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Abstract

Diabetic neuropathy is one of the most common long term complications of diabetes.
Current assessment methods of diabetic neuropathy are not satisfactory. In contrast,
recent research has shown that corneal confocal microscopy (CCM) image analysis has
the potential of being the surrogate endpoint to assess and quantify neuropathy. But to be
clinically useful, the analysis has to be automated. In this paper, we present a detection
algorithm that extracts corneal nerve fibres from CCM images using a dual-model of
foreground and background regions. The models work interactively through a logistic
function in order to identify a corresponding nerve fibre region. The paper compares
the performance of this algorithm with the performance of other well-know curvilinear
detection methods using a dataset of CCM images with ground-truth obtained by expert
annotation clinicians. The evaluation have shown a significant improvement (p ≈ 0) in
both error rates and signal-to-noise ratios over the competitor methods.

1 Introduction
Figures from recent international statistical reports [11] show an alarming increase of 54%
in the global diabetic population by 2030, which brings the total number of adults with di-
abetes to 438.7 millions. In England for example [4], up to one in 20 people has diabetes
and by 2025 it is estimated that this number will exceed four million. Diabetic peripheral
neuropathy (DPN) is one of the most common long-term complications of diabetes and is
the main initiating factor for foot ulceration, Charcot’s neuroarthropathy and lower extrem-
ity amputation. Around 50% of patients with diabetes may suffer from DPN [1] resulting
in pain, foot ulcers, blindness etc. It is estimated that about 16.2% of people with diabetes
are affected by chronic painful neuropathy [3]. As 80% of amputations are preceded by
foot ulceration, an effective means of detecting and treating neuropathy would have a major
medical, social and economic impact. The accurate detection and quantification of DPN are
important for defining at-risk patients, anticipating deterioration, and assessing new thera-
pies. Current methods of diagnosis are unsatisfactory, being highly invasive (skin biopsy) or
lacking sensitivity, require expert assessment or focus only on large nerve fibres whereas the
earliest signs of neuropathy are likely to be found among small nerve fibres.
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Figure 1: An illustration of the methods’ responses. (a) the CCM image, (b) Dual-model, (c)
LinOp, (d) Hessian, (e) 2D Gabor, (f) Monogenic and (g) DTCWT.

However, recent research [10] using Corneal Confocal Microscopy (CCM) suggests that
this non-invasive, and hence reiterative, test might be an ideal surrogate endpoint for human
diabetic neuropathy. These studies demonstrate that measurements made by CCM accurately
quantify corneal nerve fibre morphology. The measurements reflect the severity of DPN and
relate to the extent of intra-epidermal nerve fibre loss seen in skin biopsy. However, the ma-
jor limitation preventing extension of this technique to wider clinical practice is that analysis
of the images using interactive image analysis is highly labour-intensive and requires con-
siderable expertise to quantify nerve fibre pathology. To be clinically useful as a diagnostic
tool, it is essential that the measurements be extracted automatically.

2 Corneal Nerve Fibre Detection
The first critical stage in analysis of CCM images (an example is shown in figure 1(a)) is
the detection of nerve fibres. The nerve fibres often show poor contrast in the relatively
noisy images. These captured images of nerve fibre structures could suffer from several
types of corruption due to some acquisition conditions, and nerve fibres may appear faint
due to their small size or being only partly in the focus plane. Therefore, a nerve fibre
contrast enhancement algorithm is needed to exploit the linear structure of the nerve fibres
and distinguish them from the background noise. All the methods described in this section
are capable of providing this enhancement. The problem of extracting nerve fibres from
CCM images has a superficial similarity to other, more widely investigated, applications,
such as detection of blood-vessels in retinal images.

A method of linear structure detection (Line Operator - LinOp), originally developed for
detection of asbestos fibres has also been shown to be effective in detecting ducts in mam-
mograms [12]. LinOp exploits the linear nature of the structures to enhance their contrast
by computing the average intensity of pixels lying on a line passing through the reference
pixel for multiple orientations and scales. In a a preliminary study [2], we use the 2D Gabor
filter [8] to detect nerve fibres in CCM images. The filter is a band-pass filter that consists
of a sinusoidal plane wave modulated by a Gaussian envelope and tuned to the local orien-
tation and frequency of nerve fibres. Frangi et al. [6] used a multi-scale decomposition of
the Hessian matrix to detect and measure blood vessels in Digital Subtraction Angiography
images. They derived a discriminant function based on the eigenvalues and eigenvectors,
which has maximum response for tube-like structures. The Dual-Tree Complex Wavelet
Transform (DTCWT) [9] is an extension of the Discrete Wavelet Transform (DWT), which
provides a sparse representation and characterisation of structures and texture of the image at
multi-resolutions. The DTCWT utilises two DWT decompositions (trees) with specifically
selected filters, giving it the properties of approximate shift-invariance and good direction-
ality. The Monogenic signal [5] (a variant of a 2D analytic signal) is an extension of the
analytic signal using quaternionic algebra in an attempt to generalise the method so it is ca-
pable of analysing intrinsically 2D signals e.g. structures within images. The Monogenic
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signal is based on the Riesz transform, which is a 2D generalization of the Hilbert transform
used in the conventional analytic signal.

3 Dual-Model Nerve fibre Detection
This paper presents a dual-model algorithm for automatic detection and measurement of
nerve fibres in CCM images. Using a 2D Gabor wavelet and a Gaussian envelope, the dual-
model of foreground (nerve fibres) and background is constructed and applied to the original
CCM image. The foreground model MF is an an even-symmetric and real-valued Gabor [8]
wavelet and the background model MB is a two-dimensional Gaussian envelope.
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The x and y axes of the dual-model coordinate frame xθ = xcosθ + ysinθ and yθ =
−xsinθ + ycosθ are defined by a rotation of θ , which is the dominant orientation of the
nerve fibres in a particular region within the image (the method for estimating the local
orientation is described below). This dual-model is used to generate the positive response
RP = MF + MB and the negative response RN = MF − MB that are applied to the
original CCM image and can be represented as in equations (3) and (4) respectively.
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The equations of RP and RN assume that the Gaussian envelope of both responses are
identical i.e. they have the same variances σ2

(x,y) and the same aspect ratio γ . The magnitude
of the Gaussian envelope α defines the threshold in which a nerve fibre can be distinguished
from the background image. The value of α can be set empirically to control sensitivity and
accuracy of detection. The wavelength λ defines the frequency band of the information to be
detected in the CCM image. Its value might be computed for a subregion within the image
that has significant variability of nerve fibre width. However for simplicity, λ is chosen to
be a global estimate of the entire image based on empirical results.
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The positive and negative responses are obtained at each pixel by taking the dot product
of each with the local neighbourhood of width ω around the pixel f (i, j). They are combined
using a logistic function (equation (5)), which adjusts the model to suit the local neigh-
bourhood characteristics, producing the modified image value, g(i, j). In this way, structures
that are oriented in the dominant direction are enhanced, while anything else is diminished,
increasing the contrast between nerve fibres and noisy background and reducing the noise
around the nerve fibre (figure 1(b)). The sharpness of the transition of the enhanced image
value at a particular pixel g(i, j) is controlled by k. A larger k amounts to a sharper transition.
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Figure 2: From left to right, the box-plots of the EER and the PSNR are shown for all
methods. The ROC curves are presented at the far right. The box-plots indicate the upper and
the lower quartiles as well as the median (the bar) of the EER and PSNR values respectively;
whiskers show the extent of the rest of the data while crosses indicate outliers for (a) dual-
model, (b) LinOp, (c) 2D Gabor, (d) Hessian, (e) DTCWT and (f) Monogenic.

Dual-Model LinOp [12] 2D Gabor [2, 8] Hessian [6] DTCWT [9] Monog. [5]

EER[%] 17.79± 10.58 22.65± 10.76 24.15± 10.74 23.14± 11.53 34.17± 10.43 26.50± 12.58

PSNR[dB] 19.08± 2.16 18.51± 2.09 18.80± 2.11 17.93± 2.27 17.00± 2.23 18.11± 2.20

Table 1: A comparison of mean EER and PSNR and their standard deviations.

In CCM images, the nerve fibres flow in locally consistent orientations everywhere. In
addition, there is a global orientation that dominates the general flow. This orientation field
describes the coarse structure of nerve fibres. Using the least mean square (LMS) algo-
rithm [7], the local orientation is estimated in the block centred at certain pixel. Since the
orientations vary at a slow rate, a low-pass Gaussian filter is applied globally in order to
further reduce errors at near-nerve fibre and non-nerve fibre regions. The LMS produces a
stable smooth orientation field in the region of the nerve fibres; however when applied on the
background of the image, i.e. between fibres, the estimate is dominated by noise due to the
lack of structure and uniform direction.

4 Experimental Results and Analysis
The evaluation has been conducted on a database of 525 CCM images captured using the
HRT-III microscope from 69 subjects (20 controls and 49 diabetic patients). The resolution
is 1.0417µm and the field of view is 400× 400µm2 of the cornea. For each individual,
several fields of view are selected manually from near the centre of the cornea that show
recognisable nerve fibres.

The performance of all methods is obtained by validating the extracted nerve fibres in
comparison with an expert manual delineation.Only the raw response of each method is
taken into account without any further post-processing operations or shade correction meth-
ods as shown in figure 1. Binary images are obtained by a simple uniform thresholding
operation that is followed by a thinning operation to achieve a one-pixel-wide skeleton im-
age. A tolerance of ±3.141µm (3 pixels) was allowed in determining coincidence between
the ground-truth and the detected nerve fibres.

The equal-error rate (EER) and peak signal to noise ratio (PSNR) values for all the meth-
ods are presented in the box-plots in figure 2 and table 1. Each data point in figure 2 cor-
responds to the evaluation on one of the 525 CCM images in the database. The dual-model
shows lower EER and higher PSNR than all other methods (table 1). These improvements
are statistically significant (p≈ 0 using three different non-parametric tests). The table also
shows that the standard deviations of both EER and PSNR are low for the dual-model, which

348



DABBAH et al.: AUTOMATIC CORNEAL NERVE FIBRE DETECTION 5

indicates a more stable and robust behaviour. The closest competitor is LinOp. The meth-
ods designed for linear structures perform rather better on this test than the more generic
DTCWT and Monogenic signal methods. The superior performance of the dual-model is
borne out by the ROC curves of figure 2, in which the dual model shows improved detection
at all operation points.

5 Conclusion
The analysis of CCM images requires the identification of fibre-like structures with low
contrast in noisy images. This is a requirement shared by a number of imaging applications
in biology, medicine and other fields. A number of methods have been applied in these
applications, and we have compared some of these, and more generic methods with a dual-
model detection algorithm devised for this study. The comparison used a large set of images
with manual ground truth. In terms of both error-rates (pixel misclassification) and signal-
to-noise ratio, the dual model achieved highest performance. It seems reasonable to propose
that this filter is likely to prove equally useful in applications of a similar nature.
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