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Abstract

We present a fully automated technique to segment lesions from multimodal brain
MRIs of patients with Multiple Sclerosis. We describe an adapted Markov Random Field
that uses intensity at every voxel, its neighbourhood intensity difference information and
neighbouring voxel class information to infer voxel labels at every voxel. We test our
technique on 25 real, clinical MS volumes evaluated by five experts. Our method outper-
forms two state of the art methods: one an outlier based MRF technique and the other a
hybrid Bayesian-MRF technique both qualitatively and according to the Dice similarity
coefficients and the number of present negative lesions.

1 Introduction
Multiple Sclerosis (MS) is an inflammatory, demyelinating disease of the Central Nervous
System (CNS). Current clinical practice involves manual labelling of lesion voxels by ex-
perts. However, manual lesion segmentation has proven to be cumbersome, laborious and
most importantly, inconsistent, due to significant differences in lesion segmentation by dif-
ferent experts (inter-rater variability) and by the same experts at different points of time (intra
rater variability). Fast, consistent automatic segmentation by machines constitutes a signifi-
cant advantage. The problem of segmenting MS lesions is particularly difficult as tissue class
intensities vary due to noise, geometric distortions, distance from the magnet, magnetisation
inhomogeneities, etc. Further, it is hard to determine the class of the voxel based solely on
the tissue intensity at each voxel, since the models for different tissue classes, particularly
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lesions, show considerable overlap. Finally, the shapes, volumes and sizes of lesions vary
greatly across brains based on the disease stage and type, making it harder to model lesions.

Many techniques have attempted to model healthy brain tissue classes, based on their
intensity profiles and define lesions as the outliers of those class models. For example, van
Leemput et. al., [11] model the healthy tissues as multivariate Gaussians, Ait-Ali et. al.,
[5], Souplet et. al, [4] use trimmed likelihood estimators (TLE) to model healthy brain tis-
sues, and Freifeld et. al., [6] model brain tissues with constrained Gaussian mixture model
(CGMM). However, in real, clinical data, lesion distributions overlap significantly with the
healthy brain tissues, making outlier based models suspect. Topological features and tem-
plate matching techniques like the k-Nearest Neighbours technique [9] have also been em-
ployed to detect lesions based on similarities to a set of training volumes. However, template
matching is hard, given the diversity of brain features across subjects.

Here, we devise a Bayesian technique that models all tissue classes, including lesions
during training. To leverage neighbourhood information, we model local relations using
Markov Random Fields (MRFs). MRFs have been previously employed by [11] and [8] for
MS lesion segmentation. In addition to exploiting local contextual voxel labels as in [11], our
technique differs from the previous work in that we also model the neighbourhood intensity
differences for each set of classes, thus avoiding a dependency on absolute voxel intensities,
and resulting in more accurate voxel class predictions. We also propose to exhaustively
evaluate all cliques in our neighbourhood, instead of limiting ourselves to only the smaller
cliques [11] or selected cliques [7]. As such, we hope to capture all the relations in the
neighbourhood, since these relations enable us to mimic the behaviour of tissue classes which
occur in groups. Finally, as proposed in [7], in order to alleviate the problem of intensity
variation across the brain, we divide the brain into regions and treat each region as a separate
MRF. We train our models on real clinical data and test our classification scheme against
multi-expert evaluated clinical data using a five fold cross validation technique. We compare
our results against state of the art techniques like those employed in [11], and [7] using Dice
similarity coefficients, false positive and false negative lesions as metrics for comparison.
2 MRF based Lesion Segmentation
Our goal is to classify each voxel of the test volume into one of the M classes. Our approach
is divided into two parts. In the first part, distributions needed for MRF models are estimated
from pre-labeled training volumes. Next, volumes are classified. Given the K MRI image
modalities, the intensity of voxel vi is a K dimensional vector Ii = (I0

i , . . . , IK−1
i ) with the

elements corresponding to the voxel intensities in the K modalities. Let the label of each
voxel vi be modelled as a random variable fi, fi ∈ {0, . . . ,M−1}, and vi ∈S where S is a
collection of sites, with each site being a voxel. Given the intensities Ii and INi of the voxel
vi, and its neighbours vNi respectively, we need to find the class fi of the voxel. This is given
by P( fi | Ii,INi) =

M−1

∑
fNi =0

P( fi, fNi | Ii,INi) ∝
M−1

∑
j=0

P(INi ,Ii | fi, fNi)P( fi, fNi)[Since P(INi ,Ii)is same ∀ fi)].

∝
M−1

∑
fNi =0

P(INi | Ii, fi, fNi)P(Ii | fNi , fi)P( fNi | fi)P( fi)

≈ P(Ii | fi)P( fi)
M−1

∑
fNi =0

P(∆INi | fi, fNi)P( fNi | fi), (1)
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where fNi are the classes of neighbours of vi, ∆INi = INi − Ii. We assume that P(∆INi |
fi, fNi ,Ii) = P(∆INi | fi, fNi) and P(Ii | fi) = P(Ii | fNi , fi). We need to compute P(f | I) where
N is the number of sites and I is the intensity at all voxels across all modalities. According
to Hammersley-Clifford theorem [1], this MRF is equivalent to a Gibbs distribution, whose
form is given by P(f) = 1

Z exp(U(f)), where Z = ∑ f∈F exp(U(f)), and U(f | I) is given by

U(f | I) =
N−1

∑
i=0

[
ln(P( fi))+(Ii−µ fi)

T Σ−1
fi (Ii−µ fi)+∑

Ni

(∆INi −µ fNi , fi
)T Σ−1

fNi , fi

(∆INi −µ fNi , fi
)+αm( fNi , fi)

]
, (2)

where m( fNi , fi) = 1 if fNi = fi, and 0 otherwise, and α is the weighting coefficient vector.
In this case, we model both the P(∆INi | fi, fNi) and P(Ii | fi) using the training data. The
neighbourhood and cliques are chosen appropriately to compute the energy m( fNi , fi) and
the prior probability P( fi) is obtained from a statistical prior atlas. To maximise P(f | I), we
minimise U(f | I), where fmin = argmin f∈FU(f | I).

2.1 Implementation
Our database comprises of 25 volumes containing both relapsing-remitting (RR) and sec-
ondary progressive (SP) MS patients. A leave-5-out strategy was employed for the training
and testing, such that 20 volumes were used for training and 5 for testing each time. The
volumes had a lesion load varying from 5cc to 19cc, and tested on 5 volumes. All volumes
were labelled by 5 experts and their consensus (silver standard) was taken in determining a
lesion.

We divide the brain into the frontal, temporal, occipital, parietal, central and posterior
fossa using the method suggested in [3] and build the distributions for the various tissue
classes in the different regions separately, considering each area a different MRF. In our im-
plementation, we chose M = 6, with the 6 classes being Background (Bk), White Matter
(WM), Grey Matter (GM), Cerebral Spinal Fluid (CSF), T 1-hypointense lesions (T 1les) and
T 2-hyperintense lesions (T 2les). The division of lesions into T 1 and T 2 lesions is anatomi-
cally justified in [9]. The distribution of lesions, on the whole, is bimodal. However, dividing
the lesions into T 1 and T 2 lesions allows us to choose normal distribution for the two classes
[7]. In the training phase, given the expert labelled set of 20 images, I(k), k ∈ 0, . . . ,19, the
intensities of the voxels belonging to the six classes for all modalities were fit to multivariate
Gaussians, with corresponding means µ and covariances Σ. Further, class intensity differ-
ences P(∆INi | fi, fNi)∀ fNi , fi in the neighbourhood were fit multivariate Gaussians.

In our MRF, we choose the 8 neighbourhood of vi in plane and the two corresponding
voxels in the slices above and below. We evaluate all the cliques in the neighbourhood (which
happen to be 1,2,3, and 4 voxels in size). Typically, MRF segmentation approaches evaluate
only single and pairwise cliques [8] or selective cliques [7], which do not fully comprise the
relationships in the neighbourhood. The larger cliques have an important role in eliminating
errors due to local inhomogeneities and eliminating false positives. This comes at the price
of slightly greater computational time.

We initialise our MRF using the result of the Bayesian classifier evaluating P( fi | Ii) =
P(Ii | fi)P( fi) in the various regions of the brain. Indeed, this is nothing more than picking
the minimum energy component of the voxel energy, i.e., min fi∈0,...,M−1ln(P( fi)) + (Ii −
µ fi)

T Σ−1
fi

(Ii−µ fi), in eq. 2. However, any reasonable classifier that gives us a good estimate
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Patient 1 Patient 2

Figure 1: (a) (b) (c) (a) (b) (c)
We have the results of the algorithm on two patient cases. We have (a) Central Slice of
T2-weighted MRI of MS patients (b) the lesions labelled by experts and (c) lesions labelled
by our algorithm. Patient 1 has a low lesion load, and algorithm localises lesions accurately
with κ = 0.58. Patient 2, has a heavy lesion load along with juxta-cortical lesions, but the
algorithm detects both with a κ = 0.8.

Patient 1 2 3 4 5 Mean
κ (van Leemput [11]) 0.47± 0.08 0.53 ± 0.13 0.38 ± 0.16 0.5 ± 0.06 0.48 ± 0.06 0.47 ± 0.11
κ (Harmouche [7]) 0.55 ± 0.08 0.64 ± 0.07 0.49 ± 0.12 0.53 ± 0.06 0.61 ± 0.08 0.57 ± 0.1
κ (our technique) 0.62 ± 0.09 0.75 ± 0.06 0.59 ± 0.14 0.56 ± 0.05 0.69 ± 0.09 0.64 ± 0.11

Table 1: The means of the 5 κ values of each fold in 5 fold cross validation. The κ values
are computed by comparing our results to the experts’ consensus (silver standard).

of the solution can be used to initialise the MRF. Once initialised, ICM [2] (which finds local
extrema) can be employed to find the global solution as well.

3 Results
The qualitative results of our algorithm are seen in Fig. 1, where it can be seen to be working
well on two different patients: one with small lesions and the other with large lesions. Both
the small and large lesions, as well as peri-ventricular and juxta cortical lesions are correctly
detected, and our results are in agreement with the experts’ labels (Fig. 1).

The most commonly employed quantitative measure is the Dice Similarity Coefficient,
κ = 2(A

⋂
B)

A+B , where A and B are the set of voxels denoted as lesion by the algorithm and the
expert respectively. The quantitative results of the algorithm are shown in Table 1, where
the mean of each of the 5 sets of 5 test volumes apiece has been tabulated. The performance
of our algorithm has been compared against the performance of two other state of the art
algorithms. Our algorithm’s performance is superior to that of existing techniques in κ terms
(Tab. 1). The maximum and minimum κs in the test set were 0.81 and 0.35.

The average number of false positive and false negative lesions for each of the 5 folds
are shown in Fig. 2. A lesion is defined as a set of at least 3 contiguous voxels in its
cubic neighbourhood, marked as the lesion class [10]. As can be seen in Fig. 2, there is a
large improvement in terms of false negatives compared to [7] and [11], while the number
of false positives is comparable in all three methods. Most of our false positives occur at
the bottom of the temporal lobe, where there are artefacts in volume acquisition, and even
experts disagree about lesions. The elimination of false negatives is the main benefit of our
technique.

4 Conclusion
In this paper, we have demonstrated the superiority of our proposed MRF tissue classifica-
tion technique compared to two other state of the art techniques, in the classification of MS
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Figure 2: Comparison of the false negative rates (left) and false positive rates (right) of the
three algorithms compared, for each fold in the 5 fold cross validation tabulated in Table 1.
In 3 of the 5 sets, there are almost no false negatives in our case, while the number of false
positives is comparable.

lesions in real clinical data. Our approach outperforms the others in terms of Dice similar-
ity coefficients and the number of false negatives, which are almost completely eliminated.
Future work will be focused on reducing the number of false positives.
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