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Figure 1: Example microcalcification clusters: malignant (top row) and benign (bottom row).
Left column: original image patches; middle column: manually segmented microcalcifica-
tions; right column: dilated microcalcifications (at scale 7). Note that microcalcification
No. 16 is not displayed in the bottom images as this falls outside the zoomed region.

roughness of individual microcalcifications. Betal et al. [1] analysed four shape properties
of individual microcalcifications. Chan et al. [3] used morphological features to describe
the size, shape, and contrast of individual microcalcifications and their variations within the
cluster. Cluster features were used in [1, 5, 9] to describe the global properties of the cluster.
The greylevel variations and texture features within the region of interest were investigated
in [2] and [5]. The performance of different types of features for microcalcification classi-
fication was compared in [12], where the multiscale representation based on multiwavelet
transform, shape and texture features were investigated.

Malignant microcalcifications tend to be small, numerous and densely distributed, while
benign microcalcifications are generally larger, smaller in number and more diffusely dis-
tributed [11]. This difference results in various topological structures of microcalcification
clusters. The distribution of microcalcifications associated with a malignant process may
be different from that associated with a benign process [6]. We investigate the connectivity
between individual microcalcifications using morphological operations at multiple scales.

2 Data and Method
The data used in this paper are twenty image patches (512⇥ 512 pixels) taken from the
Mammographic Image Analysis Society (MIAS) database [13], each containing a micro-
calcification cluster. There are nine malignant and eleven benign cases (biopsy proven) in
the dataset. All individual microcalcifications have been manually segmented by an expert
radiologist. The median number of microcalcifications in the clusters is 27. There are a
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Figure 2: Microcalcification graphs: (a) malignant (n
s

= 4, d
s

= 1.23); (b) benign (n
s

= 8,
d

s

= 1.00). The numbering of nodes is consistent with the sequence number in Figure 1.

few outliers and 80% of the clusters are within the 6 to 62 range. Figure 1 shows example
microcalcification clusters and corresponding manual annotations. In addition, an approach
developed by Oliver et al. [8] is used to detect microcalcifications. Probability images are
obtained where high values indicate microcalcifications. To segment microcalcifications, the
probability images are binarised using a threshold determined using ROC analysis.

2.1 Morphological Operation
Multiscale morphological dilation is performed on individual microcalcifications using a
disk-shaped structuring element with a radius equal to the scale (see the right column of Fig-
ure 1, where each individual microcalcification is ordered with a sequence number and the
boundaries of dilated microcalcifications are displayed using different colours). It indicates
that the morphological dilation adds neighbouring pixels to the boundaries of individual
microcalcifications, resulting in changes in the connectivity between individual microcalci-
fications within clusters.

2.2 Microcalcification Graph
The topology of individual microcalcifications within the cluster is represented in graphical
form. A microcalcification graph is constructed based on the spatial connectivity relation-
ship between microcalcifications, where each node represents one microcalcification, and
two nodes are linked by an edge if the corresponding two microcalcifications are connected
or overlap with each other. Here, we generate a directed graph where the nodes are ordered
according to the spatial location of the corresponding microcalcifications in the image patch,
and two connected nodes are linked by a directed edge from the smaller to the larger num-
bered node. The resulting graphs of dilated microcalcifications in Figure 1 are shown in
Figure 2. We focus on two properties of the microcalcification graph. The first property is
the number of independent subgraphs within the graph, which represents the number of in-
dependent connected components within the microcalcification cluster. The second property
is the degree of each node defined as the number of edges starting from the node, which
describes the connectivity of the corresponding microcalcification with its neighbours.
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We define an upper-triangular adjacency matrix to encode the directed microcalcification
graph, denoted by A = (a

i j

), a

i j

2 {0,1}, i, j = 1, . . . ,m, where m is the number of nodes
within the graph. Node i and node j are connected if a

i j

= 1. Node i is the source node and
node j is the sink node. A source node i is called a root node if Âm

k=1 a

ki

= 0. A sink node j is
called a terminal node if Âm

k=1 a

jk

= 0. A path from node i to node j is defined as a sequence
of nodes starting from node i and ending with node j. The number of independent subgraphs
(denoted by n) is determined by traversing the graph. We traverse the graph starting at each
root node and explore as far as possible along each path until arriving at the terminal node.
The traversal sequences including common nodes are combined into a single sequence. The
number of the final sequences is the number of independent subgraphs. The degree of node
i (denoted by d (i)) is computed by d (i) = Âm

k=1 a

ik

.

2.3 Multiscale Topological Feature Vector

We generate a set of microcalcification graphs G = (G0,G1, . . . ,GS�1) based on dilated mi-
crocalcifications at S scales. We extract properties from G and form two feature vectors
N = (n0,n1, . . . ,nS�1) and D = (d1,d2, . . . ,dS�1), where n

s

(s = 0,1, . . . ,S�1) is the number
of independent subgraphs at scale s, and d

s

(s = 0,1, . . . ,S�1) is the average degree of nodes
at scale s, computed by 1

m

Âm

i=1 d (i)
s

. We normalise N and D by n

s

/m and d
s

/maxd (i)
s

,
where maxd (i)

s

is the maximum degree of nodes at scale s. Finally, the two normalised
vectors are concatenated into a single feature vector, which can be used for the classification
of malignant and benign microcalcification clusters.

3 Experimental Results

For each microcalcification cluster, we analysed the morphological topology of microcalci-
fications at 129 scales (s = 0,1, . . . ,128,S = 129). As described in Section 2, we computed
n

s

and d
s

using the corresponding microcalcification graph at scale s. The dimensionality of
the obtained multiscale topological feature vectors was 258.

A k-nearest neighbour (kNN) classifier and a leave-one-out methodology were used for
classification. The Euclidean distance was used to measure the similarity between feature
vectors. The sequential forward selection (SFS) algorithm was applied to select the most
discriminating features. In the feature selection process, SFS was performed based on the
training set excluding the testing sample to avoid bias. For different training sets, on average
approximate 90 features were retained for the feature set (manual data) extracted from the
manual annotations and approximate 120 features were retained for the feature set (CAD
data) extracted from the automatic detections. The most frequently selected features (occur-
rence > 80%) are mainly within the scale range of [1,32] for the manual data and [28,68] for
the CAD data. For the manual data, using the unreduced feature space, the best classification
accuracy (CA) was 90% for k = 3, where nine of the eleven benign cases were classified
correctly without misclassifying any malignant cases. Using the reduced feature space, the
best CA was increased to 95% with one benign case misclassified. For the CAD data, us-
ing the unreduced feature space, the best CA was 85% for k = 5 with two benign and one
malignant cases misclassified. Using the reduced feature space, the best CA was 95% for
k = 3 with one malignant case misclassified. This indicates the method is robust with regard
to microcalcification segmentation and performs well on the CAD detection results.
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Table 1: Comparison of our achieved results with those obtained by some related work.

Method Database # Case Feature Classifier Result
[10] unknown 18 shape kNN CA = 100%
[1] Liverpool 38 shape/cluster kNN A

z

= 0.79A

z

= 0.84
[7] DDSM 183 shape a

max

A

z

= 0.96
[3] unknown 145 morphological LDC A

z

= 0.79
[5] unknown 191 texture & cluster ANN A

z

= 0.86
[9] MIAS 25 cluster SVM A

z

= 0.81
[2] unknown 54 texture ANN A

z

= 0.88
[12] Nijmegen 103 multiwavelet kNN A

z

= 0.89

Our MIAS (manual) 20 multiscale topology kNN CA = 95% A

z

= 0.93
MIAS (CAD) 20 multiscale topology kNN CA = 95% A

z

= 0.92

To quantitatively assess the classification performance of the multiscale topological fea-
tures, a ROC curve was constructed. The ROC curve represents the trade-off between the
true positive rate (TPR) against the false positive rate (FPR). The construction of the ROC
curve is based on a decision criterion which can be regarded as a threshold to decide a test
sample as either positive or negative. We defined a malignancy measure (denoted by M) as
the decision criterion based on the kNN classifier. The malignancy measure M of a testing
microcalcification cluster was defined to be the number of malignant clusters among its k

nearest neighbours, ranging from 0 to k. Thus, a threshold L was set from -1 to k, and the
testing cluster was classified as malignant if M was larger than L. When L = �1, all the
microcalcification clusters were classified as malignant with TPR and FPR equal to 1. At the
other extreme, when L = k, all the microcalcification clusters were classified as benign with
TPR and FPR equal to 0. The remaining TPR and FPR were obtained by varying L from
0 to k� 1. This produced k+ 2 points of TPR and FPR. Finally, the area under the ROC
curve (denoted by A

z

) was computed using the trapezoidal rule. We tested three k values:
k = 3, k = 5, and k = 7. For the manual data, the obtained A

z

was 0.88, 0.91, 0.85, and 0.91,
0.93, 0.87, using the unreduced and reduced feature space, respectively. For the CAD data,
the obtained A

z

was 0.81, 0.88, 0.80, and 0.88, 0.92, 0.86, using the unreduced and reduced
feature space, respectively.

We compared our proposed method with some related publications. Table 1 shows a
summary of the comparison. It is shown that our method provides comparative results for
both manual and CAD segmentation. Note that the various approaches use different images
taken from different databases, and therefore it is a qualitative comparison.

4 Conclusions
This is a novel approach to investigate the morphological topology and connectivity of mi-
crocalcifications for discriminating malignant from benign clusters. Unlike most features
in previous publications extracted at a single scale, a representation covering the multiscale
characteristics was developed in this paper. To evaluate the validity of this method, we used
manually segmented microcalcifications and CAD detection results. Good classification re-
sults were obtained for both types of data. This indicates the robustness of this method to
detection errors and the potential application in CAD systems. As feature work, alternative
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approaches to feature selection (e.g. genetic algorithm) and other classifiers (e.g. decision
tree, artificial neural network, and support vector machine) will be employed for classifica-
tion. The definition of a similarity measure between graphs will be further investigated in
order to realise classification using the graph based representation directly without gener-
ating feature vectors. In addition, further evaluation using a larger dataset taken from the
DDSM database and a dataset of full-field digital mammograms is ongoing.
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