
PAPER 13: UNSUPERVISED SEGMENTATION OF CONFOCAL MICROSCOPY IMAGES 1��

Fractional Entropy Based Active Contour

Segmentation of Cell Nuclei in Actin-Tagged

Confocal Microscopy Images

Leila Meziou1

leila.meziou@ensea.fr

Aymeric Histace1

aymeric.histace@u-cergy.fr

Frédéric Precioso2

precioso@polytech.unice.fr

Bogdan J. Matuszewski3

BMatuszewski1@uclan.ac.uk

Franck Carreiras4

franck.carreiras@u-cergy.fr

1 ETIS - UMR 8051 - CNRS
University of Cergy-Pontoise/ENSEA,
Cergy-Pontoise, France

2 I3S - UMR 6070 - CNRS
University of Nice/Sophia-Antipolis,
Nice, France

3 ADSIP Research Centre
University of Central Lancashire
Preston, UK

4 ERRMECe
University of Cergy-Pontoise
Cergy, France

Abstract

In the framework of cell structure characterization for predictive oncology, we pro-
pose in this paper an unsupervised statistical region based active contour approach in-
tegrating an original fractional entropy measure for single channel actin tagged fluo-
rescence confocal microscopy image segmentation. Following description of statistical
based active contour segmentation and the mathematical definition of the proposed frac-
tional entropy descriptor, we demonstrate comparative segmentation results between the
proposed approach and standard Shannon’s entropy obtained for nuclei segmentation.
We show that the unsupervised proposed statistical based approach integrating the frac-
tional entropy measure leads to very satisfactory segmentation of the cell nuclei from
which shape characterization can be subsequently used for the therapy progress assess-
ment.

1 Introduction

Segmentation of cellular structures is an essential tool in cell microscopic imaging as it
enables measurements which can be used to track cell divisions or help to reconstruct cor-
responding cell lineage trees providing data for calculation of different parameters like cell
proliferation rate for instance. More specifically, the work presented in this paper has been
carried out in a context of analyzing changes of cell cytoskeleton properties in a response
to ionizing radiation insult. The final goal of this research effort is to better understand
cell bio-mechanical responses during cancer radiation therapy. In this context, we propose
an unsupervised segmentation approach of fluorescence confocal microscopy images which
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represents practical computational problem when considering many monolayer acquisitions
– in order to effectively extract nuclei as a first step for providing spatial reference frame for
analyzing cytoskeleton changes.

To date, only few methods have been proposed to address direct segmentation (without
any denoising preprocessing of acquired images) of cell structures in fluorescence confo-
cal microscopy images. In former approaches proposed in [8] and [12], authors focused
on nuclei segmentations. In [14], authors proposed cell segmentation in 2D-fluorescent im-
ages with two channels (actin and nucleus tagging) using a multiphase level-set combining
Chan-Vese [2] and geodesic active contour models, together with repulsive force introduced
to prevent segmented cells from overlapping. In [7, 15] automated 3D cell segmentation
from a 3D confocal acquisition of early Zebrafish embriogenesis is proposed; Two different
fluorescent markers (red for nuclei and green for membrane) are used to easily discriminate
nuclei from cell membranes. In [15], authors introduced an adapted version of the subjec-
tive surface technique [13] for surface reconstruction from missing boundary information
whereas [7] use a multiphase level-set based on probability correlation functions.

Within a level set framework as in [7, 14], our method aims at a different objective:
segmentation of microscopic 2D images extracted from a full single channel confocal acqui-
sition with only one fluorescent marker used for actin tagging. The filament actin (F-actin)
is believed to play a vital role in cell structure [3]. As Actin is one of the three most common
proteins in human cytoskeleton, analysing its changes and properties could be instrumen-
tal in analysis of cell properties. For example this can be associated with cancer evolution.
Nevertheless, due to a highly complex actin appearance, a high level of noise and a strong
non-homogeneity of intensity and gradient information, the segmentation of cell structures
in such imaging data, is a very challenging task. Moreover, a particular attention is given to
completely avoid any enhancement preprocessing [10] and to reduce to its minimum, manual
interventions during the whole segmentation process.

The data used in this paper were obtained from human prostate cells (PNT2). Actin
were labelled with phalloidin-FITC and all imaging was carried out using a Zeiss LSM510
confocal microscope. Fig. 1 shows different slices from the microconfocal acquisition of the
monolayer PNT2 cell culture. The stack volume is defined on the 512⇥ 512⇥ 98 grid of
pixels each 0.21 µm ⇥ 0.21 µm ⇥ 0.11 µ in size. Actin is mostly present at the periphery of
the cells and within the cytoplasm. We can then notice that high intensities of actin tagged
confocal images allows biologists to roughly delineate cell membranes whereas darkest areas
are identified as nuclei. Owing to the high level of Poisson noise corrupting these images and
the particular texture of actin, classic region based active contour approach, like the Chan
and Vese one [2], fails even in segmenting properly the boundaries of nuclei corresponding
to each cell [6]: We then propose to tackle this segmentation using statistical based active
contour (see [5] for an overview on the work on this area) more adapted to this particular
context than classic region based ones.

The remaining of this article is organized as follows: in Section 2, the framework of
statistical based active contour using entropy estimation is first presented, subsequently the
corresponding Partial Differential Equation (PDE) which steers the evolution of the contour
is described and finally attention is focused on the particular proposed fractional entropy
descriptor; Section 3 focuses on experiments on microscopic images followed by conclusions
and perspectives drawn in Section 4.
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(a) (b) (c)

Figure 1: Examples of actin tagged fluorescence confocal microscopy images extracted from
a 3D microconfocal acquisition of the monolayer PNT2 cell culture. (a) Lower slice (with
low z-stack index), (b) Mid-slice with the lowest level of structural noise (a “hole” is high-
light in yellow which should not to be confused with a nucleus), (c) Upper slice with non-
homogeneity of the fluorescent marker on the left hand side.

2 Active contour segmentation using a fractional entropy

descriptor

Formerly introduced in [1], integral based features active contour methods are derived from
traditional region based approaches by utilizing integral statistics as descriptors of the inner
(Win) and outer (Wout ) regions delimited by the active curve G at a given iteration t of the
segmentation process.

First, let H(Wi) denotes an integral entropy estimation associated to a particular region
Wi within image such as

H(Wi) =
Z

Wi

j ( p̂(I(x),Wi)) dx , (1)

with j a monotonic increasing function, I(x) the luminance of pixel x= (x,y) and p̂ the non-
parametrically estimated Probability Density Function (PDF) of region Wi. More precisely,
usually PDF p̂ is estimated using Parzen window technique such as:

p̂(I(x),Wi) =
1

|Wi|

Z

Wi

Gs (I(x)�l )dx, (2)

where l 2 [0...2n �1], n is the quantization level of image intensity function, and Gs is the
Gaussian kernel of standard deviation s . In the framework of statistical region based active
contour segmentation, corresponding functional to minimize HT is defined as a competition
between inner and outer regions characterized by the considered entropy descriptor H of Eq.
(1) such as:

HT = H(Win)+H(Wout)+g
Z

G
ds, (3)

where g is a positive real value and s standard arclength of the curve. This functional com-
bines measures of the considered entropy descriptor of inner Win and outer Wout regions of
the curve for a given iteration t of the segmentation with an additional regularization term
minimizing the curve length. The Euler derivative of Eq. (3) and usual minimization scheme
leads to the Partial Differential Equation (PDE) steering the evolution in the orthogonal di-
rection N of the active curve G :

∂G
∂t

=
�
A(s,Win)+j(p(I(s),Win))+A(s,Wout)+j(p(I(s),Wout))+g

�
N (4)
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where A is related to the proposed descriptor and is defined by:

A(s,Wi) =� 1
|Wi|

Z

Wi

j 0(p̂(I(x),Wi))[ p̂(I(x),Wi)�Gs (I(x)� I(s))]dx . (5)

For illustration, let’s consider the particular case of Shannon’s entropy: j function is
given by j(r) =�r.log(r) and then H(Wi) =�

R
Wi

p̂(I(x),Wi)log(p̂(I(x),Wi))dx. As it will
be shown in the Experiment section, standard Shannon’s entropy have some limitations in
terms of segmentation performance: more specifically, this measure makes segmentation of
corrupted (Gaussian noise) textured images challenging [4], in the case of high level of struc-
tural noise, the segmentation results are not that satisfactory. This can be explained by the
fact that Shannon’s entropy tassumes that the corrupting noise (and then the corresponding
PDF p̂) can be parametrically modeled within the exponential family [5] which is not true
when considering confocal microscopy data. In this particular context, fractional entropy
like the Rényi, given by:

HR(Wi) =
1

1�a
log

Z

Wi

p̂(I(x),Wi)
a dx , (6)

is of primary interest. Rényi’s entropy shows some relaxation possibilities regarding the
shape of the PDF p̂ which can be used by a judicious setting of a (considered as strictly
positive and lower than one in this study [11]). Unfortunately, Rényi’s entropy as expressed
in Eq. (6) is part of the non-integral entropy family that can not be easily associated to a
region-based criterion in a classic active contour based segmentation. Nevertheless, taking
benefits of the properties of Rényi’s entropy, we propose to define a fractional entropy mea-
sure adapted to the framework of statistical region-based active contour segmentation. For
this, let consider Eq. (1) with j function and its derivative given by:

j(r) =� 1
1�a

log(ra ) and j 0(r) =� a
(1�a)r

. (7)

Considering j function of Eq. (7), we obtain an integral entropy measure integrating a
fractional parameter.

3 Experiments and results on nuclei segmentation

In this section, comparative segmentation results obtained are first described for the unsu-
pervised nuclei segmentation within the mid-slice of the considered single channel confocal
microscopic acquisition (Fig. 1(b)).

The PDE from Eq. (4) is implemented in the level-set framework in order to be able to
automatically handle topological changes [9]. The initialization of the active contour is a set
of small circles uniformly distributed all over image which allows an easy initialization of the
algorithm. Classic AOS scheme is used for implementation in order to obtain a reasonably
fast convergence segmentation.

Fig. 2 shows results obtained with the standard Shannon’s entropy criterion and the pro-
posed fractional entropy descriptor. Considering experiments based on Shannon’s entropy
(Fig. 2 (left)), as one can notice, the method does not lead to satisfying results . Figs. 2
(middle and right) shows results of nuclei segmentation on the same slice, but with the pro-
posed fractional entropy criterion: the nuclei segmentation is definitely improved. As one
can notice, as actin is a complex structure, some artifacts could appear. It is possible to
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Figure 2: Comparative results of nuclei segmentation. Left: Shannon’s entropy ; Middle
and Right: Fractional entropy descriptor with a = 0.5 (middle) and a = 0.7 (right) ; for all
experiments g = 10.

overcome this drawback with an adapted choice of a parameter. As one can see in Fig. 2,
for a = 0.5, smaller number of artifacts related to a value and those results show that this
parameter plays an important role in the sensitivity of the criterion to the level of corrupting
noise. Moreover, it is important to notice that the proposed fractional entropy measure can
also distinguish a hole from a nucleus (which method based on Shannon’s criterion was not
able to achieve), whereas the associate PDFs are statistically very similar.

Finally, Fig. 3 shows some segmentation results obtained on the whole stack of acquired
images. Results shown are obtained with a = 0.5, and g = 10. To obtain these results, a
propagation initialization strategy, starting on middle slice is used which makes integration
of some spatial coherence within the segmentation scheme to avoid propagation of false
detection due to complex appearance of actin.

Figure 3: Segmentation of nuclei made on upper (upper row) and lower (bottom row) slices
of the all stack, mid-slice of Fig. 2 being the initialization level). a = 0.5 and g = 10.

These results have been qualitatively considered as very satisfactory from an expert point
of view and a very good start for further investigations on that particular data.
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4 Conclusion

The contribution of the segmentation approach presented in this article is twofold: (i) An
unsupervised cell nuclei segmentation method is proposed for single channel actin tagged
acquisitions without any enhancement or denoising preprocessing of the considered images.
(ii) Whereas in the framework of statistical based active contour methods standard Shannon’s
entropy is most often considered as the region descriptor, we proposed an original fractional
entropy measure inspired from Rényi’s entropy making possible a relaxation of the sensibil-
ity of the descriptors to strong variations of the shapes of the non parametrically estimated
related PDF. Main motivation was to overcome the limitations of Shannon’s entropy which
appeared not adapted to our segmentation problem. We are currently working on locally
relating the optimal choice of a parameter with the level of noise and/or the type of texture
characterizing the image to segment. From an application point of view, we are finalizing a
3D version of our slice-by-slice segmentation approach to have a direct visualization of the
3D shape of the nuclei. Membrane segmentations will be the next step.
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