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Abstract

Ultrasound (US) image segmentation is one of the most difficult and challenging
among medical imaging modalities due to the poor signal-to-noise ratio, signal dropouts,
and speckle patterns characteristic of US images. Previous methods avoided the use
of purely intensity-based segmentation approaches, because of the intensity inhomo-
geneities present within the structures of interest. However, local phase, derived from
the monogenic signal, extracts structural information from US images, being invariant
to contrast. By combining different scales of the local phase, feature asymmetry can
be calculated to represent edge information. This paper proposes a novel ultrasound
segmentation approach based on the fuzzy connectedness framework. A new affinity
function is designed to drive the segmentation algorithm using structural and edge infor-
mation based on local phase, instead of intensities and intensity gradients. Quantitative
and qualitative results are illustrated on US images of the fetal arm, the object of interest
being the adipose tissue, which is an indicator of fetal nutrition.

1 Introduction
Ultrasound (US) image segmentation is a challenging task due to the poor signal-to-noise
ratio, signal dropouts, artefacts, missing boundaries, attenuation, shadows, and speckle pat-
terns characteristic of US images. Several approaches are available at present for segmenting
B-mode US images [10]. Among these, the use of local phase has proven useful for a variety
of image analysis tasks including segmentation [1] and boundary detection [9]. Local phase,
derived from the monogenic signal [4], extracts structural image information while being
invariant to contrast.

This paper introduces a novel US segmentationmethod based on the fuzzy connectedness
framework [11], which is a region-based approach that defines the strength of local “hanging
togetherness” of pixels within an image taking into account their spatial relationship and
their intensity similarities within the object of interest. The method uses feature information
extracted from local phase instead of image intensities, becoming invariant to contrast, and
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thus suitable for US image segmentation. The new approach is illustrated on US images of
the fetal arm. Fetal adipose tissue in the limbs characterizes the fetal nutritional state, and its
quantification could be a good indicator of fetal growth [ 6]. Section 2 introduces the concepts
of local phase and feature asymmetry, based on the monogenic signal. Section 3 describes
the novel local phase-based fuzzy connectedness segmentation approach. Qualitative and
quantitative results are presented in Section 4. Conclusions are given in Section 5.

2 Local Phase and Feature Asymmetry
The monogenic signal [4] IM(x,y) of an image I(x,y) generalizes the analytic signal to 2D
(and higher dimensions) as IM(x,y) = (Ib(x,y),h1(x,y)⊗ Ib(x,y),h2(x,y)⊗ Ib(x,y)), where
Ib(x,y) is the result of convolving I(x,y) with a bandpass filter b(x,y), ⊗ denotes the convo-
lution operation, and h1 and h2 are the convolution kernels of the Riesz transforms, defined
as h1(x,y) = x/(2 (x2+ y2) 32 ) and h2 = y/(2 (x2+ y2) 32 ), respectively. From IM(x,y) the
local phase (x,y) of I(x,y) is expressed as (x,y) = arctan(Ib/

√
(h1⊗ Ib)2+(h2⊗ Ib)2).

The key choice to be made is in the selection of the bandpass filter b(x,y). In the proposed
method, a Gaussian Derivative filter [2] was selected. Computing the local phase at different
scales, edge features can be detected at points of local phase congruency [ 5], by calculating
the feature asymmetry as FA = (1/N)

s
(("|odds|− |evens|− Ts$)/(

√
even2s + odd2s + )),

where even= Ib, odd= (h1⊗ Ib, h2⊗ Ib), ".$ sets to zero the negative values, s represents the
scale, N is the total number of scales, is a constant that avoids the division by zero when the
local energy is small (typically = 0.01), and Ts is an orientation independent threshold that
controls the spurious responses to noise at scale s [5] [9]. FA is close to 1 near boundaries
and close to 0 in homogeneous regions.

3 Local Phase-Based Fuzzy Connectedness Segmentation
Fuzzy Connectedness (FC) [11] was previously used to segment tissues in the presence of
intensity gradation in MR and CT images over numerous applications [ 7][8]. The strategy
is based on a global fuzzy relation that assigns a strength of connectedness to every pair
of pixels in an image to define objects via dynamic programming. The key step of this
region-based approach relies in the definition of a local fuzzy relation µ , called affinity,
which defines the local “hanging togetherness” between any two adjacent pixels. If two
pixels c and d are adjacent, the affinity depends on how homogeneous the region is and on
how close the difference of intensity values at c and d is from the expected intensity value
of the object of interest. The affinity is equal to 0 for non-adjacent pixels. The affinity
values are used to define a global relation, called Fuzzy Connectedness, where the strength
of connectedness between any two pixels is calculated as the largest of the strengths of all
paths between c and d on the discrete image grid. Each path corresponds to a sequence of
adjacent pixels starting from c and finishing in d and has a corresponding strength value,
which is the smallest affinity of any pair of consecutive pixels along the path (weakest link).
The fuzzy connectedness is represented as a connectivity map, where the object of interest
is obtained by thresholding the image at TFC. The initialisation of the method is based on
manually placing one or several seeds within the object of interest.

In this paper, we adapt the FC framework to US segmentation by defining a new affinity
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function that uses structural and edge feature information instead of intensities. The features
are derived from the measures of local phase and feature asymmetry introduced previously.
The design of the affinity function is described in next. Every fuzzy subset A in a set is
characterised by its membership function µA with values in [0,1]. Given an image, the
affinity is composed of three factors: an adjacency component µ , an object feature-based
component µ , and a homogeneity-based component µ . The adjacency component µ
is a non-increasing function of the distance ‖c− d‖ defined as µ (c,d) = 1, if c = d or
‖c− d‖= 1, and µ (c,d) = 0 otherwise.

In the original framework, the object feature-based component is defined based on the
intensities of the image, whereas the homogeneity-based component is a measure of inten-
sity gradient [3]. By incorporating the local phase information into the object-feature based
component, structural information is extracted, making the image invariant to contrast. Fea-
ture asymmetry directly gives a measure of homogeneity, since smooth regions have small
values and regions near boundaries have large values (cf. Section 2). Therefore, it is natural
to consider it in the definition of the homogeneity-based component. Edge information in
FA is first thinned using mathematical morphology, resulting in FAt . More specifically, let

(c) and FAt(c) be the local phase and thinned feature asymmetry at pixel c, respectively.
The homogeneity-based component µ will have a high affinity in homogeneous regions and
small affinity around the edges. Since FAt is close to 0 in homogeneous regions and close
to 1 near boundaries, we can express the homogeneity component as µ (c,d) = 1−FAt(c).
The object feature-based component µ takes into account characteristic features of the ob-
ject of interest. In our case, we use a recent formulation [3] but directly applied to the local
phase image, as follows:

µ (c,d) = e−max{‖ (c)−m‖,‖ (d)−m‖}2/2 2
, (1)

wherem and are the mean and standard deviation of the object of interest, previously calcu-
lated in a training stage. The fuzzy affinity µ is obtained by combining the affinity compo-
nents [3]. One of the general forms commonly used is µ (c,d)= µ (c,d)[ 1µ ( f (c), f (d))+
2µ ( f (c), f (d))], where f (c) and f (d) correspond to the intensities at pixels c and d,
respectively [11]. The equivalent affinity function for the new approach is expressed as
µ (c,d) = µ (c,d)[ 1µ ( (c), (d))+ 2µ (FAt(c))], where 1+ 2 = 1, and with µ
and µ as defined previously.

4 Results
Quantitative and qualitative evaluations of the proposed approach were performed on seven
cross-sectional US images of the fetal arm (Fig.1(a)), acquired between 21 and 40 weeks of
gestation. The fat layer on each image was also manually segmented by a clinician 5 times.
The method was implemented in Matlab, using C mex files for faster computation. Local
phase (Fig.1(c)) and feature asymmetry (Fig.1(d)) were estimated as described in Section 2.
Ts was obtained from statistical properties of the local phase image, and set to Ts = 0.155.
The FC framework was applied as described in Section 3. The object feature-based compo-
nent of affinity was defined as in (1) using m = mo = 1.048 and = 3× o = 3× 0.242,
where mo and o are the mean and standard deviation of a region of fat in the local phase
image, obtained from training. The final affinity was calculated with 1 = 2 = 0.5. The
method is multiseeded with one or more seeds in the fat layer of the image used for initial-
isation. We applied a threshold of TFC = 0.5 to the resulting connectivity maps to get the
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Figure 1: (a) Schematic of arm composition. (b) Ultrasound cross-sectional image of the
fetal arm. (c) Local phase of (b) at s= 25. (d) Feature asymmetry for N = 3, s= [23,25,27]
and Ts = 0.155. (e,f) Feature-based FC connectivity map and segmentation for TFC = 0.5.
(g,h) Intensity-based FC connectivity map and segmentation for TFC = 0.75. Dashed lines:
averaged manual segmentation; Continuous lines: FC segmentation results.

final segmentations. The connectivity map and final segmentation of Fig. 1(a) are displayed
in Figs.1(e-f) with the corresponding averaged manual segmentation. Figs. 1(g-h) illustrate
how the original framework works in comparison to the new method. The intensity-based
approach cannot overcome the inhomogeneitieswithin the object of interest, by not detecting
high intensity regions while leaking to other areas of similar intensity values. Furthermore,
the lack of image standardization makes difficult to set the parameters to use for all the
images in the set. This situation is avoided when using local phase, as it is contrast invariant.

The quantitative evaluation compares the segmentation results (SR) with the averaged
manual segmentations, which are considered as ground truth (GT). Precision (P), Recall
(R), and Dice (D) similarity were used to assess the segmentations. These are defined as:
P= |GT∩SR|/|SR|, R= |GT∩SR|/|GT|, and D= (2× |GT∩SR|)/(|GT|+ |SR|), where |.|
refers to the number of elements in the set. The results show that the precision of the segmen-
tation approach is of 93.51± 1.91%, the recall is of 82.77± 5.74%, and the Dice similarity
is of 87.69± 3.05%. The high precision and recall values indicate that the segmentation
mainly lies within the ground truth. The Dice similarity is high and comparable to manual
segmentations, which present Dice similarities between 87.14± 3.68% and 91.48± 1.17%.

5 Conclusions
This paper presents a novel feature-based fuzzy connectedness segmentation method, which
uses structural and edge information based on local phase, instead of intensities and intensity
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gradients, to drive the segmentation. This is especially useful for US images, as the method
is invariant to intensity changes and relies more on the structural information. The method
can be adapted to segment other objects in other applications (e.g. cardiac images) making
good use of the edge and structural features. Although this paper focuses on 2D images, the
method is directly applicable to higher dimensional images.
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