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Abstract

Recent work suggests that the space of brain magnetic resonance (MR) images can
be described by a nonlinear and low-dimensional manifold. In the context of classify-
ing Alzheimer’s disease (AD) patients from healthy controls, we propose a method to
incorporate subject meta-information into the manifold learning step. Information such
as gender, age or genotype is often available in clinical studies and can inform the clas-
sification of a given query subject. In the proposed method, such information, whether
discrete or continuous, can be used as an additional input to manifold learning and to
enrich a distance measure derived from pairwise image similarities. We use the ApoE
genotype, the CSF-concentration of Aβ42 and hippocampal volume as meta-information
to achieve significantly improved classification results.

1 Introduction
Many of the well-established biomarkers for dementia from MR images are based on mor-
phometric measures, such as the volume or shape of brain structures [3, 7]. More recently,
models based on machine learning techniques have been proposed which seek discriminating
features over the whole brain or within a defined region of interest [4].

In recent work, a nonlinear manifold representation for serial MR data [6] of subjects un-
dergoing normal aging and neurodegeneration was proposed which was then used together
with training data to define a classifier in the low-dimensional space. To incorporate addi-
tional information into the manifold learning process, and to seek potentially more reliable
biomarkers, we propose a strategy to enrich the pairwise image similarities used to learn the
manifold representation with metadata about a subject’s state.

We evaluate the proposed method on brain MR images from healthy controls, subjects
with mild cognitive impairment (MCI) and AD taken from the ADNI study1. We use the
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420 subjects for which a measurement of the CSF-concentration of the Aβ42 protein and the
subject’s ApoE genotype are currently available and we also test the power of automatically
derived hippocampal volumes as meta-information.

2 Method

2.1 Classification using manifold learning
Given a set of images X = {x1, ...,xN} ∈ Rn with each image xi defined as a vector of
intensities, the goal is to derive biomarkers which discriminate between clinically relevant
subject groups. Assuming x1, ...,xN lie on or near an l-dimensional manifold M embedded
in Rn, we learn a low dimensional representation Y = {y1, ...,yN} with yi ∈Rl of the input
images in M .

Laplacian eigenmaps (LE) [1] may be used to achieve a nonlinear dimensionality reduc-
tion f : X→ Y,yi = f (xi). An undirected weighted graph G =< V,E > with N nodes V
representing the images and edges E connecting neighboring nodes is defined on X. The
weights of E are defined based on a weight matrix W of pairwise image similarities wi j.
Based on wi j, and with certain constraints on yi, the Laplacian eigenmaps may be viewed as
minimizing the following objective function

∑
i j

(yi−y j)2wi j. (1)

This problem can be formulated as solving the generalized eigenvector problem Lν =
λDν , where the graph Laplacian L = D−W is defined from the weight matrix W and the
diagonal degree matrix Dii = ∑ j wi j [1].

As previously proposed in [6], a classifier can be defined in the low-dimensional space
by using training data to identify a separating hyperplane between two subject groups.

2.2 Manifold learning incorporating non-imaging information
In [2], the graph G is extended by two nodes, each representing one of two classes available
for training data. Connecting each training subject with its respective class node imposes the
distribution of the training data on the manifold structure.

Metadata available in a clinical setting can be defined by discrete categories (two or
more), or by a continuous variable. To deal with such data, we propose an extension to the
method described in [2], dealing with more than two classes and a fuzzy-class membership
to represent continuous metadata. In the discrete and the continuous case, additional nodes
are introduced in graph G, representing discrete groups or sub-intervals of a continuous
interval. In the discrete setting, equally weighted edges connect each subject only to the node
representing its group. In the continuous setting, each subject is connected to all additional
nodes with the weights defined according to the distances of the subject’s metadata to the
centers of the defined intervals. The two weighting schemes are illustrated in Figure 1.

Extending graph G by N̂ nodes V̂ , each associated with a possible state z of a metadata
variable Z, gives the objective function

∑
i j

(yi−y j)2wi j + γ ∑
ik

(yi− ŷk)2cik (2)

which defines the constrained low-dimensional embedding space

Ŷ =
{

ŷ1, ..., ŷN̂ ,y1, ...,yN
}

, ŷk,yi ∈Rl . (3)
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Figure 1: Weights defined between
image nodes xi and additional nodes
representing metadata Z. In the dis-
crete setting (left), equally weighted
edges are defined according to group
membership (black or white). In the
continuous setting, weights to both
additonal nodes are defined accord-
ing to the continuous metadata (grey-
value).

The additional nodes V̂ , with embedding coordinates ŷk, represent the different groups de-
fined by variable Z in the low-dimensional space. Minimizing the distance of every subject
to the additional nodes according to the defined weighting, incorporates the information from
the metadata into the learned manifold. The weights cik affect the proximity of subject i to
the kth group and its centroid ŷk. The cik can be binary in a discrete setting with N̂ possible
states and variables Z = {z1, ...,zN̂}. To represent continuous metadata, N̂ variables z̄1, ..., z̄N̂
are defined, representing discretized sub-intervals of the continuous interval a < z < b in
which the variable Z is defined. The weights cik are then defined according to the probability
of a given subject of belonging to each discretized group. A high weight of the parameter γ
clusters the subjects mainly according to the metadata, whereas γ = 0 results in the standard
embedding with Laplacian eigenmaps which uses only pairwise image similarities. With the
N× N̂ matrix C defining the weights between subject i and the additional nodes, an extended
weight matrix

W′ =
(

I γ
2 CT

γ
2 C W

)
(4)

is derived, where I is the N̂× N̂ identity matrix. As above, solving the generalized eigen-
vector problem associated with the extended weight matrix gives the embedding coordinates
which optimize the objective function in Equation 2.

3 Data and Results

3.1 Subjects

Images used to evaluate the proposed method were obtained from the ADNI database [5]. In
the ADNI study, brain MR images were acquired at regular intervals after an initial baseline
scan from approximately 200 cognitively normal older subjects (CN), 400 subjects with mild
cognitive impairment (MCI), and 200 subjects with early AD.

ADNI provides the ApoE genotype (determined by the ApoE alleles carried) for all sub-
jects. Humans carry two out of three possible ApoE alleles (ε2, ε3, ε4). Carriers of ε4 have
been shown to have a higher risk of developing AD, while ε2 carriers have a lower risk [5].
In addition an Aβ42 protein analysis of cerebrospinal fluid (CSF) is available for a subset
of ADNI subjects. A decrease in the concentration of this protein has been shown to be
associated with a development of AD [5].

In this work, we used the 1.5T T1-weighted baseline images of the 420 subjects for which
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a CSF analysis was available. Out of 201 MCI subjects, 89 were progressive, i.e. were diag-
nosed as converting to AD as of October 2010. We therefore independently analyzed stable
(S-MCI) and progressive (P-MCI) subjects. Table 1 presents an overview of the subjects
studied and their metadata as well as their scores on the Mini Mental State Examination
(MMSE) used for clinical diagnosis.

Table 1: Number (female) of study subjects. Carriers of the ApoE ε2/ε4 alleles are shown.
The remaining subjects only carry the ε3 allele. Average Aβ42 concentration, MMSE score
and the derived biomarker hippocampal volume are shown. There is no significant difference
in age between the different groups with an average age of 74.95±7.03 years.

N (F) ε2/ε4 Aβ42 (pg/ml) MMSE Hippo. vol.
CN 116 (56) 16/28 202.3 ± 57.5 29.12 ± 1.02 4.53 ± 0.55
S-MCI 112 (36) 9/49 178.9 ± 61.6 27.16 ± 1.75 4.26 ± 0.59
P-MCI 89 (33) 1/52 146.3 ± 46.3 26.64 ± 1.80 3.93 ± 0.65
AD 103 (43) 4/63 147.5 ± 45.8 23.55 ± 1.87 3.92 ± 0.73

3.2 Experiments
All images were aligned to a template and pairwise similarities wi j were estimated as cross
correlation over a region of interest around the hippocampus [7]. The proposed method was
then used to incorporate ApoE genotype and Aβ42 concentration into the manifold learning
process. In a third experiment, we used automatically determined hippocampus volumes [7]
as a derived biomarker to enrich the manifold learning process (right column of table 1 ).

For each of the experiments, N̂ = 3 additional nodes with embedding coordinates ŷk,
k = 1,2,3 are used in Equation 2. With ApoE, these nodes are trivially associated with the
three genotypes. cik is set to one if subject i has a genotype associated with node k, otherwise
it is set to zero. For the two continuous variables, Aβ42 concentration and hippocampus
volume, a continuous weighting c is defined. In both cases, the defined variable interval Z is
subdivided into three sub-intervals Z1,Z2,Z3 defined by the limits of the variable data and its
33rd and 67th percentiles. Weights cik,k = 1,2,3 are inversely proportional to the distances
of zi to the three mean values z̄1, z̄2, z̄3 of Z1,Z2,Z3 and normalized to sum to one.

The number of embedding coordinates was optimized on the 418 ADNI baseline images
not used in the evaluation. When varying l ∈ [1, ...,50] with standard LE, stable results were
achieved for l ∈ [6,15]. Performance was accordingly evaluated for these 10 dimensions in
all experiments and averaged results are reported. The weighting factor γ defining the in-
fluence of metadata was set for all experiments to γ = 0.125. This choice is based on the
classification accuracy on the 418 training images with hippocampal volume as metadata.
Manifold coordinates were corrected for subject age using linear regression before perform-
ing a leave-25%-out cross-validation on the test data (420 images). Average classification
rates after 1,000 runs are determined for every dimension l ∈ [6,15] and then averaged.

3.3 Results
Table 2 presents the correct classification rates for four different experiments which are sum-
marized as follows: (A) Classic LE using pairwise cross correlation (CC), (B) Extended LE
using CC and ApoE genotype, (C) Extended LE using CC and Aβ42, (D) Extended LE using
CC and hippocampal volume.
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For each experiment, the multiple runs provides a distribution estimate for the corre-
sponding classification rate which were used to carry out unpaired t-tests between the results
of method A and each of methods B-D to test the significance of any improvements.

Table 2: Classification rates (%) with LE (A) and extensions incorporating different types of
meta-information (B-D). Bold indiciates significant difference from method A (p<0.001).

A B C D
AD vs CN 84 84 86 87
S-MCI vs P-MCI 62 63 65 65
P-MCI vs CN 80 81 83 83

4 Discussion and conclusion
We have proposed a method to include clinical meta-information associated with subjects
into a manifold learning framework. Our results show that incorporating such information
can help to achieve improved classification rates when using the low-dimensional embedding
coordinates. We have validated the proposed method on a large and diverse clinical dataset
(ADNI) using ApoE genotype, the concentration of Aβ42 and hippocampal volume as meta-
data. The effectiveness of the proposed approach is evidenced by a significant improvement
in classification rates compared to standard manifold learning. Our results are in the range
of what was reported on ADNI in a recent comparison of different high-dimensional classi-
fication approaches and methods based on the volumes of brain structures [3].
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