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Abstract

Increasingly, clinical practice involves acquiring multiple scans with different modal-
ities for diagnostic tasks, as well as longitudinal studies to monitor patient response to
therapy and for disease progression. Often, one of these scans is of substantially lower
spatial resolution. In order to maintain the highest possible resolution of all scans for sub-
sequent analysis steps, upsampling of the images is needed. Recently, new approaches
have been proposed to make use of an inter-modality high-resolution image as a guid-
ance for this upsampling process. While these techniques achieve a significantly higher
quality for two perfectly aligned volumes compared to traditional interpolation methods,
they are not robust against misalignments between the high- and low-resolution scans.
We address this problem by incorporating a deformable multi-modal registration step in
the super-resolution reconstruction process. We demonstrate an improved performance
of our method compared to two different intra-modality interpolation-based techniques
and an inter-modality guided approach without incorporation of registration.

1 Introduction and Background

Medical imaging modalities provide complementary information, due to their different phys-
ical acquisition principles. For example, computed tomography (CT) scans have high spatial
resolution and good dense tissue contrast, while magnetic resonance images (MRI) excel in
higher soft tissue contrast at the cost of a longer acquisition time and lower resolution. The
acquisition of scans of multiple modalities is becoming clinical practice. Using their comple-
mentary information in the highest possible resolution is therefore of great clinical benefit,
for example for pulmonary image analysis of thoracic images, where MRI acquisition is
difficult to the breathing motion.

There are two principal challenges involved in the fusion of such multi-modal scans.
First, patient motion and imaging distortion, which may have occurred between two scans,
has to be compensated for. Rigid and deformable image registration has been widely studied
to address this problem. Second, the inherently different spatial resolutions of the different
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modalities have to be reconciled to bring both scans into the same coordinate space. Con-
ventionally, interpolation techniques are used to resample the lower resolution (LR) scan
to match the higher-resolution (HR) scan (upsampling). However, such an approach uses
only the neighbouring intensity values of the same low-resolution scan and ignores the avail-
able high-resolution information of the complementary scan; this in turn causes blurring of
anatomical structures.

Recently, a number of methods have been proposed which use an inter-modality high-
resolution image as a guide for the upsampling process. Kopf et al. [6] introduced a joint
bilateral filtering approach for super-resolution (SR) reconstruction based on low-resolution
exposure maps, chrominance image and stereo depth maps together with a high-resolution
gray-scale image for guidance. In [7] and [8] super-resolution images of low-resolution
T2-weighted MRI brain scans are obtained using a non-local weighting process that uses
a high-resolution T1-weighted scan as prior. These methods all have in common that the
perfect alignment of LR and HR images is required to obtain accurate and robust results.
In clinical practice, this assumption generally does not hold true due to residual registration
errors, particularly in the case of significantly different voxel dimensions.

We have developed a novel approach, which incorporates the estimation of a deforma-
tion field between the multimodal LR and HR scans into the super-resolution reconstruction
process. Based on a point-wise multi-modal similarity metric and a diffusion-regularised
Gauss-Newton optimisation, a deformation field is computed between the voxels in the LR
and HR guidance scans. The deformation field is then used to transform the appropriate
non-local weighting of the HR scan in the SR reconstruction. The process is iteratively re-
fined, while the solution is constrained by the underlying imaging physics. Our approach is
explained in detail in the next sections. We demonstrate its improved performance on clini-
cally relevant tasks for SR reconstruction, including upsampling of chest MRI images using
a HR CT scan as a guide.

2 Guided Upsampling with an Inter-Modality Prior

The observation model of the formation of a LR image y based on the HR image x is (as
defined in [8]):
y =DBWx+n (1)

where n represents the noise, D is a sub-sampling matrix, B is a blur operator, and W is the
geometric transformation between the HR and LR images. In this work, we assume the noise
n has been removed as a preprocessing step. Alternatively, an appropriate noise-model could
be incorporated into the upsampling process. In the case of MRI scanners, the blur operator
B can be approximated by a 3D boxcar function.

To ensure that the reconstructed SR volume X complies with the physical acquisition
model, an additional constraint, the subsampling consistency (SSC), was introduced by [2].
It requires the downsampled SR image to be equivalent to the original LR image:

y — DBW& =0 2)

The reconstruction step of our method follows the approach of [7]. Based on the assumption
that similar voxels in the inter-modality HR image z are similar in the reconstructed SR
image, we perform a weighted averaging using a joint filtering approach (see e.g. [6]). The
weights of this filter are estimated from the non-local neighbourhood Q of the voxels in
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the HR guidance image z; but the averaging is performed on the reconstructed SR voxels.
In contrast to linear invariant filters (e.g. Gaussian, Laplacian), the filter characteristic is
data-dependent and therefore different for each voxel. Based on a previous estimate %’ the
intensities of the SR image can be calculated with the following equation:

1 2
£+ (x) = = ¥ & (x4 ) exp 40—t/ -
where the Q = {0,+1,...,+ry. ) defines 3D the non-local search region, ¢ is a normal-

ization constant and / is a filtering parameter. A limitation of this approach is the necessity
of sufficient contrast in the HR scan. For regions where this is not fulfilled the upsampled
anatomical structures will by limited by the lower resolution (see Fig. 2). If the squared
intensity distance of the voxels in the HR image z is replaced by the sum of squared differ-
ences (SSD) of small images patches around these voxels, Eq. 3 can be seen as joint version
of the popular non-local means filter [3]. In [7], the filter parameter & is chosen empirically
and is reduced by a factor of 2 after each iteration, thus introducing a coarse-to-fine scheme
of the SR reconstruction. The reconstruction process is performed iteratively by alternating
steps of guided reconstruction (Eq. 3) and enforcement of the SSC (Eq. 2).

3 Robust SR using Multi-Modal Registration

In previous work [7], [8] the geometric transformation W in Eq. 1 was assumed to be known
a priori. However, as shown in [7], even slight initial misalignments cause the reconstruction
performance to deteriorate. The reconstructed SR volume is at best as good as an interpolated
version of the LR image (without using the HR guidance). In some cases, it can also cause
artifacts in the reconstructed SR image, as shown in Fig. 2 (¢).

We address this problem by incorporating deformable multi-modal registration between
the LR volume x and the HR volume z. In [5] a point-wise multi-modal similarity metric
is introduced, which can cope with the complex nature of multi-modal similarity. A multi-
dimensional descriptor is computed at each location in both images, which is modality-
independent and discriminative to prominent image features (such as edges and corners). We
follow a similar approach as [5] and optimise a cost function consisting of the voxel-wise L2
norm of the multi-dimensional descriptors and a diffusion regularisation in a multi-resolution
Gauss-Newton framework. To reduce the influence of smoothing due to interpolation, we
apply the resulting deformation to the guidance image and recalculate the weights in Eq. 3
based on the transformed image at each iteration.

When initialised with SR=LR, our proposed approach consists of three alternating steps:

1. multimodal deformable registration of SR and HR scans to find W
2. reconstruction based on guided filtering using the inter-modality HR scan (rpax = 3)

3. intensity correction to ensure subsampling consistency (SSC).

4 Experiments and Results

We demonstrate our proposed method on three different datasets. First, we use a simulated
3D MRI T1/T2 brain phantom (Brainweb [4]), which has also been used in [7] and [8]
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and allows us to compare our method with published results. Second, we use the Visible
Human Dataset [1] consisting of 3D MRI chest scans with T1 and T2 weighting, which have
been acquired post-mortem and therefore do not have any significant misalignement. For
these two datasets, we artificially subsample one of the two scans to obtain a low-resolution
volume. Third, we use the same chest MRI scan together with an additional CT scan of the
same subject, where there exists a residual non-rigid mis-alignement between the two scans.
The reconstructed SR volume X is compared with the known ground truth volume x, and
the reconstruction error can be defined as mean squared error (MSE) or peak to noise ratio

(PSNR) in dB: MSE = 1 ¥ (8 —x)* and PSNR = 10log,, %7
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Figure 1: Residual error after each iteration of our proposed SR reconstruction method ap-
plied to the Brainweb dataset and averaged over different subsampling factors (2, 3, 4 and 6
mm). Mean squared error (MSE) is displayed on the left, the target registration error (TRE)
on the right. Results are normalised by the value of the first iteration.

Table 1: Performance of reconstruction / interpolation methods (PSNR in dB) for noise-free
Brainweb (BW) volumes and chest scans of the Visible Human Dataset (VHD). The BW HR
guidance image (T1-weighted MRI) has isotropic voxel-size of 1.0 mm>. The VHD HR scan
(MRI-T1) has a voxel-size of 1.9x4.0x1.9 mm?>. A random subpixel shift of up to 3 mm has
been applied to the HR scan before reconstruction. The LR scan is a T2-weighted MRI.

Image dataset | subsampling NN B-spline  proposed w/o registration
2 mm 27.9dB 31.5dB  33.7dB 28.2dB
Brainweb 3 mm 240dB 260dB  30.5dB 25.0dB
4 mm 225dB 23.7dB  28.1dB 23.6 dB
6 mm 205dB  21.2dB  239dB 21.4dB
2 mm 31.6dB 33.6dB  33.6dB 29.7 dB
Visble Human 3 mm 28.7dB  30.0dB  30.8dB 26.9 dB
4 mm 27.2dB 283dB  29.6dB 25.6 dB
6 mm 255dB 264dB  27.7dB 24.0dB

We perform our proposed SR reconstruction on LR volumes with varying subsampling
factor (2, 3, 4 and 6 mm). A random (subpixel) translation of up to 3 mm is applied for the
first and second experiment to simulate initial misalignments. The resulting MSE between
reconstructed SR and the ground truth volume and the residual registration error after each
iteration are visualised for the first experiment in Fig. 1. To enable comparison between
different subsampling factors the results are normalised by the first value of the first iteration.
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Figure 2: Coronal plane of chest MRI of VHD. (a) HR T1-weighted guidance volume. (b)
LR T2-weighted volume (subsampled by a factor of 6). (c) SR reconstruction without regis-
tration. (d) SR reconstruction of our proposed method yields are visually clearly improved
result. Problematic are areas, which have no corresponding anatomy in the HR scan.

Figure 3: Sagittal plane of chest CT/MRI scan pair. From left to right: HR CT guidance
volume, LR T1-weighted volume (NN-interpolation), SR reconstruction without registra-
tion, SR reconstruction of our proposed method. The red arrows indicate areas in where our
proposed method achieves an improved SR reconstruction (reduced aliasing along edges).
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For both measures the initial error could be further reduced by 30% on average using our
proposed technique. An overview of the results for the first two experiments is given in
Table 1 and an example outcome of the SR reconstruction of a chest MRI upsampled by a
factor of 6 is shown in Fig. 2.

For the third experiment, no ground truth is available, therefore only visual results can
be presented. The MRI scan (T1-weighted) has a resolution of 1.875x4.0x1.875 mm, the
HR CT reference of 0.9x0.9x1.0 mm. We use the proposed method to construct a super-
resolution MRI volume with a voxel-size of 1.875x2.0x1.875 mm. The scans are manually
rigidly aligned, but there is still some minor non-rigid misalignment, due to slightly changed
body positioning and geometric distortion of the scanners. Figure 3 shows an improved
reconstructed volume compared to the nearest neighbour (NN) interpolation and the guided
SR reconstruction without reconstruction (following the approach of [7]).

5 Conclusion

We have presented a new method to reconstruct a super-resolution (SR) volume based on a
low-resolution scan and an inter-modality high-resolution guidance volume. Our technique
incorporates a multi-modal registration step for a robust SR reconstruction. We demonstrate
on a number of challenging clinical datasets, that the registration accuracy and the SR re-
construction can be improved by combining both methods into a unified framework. One
remaining challenge are areas in the LR, which have no corresponding anatomy in the HR
scan. In the future, we would like formulate our approach in a combined energy functional
(registration and SR reconstruction) and apply it on a larger set of clinical CT/MRI scans.
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