR and poor contrast. The initialisations of two cases
are presented in Fig. 1(a)(d). The results in Fig. 1(c)(f) illustrate that our method can extract
more accurate boundaries of the vessels in comparison to the Laplacian method (Fig. 1(b)(e),
see the arrowed places). Fig. 2 illustrates the curve evolution of an example using our method
and the Laplacian. Three more examples in Fig. 3 show the superior performance of the
proposed diffusion method in comparison with the Laplacian method. We can see that the
acquired boundaries using the proposed method are not only more accurate, but also more
smoother than using the Laplacian method. This is due to performing the tensor diffusion in
terms of both the magnitude and orientation information of VPF.

Furthermore, we have applied our method to another medical image modality, urinary
cast, which are often with low SNR and poor contrast as well. Four examples are pre-
sented in Fig. 4 where the largest components are the interested cellular structures in the
images. The initialisations are shown in Fig. 4(a1)(b1)(c1)(d1). Fig. 4(a2)(b2)(c2)(d2) show
the results using the Laplacian diffusion and Fig. 4(a3)(b3)(c3)(d3) present the results using
our method. In this difficult situation, the proposed diffusion method can acquire accurate
smooth boundaries while the Laplacian diffusion works by contrast ineffective.

Figure 1: Segmentation results for two angiography images. (a,d) are the initialisations, (b,e)
are the results using the Laplacian diffusion. (c,f) are the results using the proposed method.
The arrowed places are problematic.

Figure 2: Curve evolution using our method. (a) is the initialisation; (b,e), (c,f) and (d,g) are
the intermediate results for iteration 40, iteration 90 and the final one using our method and
the Laplacian respectively. The arrowed places are problematic

4 Conclusions
In this paper, we propose a tensor diffusion method to diffuse the derived VPF so that the
magnetic flux B can be refined better than the Laplacian method used in [10]. The major
flavor of the proposed diffusion method is due to considering both diffusion magnitude and
orientations in the diffusion process that can significantly improve the segmentation perfor-
mance of the MAC model, particular in images with low SNR and poor contrast. We apply
the proposed method in several medical image modalities. The current experimental results
illustrate its superior performance in comparison to the Laplacian diffusion method. Future
work will focus on the performance evaluation of the proposed method.
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Figure 3: Extra examples for angiography. Column (a) is the initialisation, Column (b) is the
results using the Laplacian method and Column (c) is the results using the proposed method.

Figure 4: Results for urinary cast. (a1,b1,c1,d1) are the initialisations, (a2,b2,c2,d2) are the
results using Laplacian diffusion, (a3,b3,c3,d3) are the results using the proposed method.
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