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Abstract
Segmentation of areas containing tumor cells in breast histology images is a key task

for computer-assisted grading of breast tissue slides. In this paper, we present a fast, un-
supervised, and data-independent framework for dimensionality reduction and clustering
of high-dimensional data points which we term as Random Projections with Ensemble
Clustering (RanPEC). We apply the proposed framework to pixel level classification of
tumor vs. non-tumor regions in breast histology images and show that ensemble clus-
tering of random projections of high-dimensional textural feature vectors onto merely 5
dimensions achieves up to 10% higher pixel-level classification accuracy than another
state-of-the-art information theoretic method which is both data-dependent and super-
vised.

1 Introduction
Breast cancer is the leading cancer in women in terms of incidence both in the developed and
the developing world. According to the World Health Organization (WHO), the incidence of
breast cancer is increasing in the developed world due to increased life expectancy and other
factors. Histological grading of breast cancer relies on microscopic examination of Hema-
toxylin & Eosin (H&E) stained slides and includes: assessment of mitotic count in the most
mitotic area, tubule/acinar formation and degree of nuclear pleomorphism over the whole
tumor. Recent studies have shown that the proliferation (mitotic) rate provides useful infor-
mation on prognosis of certain subtypes of breast cancer. This is a highly subjective process
by its very nature and consequently leads to inter- and even intra- observer variability. With
digital slide scanning technologies becoming ubiquitous in pathology labs around the world,
image analysis promises to introduce more objectivity to the practice of histopathology and
facilitate its entry into the digital era [5].

Segmentation of areas containing tumor cells in breast histopathology images is a key
task for computer-assisted grading of breast tissue slides. Good segmentation of tumor re-
gions can not only highlight areas of the slides consisting of tumor cells, it can also assist in
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determining extent of tissue malignancy.Though some algorithms for segmentation of nuclei,
quantitative evaluation of nuclear pleomorphism, and grading of lymphocytic infiltration in
breast histology images have been proposed in the literature in recent years (see, for example,
[2, 5]), tumor segmentation in breast histology images has received relatively less attention.

In this paper, we address the problem of segmentation of tumor regions in a breast histol-
ogy image using a features based classification approach. The proposed algorithm employs
a library of textural features (consisting of just over 200 features), representing each image
pixel as a point in a high-dimensional feature space. Due to the so-called curse of dimen-
sionality, the high-dimensional feature space becomes computationally intractable and may
even contain irrelevant and redundant features which may hinder in achieving high clas-
sification accuracy. Recent feature selection and ranking methods, such as the commonly
used minimum redundancy maximum relevance (mRMR) [10], employ information theo-
retic measures to reduce dimensionality of the problem and have demonstrated success in
several problem domains. However, major limitations of such approaches include data de-
pendence and the requirement for training the feature selection in a supervised manner. We
show that these limitations can be overcome via the proposed Random Projections with
Ensemble Clustering (RanPEC) without compromising the segmentation accuracy down to
pixel level.

The remainder of this paper is organized as follows. Given a set of features computed for
each image pixel, we present a general framework in Section 2 which employs orthogonal
random projections with ensemble clustering for assigning a label to each of the image pixels.
Section 3 gives some details of the segmentation algorithm, in particular how a library of
texture features is computed. Comparative results and discussion are presented in Section 4.
The paper concludes with a summary of our results and some directions for future work.

2 Random Projections with Ensemble Clustering
Let X = {x(i, j) | (i, j) 2 W} denote the set of d-dimensional feature vectors for all pixels in
an image I(i, j),8(i, j) 2 W, where W denotes the set of all legitimate pixel coordinates for
I and x 2 Rd . Suppose now that we reduce the dimensionality of all such vectors to a low-
dimensional space Rr using a linear mapping F as follows: y=Fx, where y2Rr and r << d
and F is a r⇥d matrix containing random entries. According to the Johnson-Lindenstrauss
Lemma [6], the above mapping can be used to reduce dimensionality of the feature space
while approximately preserving the Euclidean distances between pairs of points in the higher
d-dimensional space.

One of the major limitations of using random projections for dimensionality reduction
and consequently clustering, however, is that the random matrices generated at different runs
can produce variable results. Fern et al. [4] tackled this issue by generating a similarity ma-
trix from multiple runs of random projections and then using the similarity matrix to drive
hierarchical clustering of the data. However, the computational complexity of this approach
can make it intractable for use in a large-scale setting. We propose an ensemble cluster-
ing approach to address the issue of variability in the results of clustering low dimensional
feature data generated by random projections. Let {C1,C2, . . . ,Cnc} denote the results of
clustering the r-dimensional feature data y(i, j), for all (i, j) 2 W. In other words, pixel at
location (i, j) has nc labels, where nc is the number of runs for ensemble clustering. The ran-
dom projections with ensemble clustering (RanPEC) algorithm for assigning labels to each
pixel is given in Algorithm1.
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Algorithm 1 Random Projections with Ensemble Clustering (RanPEC)
1: Input: X = {x(i, j) | (i, j) 2 W} (where x 2 Rd) the set of high-dimensional feature

vectors for all image pixels, r the dimensionality of the lower-dimensional space, n the
number of clusters, and nc the number of runs for ensemble clusters.

2: Initialization: Generate random matrices Fk, k = 1,2, . . . ,nc, of the order r ⇥ d with
matrix entries drawn at random from a normal distribution of zero mean and unit vari-
ance.

3: Orthogonalization: Use Gram-Schmidt method of orthogonalization to ensure that all
rows of Fk are orthogonal to each other and have a unit norm. In other words, ensure
that FT

k Fk is an identity matrix, for all k = 1,2, . . . ,nc.
4: Random Projections: Project all the feature vectors into r-dimensional space Yk =

{yk(i, j)} where yk(i, j) = Fkx(i, j) and yk(i, j) 2 Rr, for all k = 1,2, . . . ,nc and (i, j) 2
W.

5: Ensemble Clustering: Generate clustering results Ck = {Lk(i, j)} using a clustering
method of your choice on the r-dimensional random projections Yk, for k = 1,2, . . . ,nc
and for all (i, j) 2 W. Use majority votes in the clustering results to decide the label
L(i, j) for image pixel at (i, j) coordinates.

6: return L(i, j) for all (i, j) 2 W.

3 The Segmentation Framework
The RanPEC algorithm described above operates on the set of feature vectors X . In this
section, we describe how an input image is pre-processed before computation of feature
vectors and application of RanPEC on the feature vectors, followed finally by a set of post-
processing operation. An overview of the segmentation framework is shown in Figure 1 with
the help of a block diagram. Below we provide a brief description of each of the building
blocks, without going into details due to space restrictions.

3.1 Pre-processing
Stain color constancy is one of biggest challenges of H & E staining based on light mi-
croscopy. Several factors such as thickness of the tissue section, dye concentration, stain tim-
ings, stain reactivity result in variable stain color intensity and contrast. Our pre-processing
pipeline consists of stain normalization, background estimation, and edge adaptive smooth-
ing. We used Magee et al.’s approach to stain normalization [8]. The background removal
was achieved by masking areas containing mostly white pixels. Finally, we converted the
stain normalized and background free image into the CIE’s La*b* color space and applied
anisotropic diffusion to its b* channel in order to remove the inherent camera noise while
preserving edges.

3.2 Extraction of Textural Features
We collected a library of frequency domain textural features for each pixel in the image.
These consisted of Gabor energy, phase gradients, orientation pyramid, and full wavelet
packet features. We used the spatial filter for two-dimensional Gabor function [3] with ori-
entation separation of 30� (i.e., 0�, 30�, 60�, 90�, 120�, and 150�) and 14 scales, resulting
in 84 Gabor channel images. Energy of each filter’s response at a pixel location was then
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Figure 1: Overview of the proposed tumor segmentation framework.

used as a feature for that filter. Phase information can be used as an important cue in model-
ing the textural properties of a region. In [9], Murtaza et al. used local frequency estimates
in log-Gabor domain [7] over a range of scales and orientations to yield a signature which
uniquely characterizes the texture of a village in satellite images. We computed phase gra-
dient features at 3 scales and 16 orientations to compute 48 filter responses over a window
of 15⇥15 pixels. Next, we used the 3rd level orientation pyramid (OP) features proposed
by Wilson & Spann [1, 12], resulting in 21 features. Finally, a set of 64 3-level full wavelet
packet features [11] is computed to cater for fine resolution spatial frequency contents in the
two texture classes (i.e., tumor and non-tumor). These four sets of features and two proxim-
ity features were then concatenated forming a 219-dimensional feature vector per pixel.

3.3 Feature Ranking for Dimensionality Reduction
Feature Ranking (FR) is a family of techniques in which a subset of relevant features is
used to build a robust learning model that aims to achieve equal, if not better, accuracy of
representing high dimensional structures. By removing irrelevant and redundant features
from the data, we can improve both the accuracy of learning models and performance in
terms of computational resources. Peng et al. [10] proposed maximum Relevance Minimum
Redundancy (mRMR) feature selection method which employs mutual information to rank
features. We compare the performance of mRMR feature selection with the proposed random
projections with ensemble clustering (as described in Section 2).

4 Experimental Results and Discussion
Our experimental dataset consisted of digitized images of breast cancer biopsy slides with
paraffin embedded sections stained with Hematoxylin and Eosin (H&E) scanned at 40⇥ us-
ing an Aperio ScanScope slide scanner. A set of fourteen images was hand segmented by an
expert pathologist. We generate all experimental results taking the pathologist’s markings
as ground truth (GT). All the images are pre-processed in a similar manner, with stain nor-
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Figure 2: Comparative results of pixel-level classification accuracy (%) versus dimensional-
ity of the feature space for mRMR and RanPEC with nc=10, 20, and 100.

malization carried out as described in Section 3.1. Background removal is then performed
to remove the artifacts caused by staining, fixation and tissue fat. This provides robustness
in the subsequent steps of pipeline. As described in Section 3.2, a total of 219 textural and
proximity features are calculated for each pixel of the input image I.

Multiple random projections of these textural features are used to generate multiple clus-
tering results from the low-dimensional representation of features using the standard k-means
clustering algorithm. A consensus function is then used to combine the partitions generated
as a result of multiple random projections into a single partition. A simple majority func-
tion is employed on individual cluster labels to produce a single partition. Five replicates of
k-means clustering are performed to get a reasonably consistent partitioning.

In order to produce mRMR ranking [10], portion of a subset of GT is chosen as training
images. The choice of training images is critical as some of the images have large stromal
area and small tumor area while others have vice versa. We ensure that the final training set
has approximately similar representation for stromal and tumor areas. Features from all the
test images are reordered and k-means clustering is performed. Post-processing is performed
on clustering results obtained using both mRMR and RanPEC to eliminate spurious regions
and also to merge closely located clusters into larger clusters, producing relatively smooth
segmentation results.

Figure 2 presents a quantitative comparison of RanPEC with mRMR. It can be seen from
these results that the application of RanPEC with nc = 20 produces quite stable results for
almost all values of feature space dimensionality r. Furthermore, the RanPEC results at r = 5
generate nearly 10% higher overall pixelwise classification accuracy than mRMR at r = 5.
Visual results for RanPEC (at r = 5)and mRMR (at r = 65) as well as the GT are also shown
in Figure 3. These results further show that for relatively small dimensionality of the feature
space, RanPEC generates superior results than mRMR.
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(a) (b) (c)

Figure 3: Visual results of tumor segmentation in a sample image: (a) Original image with
ground truth (GT) marked non-tumor areas shown in a slightly darker contrast with blue
boundaries; (b) Results of segmentation with 65-dimensional feature space using mRMR
(83% accuracy) and (c) using RanPEC with 5-dimensional feature space and nc=20 (90%
accuracy).

5 Conclusions
In this paper, we addressed the issue of robustness of clustering results in the context of
random projections. We proposed a framework for random projections with ensemble clus-
tering and applied it to the segmentation of tumor areas in breast cancer histology images.
We showed that the proposed framework RanPEC preserves the Euclidean distance between
points in high-dimensional spaces in a robust manner. For our application of tumor segmen-
tation, reasonably high accuracy was achieved using only 5 dimensional feature space.
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