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Abstract

Diffusion MRI (Magnetic Resonance Imaging) Microstructure Imaging provides a
unique non-invasive probe into the microstructure of biological tissue. However, it relies
on a mathematical model relating microscopic tissue features to the MR signal. This
work aims to determine which models of diffusion MRI are best at describing the sig-
nal from in vivo brain white matter. The assumption of Gaussian diffusion in the most
commonly used model, the Diffusion Tensor, oversimplifies the diffusive behaviour of
water in complex media and is known to break down for relatively large diffusion weights
(b-values). Recent work shows that three-compartment models, incorporating restricted
intra-axonal compartments, glial compartments and hindered extra-cellular diffusion, are
best at explaining multi b-value data sets from fixed brain tissue. Here we perform a simi-
lar experiment using in vivo human data to avoid, and evaluate, the effects of the fixation
process. We compare one-, two- and three-compartment models, and rank them using
two standard model selection criteria. Results show that, as with fixed tissue, three-
compartment models explain the data best, although simpler models emerge from the
in vivo data. Both changes in diffusion behaviour from fixation and the lower gradi-
ent strengths available in vivo are likely to contribute to the difference. The full ranking
assists the choice of model and imaging protocol for future brain microstructure imaging.

1 Introduction

Diffusion MRI measures the water dispersion in biological tissue and can therefore be used
to probe the microstructure. Though useful in other tissue types, this technique is most often
applied in the brain, especially where parallel fibres restrict water mobility anisotropically,
thus providing putative measures of white matter integrity and connectivity.

Currently, the standard model for imaging diffusion in tissue is the Diffusion Tensor (DT)
[7], which assumes a trivariate Gaussian dispersion pattern. Derived indices, such as Mean
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Diffusivity (MD) and Fractional Anisotropy (FA), can correlate with major tissue damage,
but lack the sensitivity and specificity to provide indices such as axon radius, density, orien-
tation, dispersion and permeability, which potentially give much greater insight into tissue
architecture and pathology. These can be estimated by applying more complex models to
richer data sets [2, 3, 4, 5, 6, 12, 14, 15].

Stanisz et al. [14] pioneered a multi-compartment representation of the separate dif-
fusive processes in nerve tissue. The Ball-Stick model [8] is the simplest possible two-
compartment model with restricted axonal diffusion and isotropic extra-axonal diffusion.
The CHARMED model (Composite Hindered and Restricted Model of Diffusion) [4] is a
similar two-compartment model that allows anisotropic Gaussian Diffusion in the ‘hindered’
extra-cellular space and non-zero-radius cylindrical intra-cellular diffusion. The AxCaliber
technique [5] extended the CHARMED model to estimate the distribution of axon diame-
ters. Barazany et al. [6] demonstrated the approach in vivo on a rat’s Corpus Callosum (CC),
adding a third free-diffusion compartment to account for Cerebrospinal Fluid (CSF) contam-
ination. Alexander et al. [2] used a similar model to derive orientationally invariant indices
of axon diameter and density.

Increasing model complexity can potentially lead to overfitting and false parameter es-
timation. Recently, Panagiotaki et al. [12] compared 47 diffusion MRI models using data
from fixed White Matter (WM) of rats, using the Bayesian Information Criterion (BIC). They
proposed a taxonomy of one-, two- and three- compartment models as a combination of: i) a
hindered/extra-cellular diffusion via a Tensor (an ellipsoid), a Zeppelin (a cylindrically sym-
metric ellipsoid) or a Ball (an isotropic sphere); ii) a restricted/intra-cellular diffusion via a
Stick (an oriented line with zero radius), a Cylinder (a Stick with non-zero constant radius)
or Gamma Distributed Cylinders (not included in this work); iii) an isotropically restricted
component, representing glial cells or isotropically oriented axons, modelled by a Dot (“sta-
tionary” water), a Sphere (spherically restricted), Astrosticks (zero radius lines isotropically
spread in space) or Astrocylinders (similarly to the Astrosticks, but with non-zero radii).
They concluded that the three-compartment models perform best and DT worst.

Here we repeat the experiment in [12] using in vivo data from the human brain’s CC
and the software used in [12] as part of the Camino toolkit [10]. We acquire a rich data set
with many combinations of diffusion and gradient times and gradient magnitudes to fit the
models to as wide a fraction of the measurement space as possible. We test the quality-of-fit
of models to the data using BIC, and confirm with the Akaike Information Criterion (AIC).

2 Methods

This section describes the acquisition protocol for our rich data set and outlines the prepro-
cessing we perform to obtain a set of measurements for model fitting. It then details the
fitting procedure and the techniques we use for model selection and ranking.

2.1 DW/DT Acquisition

Using a 3T Phillips scanner, we scan a 30-year old healthy man, using three gradient-
encoding directions: one approximately along CC main fiber direction and two in its per-
pendicular plane. The images consist of 8x4mm sagittal slices, an image size of 64x64 and
in-plane resolution of 2mm x 2mm.
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Using a Pulsed-Gradient-Spin-Echo sequence, we probe gradient strengths |G| = 30, 40,
50, 60 mT/m, gradient times d = 5, 15, 25ms, and diffusion times D ranging in steps of 10ms,
from 20 to 100ms. This produces a total of 63 diffusion weightings, excluding any combi-
nations where d>D, with maximum weight b=8,300s/mm2. As the echo times vary across
different acquisition parameters, in addition to every diffusion-weighted acquisition we ob-
tain a corresponding non-diffusion-weighted (b=0) one. We also perform a separate HARDI
(High Angular Resolution Diffusion Imaging) acquisition with the same image resolution,
32-gradient encoding directions and b=711s/mm2. The total acquisition time is 2.5hrs.

2.2 Data Preprocessing

As in [12], we first fit the DT model to the HARDI data and find the principal direction to
identify voxels containing fibres well aligned with the assumed fibre direction. We take all
voxels with FA above a threshold and principal eigenvector within a small angle of tolerance
of the assumed fiber direction and average them to give a single data set to which the model
can be fitted. Here, we set the FA threshold at 0.5 and repeat the experiment with three
different angular thresholds, 2�, 5� and 10�, to establish the effect of orientation dispersion.
For b>3,500s/mm2, the parallel direction signal reaches the noise floor, so we exclude these
data, thus leaving us with 171 DW (and 63 unweighted) images. The SNR is about 20. The
signal at each DW is normalised by the corresponding diffusion-unweighted measurement
with the same echo time, to remove T2 effects, before the fitting.

2.3 Model Fitting

We fit 32 models of diffusion to the signal, using the open software tool Camino [10]. We fit
in two stages: after an initial run of 1,000 random starting points, we extract the parameters
that produce the minimum objective function. We then execute another 1,000 runs from
starting points at small random perturbations from the first minimum. This ensures that we
avoid local minima and obtain the best fit parameters. The offset-Gaussian noise model
is used, as in [12], to construct the objective function to minimize (RES). This objective
function accounts for bias introduced by the Rician noise inherent in the data in a simplistic
way [11] that is more numerically stable than a full Rician log-likelihood objective function.

2.4 Model Selection

Model selection criteria, as introduced in [13]

BIC =�2log(L)+K log(N) (1)

where L is the likelihood of obtaining the present data given the model, K is the number of
free parameters and N is the number of measurements, or in [1]

AIC =�2log(L)+2K +
2K(K +1)
(N �K �1)

(2)

quantify the trade-off between complexity and goodness-of-fit to identify the simplest model
that explains some data. The lower the scores, the more predictive the model is. The last
term in the AIC is the adaptation suggested in [9] of the original AIC for cases where the
number of measurements is not large (deemed to be smaller than about 40 times the number
of free parameters). In general, the AIC is less conservative in penalising complexity.
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Figure 1: a) Models ranked for the 2�/5�/10� fibre deviation allowances. Adjacent are the
raw scores for their respective Objective Function Residue (RES). The Ball-Stick-Astrosticks
does best across both BIC and AIC, the DT worst. (Abbrev.: Tens.=Tensor; Zepp.=Zeppelin;
Cylin.=Cylinder; Ast.=Astrosticks; Acl.=Astrocylinders; Sph.=Sphere). b) Matching the
raw signal and the signal synthesized from the model parameters for the 2� threshold data
set. The Ball-Stick-Astrosticks model fits the data well; the Tensor (DT) fits poorly.

3 Results

The ranking of the models is provided in the table of Fig.1, separately for 2�, 5� and 10�
angular threshold data sets, for both BIC and AIC . The models are listed according to the
BIC performance in the 2� data set. We also give the raw scores for the BIC, AIC and RES.

The three compartment models describe the data best. The single compartment model,
the DT, performs worst across all criteria. The most complex model, the Tensor-Cylinder-
Astrocylinders, gives small RES, but its complexity is penalised under AIC, more under BIC.

In the extra-cellular space, the Ball, the Zeppelin and the Tensor perform equally well,
judged on their RES score, but the simpler Ball scores better on BIC. The intracellular Stick
does best with BIC, but Cylinders perform well too, especially across all 3 scores (e.g. Ball-
Cylinder-Astrocylinders). Across the third compartments, the Sphere performs worst, partly
because of its model complexity.
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The RES scores decrease markedly as the orientation threshold increases from 2� to 5�,
but at a smaller rate from 5� to 10�. This suggests that the models fit increasingly better as
the number of voxels averaged increases.

The plots of Fig.1 show the fit of two models, the best and the worst from the ranking,
to the data, revealing the limitations of the overly simple single-compartment DT model.
The DT model cannot capture the shape of the perpendicular signal decay because it does
not model restriction. The three-compartment model, Ball-Stick-Astrosticks, fits both the
parallel and perpendicular direction signal decay closely.

4 Discussion

By using a wide range of diffusion weights and times, we showed that standard models
from the literature, such as the DT and Ball-Stick, are too simple to describe diffusion in
the brain. Three compartments are required to explain the diffusion in white matter in vivo.
These models fit the data best, with very similar precision, and the simpler members of this
class are favoured under the BIC ranking. Further work with high angular resolution data
sets will shed more light on this.

The BIC for the Cylinder models are only marginally lower than those of Stick, support-
ing a future use of cylinder models for estimating axon diameter in vivo, as in [3, 6, 15].

For the third compartment, the Astrosticks or Astrocylinders show an advantage over the
Sphere and Dot, which were favoured for fixed tissue in [12]. This could be because of intrin-
sic differences between live and fixed tissue, or differences in the imaging protocol, since we
use much lower gradient strength. Intrinsic tissue differences are a likely cause; Alexander
in [3] suggests fixation may make membranes ‘stickier’, giving rise to slow moving water
well captured by the Dot model.

Minor variations in the dispersion of fibre direction in the data set affect fitting quality,
since the models we test here capture either no dispersion or a fully uniform one. We intend
to consider localised dispersion in future work using, for example, the models in [15]. The
Astrosticks and Astrocylinders models may improve the fit simply by accommodating small
amounts of fibre orientation dispersion even at the 2� threshold, or may genuinely capture a
small population of fibres with uniformly distributed orientation.

We also emphasize that the choice of models our analysis suggests is not appropriate for
existing sparse data sets such as off-the-shelf single shell HARDI data which only support
simple models. Rather, these results inform the choices for future in vivo microstructure
imaging once we identify the right model. Experiment design techniques such as [2] can
determine economical protocols. We emphasize that the protocol we use here is designed
specifically for model selection rather than large scale application.

As, intentionally, we conservatively selected the part of the CC that is mostly homo-
geneous, with little fibre crossing or CSF contamination, other models may perform better
across or away from the CC (e.g. a CSF pool as in [6]). Future work will include other
models such as a distribution of pore sizes [5, 12] and orientation [15].
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