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Abstract

We present a fully automatic segmentation method to extract media-adventitia border
in IVUS images with shape prior information. Segmentation of IVUS has shown to be
an intricate process due to relatively low contrast and various forms of interferences
and artefacts caused by, for instance, calcification and acoustic shadow. We incorporate
shape prior with an automatic graph cut technique to prevent the extraction of media-
adventitia border from being distracted by those image features. Novel cost functions
are constructed based on a combination of complementary texture features. Comparative
studies on manually labeled data show promising performance of the proposed method.

1 Introduction
Intra-vascular ultrasound (IVUS) is a catheter based technology that provides 2D cross-
sectional coronary vessel images to help clinicians to diagnose coronary heart diseases, such
as atherosclerosis. There are two types of borders of clinical interest: the lumen-intima bor-
der that corresponds to the inner coronary arterial wall and the media-adventitia border that
represents the outer coronary arterial wall located between the media and adventitia. Seg-
mentation of the second type of border is the focus of this paper. The media layer is largely
consisted of homogeneous smooth muscle, which exhibits as a dark layer in ultrasound im-
ages, and is surrounded by fibrous connective tissues called adventitia.

The appearance of the media-adventitia border in IVUS images is affected by various
forms of imaging artefacts, such as acoustic shadow caused by catheter guide wire or tis-
sue calcification. The use of shape prior is often desirable in order to achieve robust seg-
mentation of those anatomical structures from IVUS images. For example, in [2] signed
distance transform is used to implicitly represent prior shapes, followed by principal com-
ponent analysis (PCA) to generalise the shape variation. The learned mean shapes (principal
components) and their corresponding variations are then used to constrain image gradient
based media-adventitia border segmentation. However, this method need specific tunning
and shape training to work properly on high frequency ultrasound images, e.g. 40 MHz in
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our case. Its global shape prior learning requires a general assumption that the shape vari-
ation is largely linear. Additionally, this kind of image gradient based approach may suffer
from distraction of strong image features due to fibrous plaque and other imaging artefacts.

In this paper, we propose a fully automatic media-adventitia border segmentation method
using graph cut and local shape prior. Multi-scale textural features are used to construct the
cost function for graph partition. The use of local shape prior may allow a more flexible
global shape variation. Evaluation of the proposed method is carried out on a manually la-
belled IVUS dataset. Substantial improvements are shown compared to segmentation with-
out using the local shape prior.

2 Proposed method
The proposed method begins with some pre-processing which involves transforming the
IVUS images from Cartesian coordinates to polar coordinates for the purpose of graph con-
struction and automatic removal of catheter region from the transformed images since that
region does not contain any anatomical information. All the training shapes which in polar
coordinates are aligned by using rigid translation. The first order derivatives in radial dis-
tance are used to characterise the shape variation. Note, it is not generalising shape variation
at each column, which requires for instance the training shapes to be generally in the same
scale. Rather the variation in neighbouring inter-column changes are modelled and used in
graph construction and partition. A node-weighted directed graph is constructed, taking into
account the shape constraint. The segmentation of the media-adventitia border is thus con-
sidered as searching for a minimum closed set on this node-directed graph, which is solved
by computing a minimum s− t cut in a derived arc-weighted directed graph. The associated
cost function is based on image features extracted using local phase transform, first order
derivatives of Gaussian, and Gabor filters. Finally, the extracted media-adventitia border is
smoothed using efficient 1D radial basis function (RBF) interpolation.

2.1 Graph Construction
Conventional graph cut, such as [1], generally minimises an edge based energy function to
find the optimal segmentation of IVUS, but it may fail due to the absence of strong coher-
ent features along the border and the presence of distractive objects with similar intensity
profiles. In [5], the authors incorporated some shape prior to overcome these problems.
However, user initialisation is necessary. In [3], a novel graph construction method is pro-
posed, which transforms surface segmentation in 3D into computing a minimum closed set
in a directed graph. Very recently in an extended work [4], the arcs between neighbouring
columns are set to be dynamic in order to incorporate prior shape and new arcs are added to
constrain the smoothness of the interface. Here, we adopt this graph construction technique
to carry out IVUS 2D segmentation, which achieves global minima in low order polynomial
time complexity but does not require user initialisation.

Briefly, a graph G = ⟨V,E⟩ , where each node V (x,y) corresponds to a pixel in image
I(x,y), is constructed for segmenting the media-adventitia interface S(x,y). Along each col-
umn in the graph, every node is connected to the node below in the same column with +∞
weight on the arc to ensure that the desired interface intersects with each column exactly
once. In the case of the inter-column arcs, for each node V (x,y) a directed arc with +∞
weight is established to link with node V (x+1,y− ∆̄p,q), where ∆̄p,q is the maximum differ-
ence between two neighbouring columns p and q. Similarly, node V (x + 1,y) is connected
to V (x,y + ∆p,q), where ∆p,q controls the minimum difference between two neighbouring
columns. Without using the shape prior, the value for ∆̄p,q and ∆p,q are set as global con-
stants for every pair of neighbouring columns and act as a hard constraint to prevent drastic
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changes in shape. The neighbouring nodes in the last row are connected to each other with
+∞ weight on arc to maintain a closed graph.
2.2 Shape Prior
Taking into account the shape constraint, the associated energy function used to find the
optimal interface S can be defined as:

E(S) = ∑
I(x,y)∈S

C(x,y)+ ∑
(p,q)

fp,q(S(p)−S(q)) (1)

where C(x,y) is the cost function, described in Sect. 2.4, and fp,q is a convex function penal-
ising abrupt shape changes in S between neighbouring columns p and q. The training shapes
are aligned in polar coordinates and the radial differences between neighbouring columns
are computed at each column (equivalent to first order derivative). The radial differences
between neighbouring columns, p and q, are generalised using mean mp,q and standard de-
viation σp,q. These statistics are then used in determining maximum and minimum distances
when connecting neighbouring columns in graph construction, i.e. ∆̄p,q = mp,q + c ·σp,q,
∆p,q = mp,q − c ·σp,q, and c is a real constant. However, these inter-column arcs alone will
impose hard constraint on shape regularisation. Hence, additional inter-column arcs are nec-
essary in order to allow smooth transition between columns, that is intermediate values h in
the range of ∆̄p,q and ∆ are used to construct inter-column arcs. The direction of these arcs is
based on the first order derivative of the function fp,q(h). For each value of h, if f ′p,q(h) ≥ 0
an arc from V (x,y) to V (x+1,y−h) is established and if the f ′p,q(h)≤ 0 the arc is connected
from V (x+1,y) to V (x,y+h) . The weight for these arcs is assigned as the second derivative
of the function fp,q. Here, we employed a quadratic function, fp,q = 3(x−mp,q)2.
2.3 Feature Extraction
The media layer is usually thin and generally dark in intensity, and the adventitia layer tends
to be brighter. However, acoustic shadow, calcification, and other interfering image fea-
tures are common. Hence, the feature extraction is concerned with enhancing the difference
between media and adventitia and suppressing undesirable features.

First order derivative of Gaussian – This set of filters is designed to highlight the inten-
sity difference between media and adventitia. Four different orientations are used.

Band-pass log-Gabor – Log Gabor is used as a band-pass filter in three scales to enhance
the border and to reduce speckles and other image artefacts. To minimize possible overlap
with the derivate of Gaussian filter in extracting edge features, this process is carried out in
coarser scales. Hence, these features highlight dominant edges.

Local phase symmetry feature – Symmetry feature [6] is exist in the frequency com-
ponents at either the minimum or maximum symmetric points in their cycles, obtained by
convolving even em(x,y) and odd om(x,y) symmetric Log Gabor filter to remove DC com-
ponent and preserve phase in localised frequency. In [7] employs spatio-temporal technique
to enhance edge and bar-like features and suppress speckles in ultrasound images.

Feature symmetry favours bar-like image patterns, which is useful in extracting the thin
media layer. We modify the feature symmetry equation in [6] to focus only on the dark
polarity (minimum intensity) symmetry:

FS(x,y) = ∑
m

⌊[−|em(x,y)|− |om(x,y)|]−Tm⌋
Am(x,y)+ ε

(2)

where m denotes filter orientation, ε is a small constant, Tm is an orientation-dependent noise
threshold, Am(x,y) =

√
e2

m(x,y)+o2
m(x,y) and ⌊.⌋ denotes zeroing negative values.

2.4 Cost function
The cost function indicates the likelihood of each node in the graph belongs to the minimum
cost path that represents the desired interface. For segmenting the media-adventitia border,
all the three types of features described in Sect. 2.3 are used. It takes the following form:
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Table 1: Quantitative comparison. AD: area difference in percentage; AMD: absolute mean
difference in pixel compared to ground-truth.

No Shape Prior Shape Prior
AD AMD AD AMD

Mean 8.96 16.32 4.91 6.89
Std. 5.79 12.82 1.94 2.57
Min 3.26 4.33 2.35 3.56
Max 20.25 46.88 9.57 11.97

C(x,y) = Cd(x,y)+α1CG(x,y)+α2(1−FS(x,y)) (3)
where Cd denotes the term for derivative of Gaussian features, CG is for log-Gabor, and
α1 and α2 are constants. The derivatives of Gaussian responses from different orientations
are summed together to form Cd . CG can be obtained by cascading the filtering responses
across scales. However, more weight can be assigned to coarser scale features so that it
presence the connectivity of media-adventitia border at the existence of acoustic shadow,
e.g. CG = G(3) + G(4) + 1.5G(5) as used here and G(i) denotes ith scale. Feature symmetry
FS is useful in enhancing the thin layer of media. It is normalized beforehand, and since the
middle of the layer has larger values 1-FS is used in the cost function so that the interface
between media and adventitia is highlighted. Note that each of the term in the cost function
is normalized.
2.5 Compute the optimal interface
Each graph node is weighted by a value represents its rank to be selected in the minimum
closed set graph, whose upper envelope corresponds to the optimal interface. The weight
assignment is carried out according to w(x,y) = C(x,y)−C(x,y−1) where w is the weight
for each node in the directed graph, which serves as the base for dividing the nodes into non-
negative and negative sets. The s− t cut method [1] can then be used to find the minimum
closed set. The source s is connected to each negative node and every non-negative node is
connected to the sink t, both through a directed arc that carries the absolute value of the cost
node itself. The optimal media-adventitia interface corresponds to the upper envelope of the
minimum closed set graph.

The segmented media-adventitia may still contain local oscillations. Smoothing can be
applied to eliminate such oscillations. Here, RBF interpolation using thin plate base func-
tion is used to effectively obtain the final interface. Note, due to the images have been
transformed into polar coordinates, the RBF processing only needs to be carried out in 1D.

3 Experimental Results
The proposed method is evaluated on a set of 40 IVUS images from 4 pullbacks acquired
by a 40 MHz transducer Boston scientific ultrasound machine, where 20 images are used
in the training set and the rest for testing. These images contain various forms of soft and
fibrous plaque, and calcification. The training shapes are pre-aligned when transforming
from Cartesian coordinates to polar coordinates. Due to the graph construction is defined
according to the learned information and remained fixed during the segmentation, we limit
the work on single template. Manual segmentation was carried out on all the images to es-
tablish a "ground-truth". The proposed method is compared with segmentation using the
same graph construction but without incorporating the shape prior. Fig. 1 shows typical per-
formance for both methods. Table 1 provides a quantitative comparison for media-adventitia
border segmentation. The advantage of using prior is evidently clear. A qualitative compar-
ison between manual labelling of the media-adventitia border and the proposed method is
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(a) (b)
Figure 1: Media-adventitia border segmentation (a) without shape prior; (b) with shape prior.

Figure 2: Comparison between ground-truth (green) and the proposed method (red).

shown in Fig. 2. Overall, the proposed method achieved promising results without any user
initialisation and the use of shape prior provides better accuracy and consistency.

4 Conclusion
We presented an automatic media-adventitia segmentation method, whose geometric con-
strain is derived from the training set and integrated in the graph construction. Shape prior
information helps to overcome the difficulties in finding the location of the border when there
is calcification or guide wire shadowing. Qualitative and quantitative comparison showed
superior performance of using shape prior and demonstrated a promising approach to IVUS
image segmentation.
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