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Abstract
We discuss the problem of 2D+t intra- and inter-sequential registration of retinal an-

giograms. A joint spatio-temporal registration algorithm is presented based on a RANSAC
approach incorporating a quadratic model to describe "pairwise" image homography.
This is incorporated into a local-to-global hierarchical joint registration framework. Af-
ter registration, vessel centrelines are segmented by applying multi-scale steerable com-
plex wavelet filters to detect vessel centrelines to subpixel accuracy. Frame-by-frame
microvascular centrelines in Regions-of-Interest (ROIs) are evaluated against segmented
centrelines of the temporal average of the registered sequences. The microvascular cen-
trelines in registered sequences can be compared intra-sequentially and inter-sequentially
for clinical applications, for the non-invasive comparison and monitoring of micro-circulation.
This has the potential to detect the presence of microemboli and pathological structural
alterations.

Introduction
The retinal vascular system has spawned a huge range of clinical and pre-clinical research
and diagnostic techniques since it provides unique in vivo access for studying the character-
istics of the human vascular bed in a minimally invasive manner.

Fluorescein angiography is a well-established technique for clinical assessment of the
retina. The passage of fluorescein dye through the retinal vessels reflects both the vessel
structure and the rate of retinal blood flow. A fundus camera continuously photographs the
retina from the onset of dye injection over a period of 3 to 5 minutes [1]. This captures filling
(“wash-in”) and the subsequent elimination (“wash-out”) of dye in the retinal vessels. These
angiogram sequences are roughly divided into the arterial phase (filling of retinal arteries),
arteriovenous phase (complete filling of retinal capillaries with laminar flow exhibited in
retinal veins), venous phase (complete filling in large retinal veins, leading to the maximum
vessel fluorescence) and recirculation phase (approximately equal brightness in the veins and
the arteries, gradual elimination of dye from the retinal vasculature).

Measurements on retinal blood vessels have linked alteration of human (retinal) vascula-
ture with diseases such as hypertension, diabetes and age-related macular degeneration [2].
For early stage detection, subtle changes in the retinal microvasculature require sufficiently
fine-resolution imaging and dependable sub-pixel precision of registration to study vessels
at the micrometer scale. Current literature focuses on establishing correspondence between
global microvasculature measures and retinal blood flow [3]. Suggested parameters are blood
flow velocity, arteriovenous passage time, difference of arterial and venous times to maxi-
mum intensity, and time to maximum image [3]. All of these fail to capture microvascular
vessels individually.
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Blauth et al. [4] first suggested that comparison of pre- and post- operative retinal fluores-
cein angiograms might indicate the existence of microemboli that could be associated with
cognitive impairment or even morbidity. However, only the macula region of one pre-op and
one post-op image were used [4].

The analysis of sequential retinal angiograms has not been widely exploited; the dynam-
ics of blood flow and the diffusion of the injected tracer introduce a low-frequency variation
that is both difficult to compensate for and computationally demanding. However, fluores-
cein angiography allows visualisation of the microvasculature less than 30µm in diameter,
which is not yet achievable by either funduscopy or color photography. By recruiting all
frames in both sequences, it is possible to study retinal microvasculature dynamics and iden-
tify small, but potentially significant embolic events. In this paper, we address and solve
three technical problems.
Image registration We need to estimate and model the distortion between frames in or-
der to map each angiogram onto one common coordinate system (the reference). Current
feature-based methods include global weak affine model with Bayesian matching [5], hier-
archical model refinement [6] and dual-bootstrap iterative closest point (DB-ICP) [7]. Often,
vascular bifurcation points are extracted as landmark points to estimate the transformation
model. Inaccurate landmarks can heavily distort the transformation estimate, especially in
[6], where each image only contains about 30-50 landmarks. This is improved in [7], where
landmarks in local “bootstrap” regions are iterated over to establish correspondence and to fit
and refine the transformation estimate. This method also relies on the accurate initialization
of corresponding landmark points.
Objective validation We need an objective error measure to evaluate the performance of
our registration algorithm. Registration error can be determined by the extent of misalign-
ment between the registered image and the reference image. Conventional ground truth is
obtained from manual registration [5]. This form of reference standard is subject to inter-
and intra-observer variability. Therefore, [6]&[7] use the “centreline” (linked lines between
landmarks) locations of the original images as relatively “unbiased” ground truth. However,
both the linking algorithm that interpolates subpixel locations and the similarity measure that
optimally matches subpixels between different frames vary from case to case in establishing
error metrics. Therefore, [8] casts an evenly spaced virtual grid that intersects with vessels to
obtain ground-truth pixels. This, however, disregards the location-dependent nature of pixel
information. Pixels located near the capillary-rich macula region generate significantly more
clinical interest than those near the retinal border (field-stop). Furthermore, their proposed
“error tracing” route theoretically favors strategies that pair both the forward and the inverse
registration functions to optimize the “net offset” rather than a true assessment of the regis-
tration algorithm on its own. Additional processing is required to address the uneven global
illumination.
Vessel segmentation We need to differentiate and identify microvascular segments from
the background in each of our angiograms. Exhaustive research focused on this area in-
cludes: use of morphology with Laplacian-of-Gaussian filtering [5], exploratory vessel trac-
ing [6], region-growing on Hessian matrix maxima in scale-space [9] and maximum likeli-
hood estimates from multi-scale filter output in scale-space [10]. Yet, most algorithms are
developed on fundus images, and are not necessarily able to capture capillaries in fluorescein
images at a much finer scale.
Methods
Pairwise Image Registration Geometric distortion, radiometric degradation, and additive
noise corruption contribute to the difficulty in registration. Problems specific to clinical
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retinal angiography are: the photographer’s bias in image capture, the patient’s involuntary
movement, and the 3D to 2D warping between retina and the camera. Existing techniques,
for example, approximate the retinal surface by a sphere [6], predict a perspective distortion
[8], or model the intensity variation to address uneven illumination [11].

At the pairwise level, we combine projective RANSAC [12] with a quadratic homog-
raphy transformation, pre-conditioned by contrast-enhancement within the field-stop. The
latter is required because the low dye concentration in the retinal blood vessels both at the
beginning and the end of the sequence requires temporary adjustment of the dynamic range
of pixel intensities. To disregard the edge of the frame and the patient record informa-
tion, a circular Hough Transform is used to detect the field stop. Local contrast within the
field-stop is histogram equalized and vessel bifurcations or crossings (landmark) points are
detected. False corners near the borders are eliminated with a distance criterion. Landmarks
are then putatively matched by windowed normalized cross-correlation. RANSAC itera-
tively estimates the “best-fit” projective model applicable to most putative matches. We use
the inliers-to-outliers ratio (the comparison between number of pairs that can be described by
the “best-fit” model within offset threshold and those that cannot) as a criterion on whether to
apply a higher order quadratic transformation model (with 12 degrees of freedom). Although
the quadratic model is more tolerant to pairwise distortion, the refinement is only sensible if
the lower order registration has been successful.
Joint Registration To analyse temporal information both within a consecutive sequence
of retinal angiograms (intra-sequence) and across two different sequences taken before and
after the operation (inter-sequence), we need a stepwise systematic framework that first
aligns each pixel intra-sequentially then cross-aligns the same pixel inter-sequentially. Multi-
temporal registration requires maximizing the point correspondence between similar struc-
tural features, while still allowing us to differentiate, detect or even monitor pathological
changes. For each patient, the last post-op frame was acquired several hours after the first
pre-op frame. This increases the chance for the vasculature to alter both in width and in
curvature, in addition to the natural variability of blood vessels.

For the nth frame in a sequence S of length N, let (xn,yn) denote the location in the frame
coordinates at time tn. The image is denoted by the function fn := fn(xn,yn; tn), n ∈ [1,N].

Consider two unregistered angiogram sequences, acquired with frame-specific spatial
coordinates relative to the camera lens, at unknown points in time relative to the cardiac
cycle, and with non-uniform frame-to-frame intervals (from less than a second to tens of

seconds) along each sequence: S(A) =
{

f (A)
n

}
n=1,2,3...NA

and S(B) =
{

f (B)
n

}
n=1,2,3...NB

. We

first spatially register each individual image f (A)
n in S(A) to a local reference spatial coordi-

nate system defined by frame f (A)
lr . This individual-to-local reference registration is also

applied to sequence S(B) with frame f (B)
lr as its local reference. We then register the two

local references f (A)
lr and f (B)

lr separately to one global reference fgr. This local-to-global
reference transformation is further combined with prior individual-to-local reference trans-
formation to give the individual-to-global reference transformation that allows both S(A)

and S(B) to be co-registered to one global reference fgr.
We adopt the clinical practice of selecting the darkest image as the local reference. Our

algorithm computes the sum of the pixel intensities within the field-stop and selects the
frame at the peak of the dye-time course (when the image is the darkest) in each sequence:
flr = { fn∗}, where n∗ = argmin

n∈[1,N]
〈 fn,Mn〉, with 〈·, ·〉 denoting a spatial inner product and Mn a

spatial weighting function (binary mask) that is unity for points (xn,yn) within the field-stop
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region and 0 outside.
The individual-to-local reference registration can be written as: f ′n = Rn(lr)( fn), where

f ′n := f ′n(x
′
(lr),y

′
(lr); tn), n∈ [1,N] is the registration result when individual frame fn is mapped

to the spatial coordinate system of local reference flr by function Rn(lr).
The local-to-global reference transformation can be written as: f ′lr = Rlr(gr)( flr), where

f ′lr := f ′lr(x
′
(gr),y

′
(gr); tlr) is the registration result when the local reference flr is mapped to

the spatial coordinate system of global reference fgr by function Rlr(gr).
Lastly, individual-to-global reference registration can be combined as: f ′′n = Rlr(gr)( f ′n),

where f ′′n := f ′′n (x′′(gr),y
′′
(gr); tn), n ∈ [1,N] is the registration result when individual frame fn

is mapped to the spatial coordinate system of the global reference fgr.
Vessel Segmentation The estimate for the centreline location of the vessels requires sub-
pixel resolution accuracy. In practice, fine vessel structure may not be captured in all frames
within a sequence. It is commonly observed that capillaries may “disappear” from the pre-
vious frame then “re-emerge” in the following one. Lastly, due to the time delay in the
passage of dye, angiograms at the beginning and end of a sequence contain significantly less
information on the detailed microvasculature.

To take into account previous and subsequent frames in one or more sequences, the

temporal average of the registered sequence(s), defined by: faverage = 1
N

N
∑

n=1
f ′′n

is a more perceptually accurate representation of the retinal microvasculature. Our seg-
mentation algorithm uses prior work [10], [13] and [14]. We apply steerable complex wavelet
filters at multiple scales on each frame fn, and use the filter outputs to infer the presence of
vessels and centreline locations.

A local orientation map can be constructed as: O(l)
n (xn,yn) = ∑K/2−1

k=0 |g(l)
k (xn,yn)|e j2φk

p+(∑K/2−1
k=0 |g(l)

k (xn,yn)|2)
1
2

for g(l)
k (x,y), k = 0,1,2, ...,K−1 denotes the output of the kth order oriented bandpass com-

plex analysis filter from image fn at level l, and p is a conditioning constant [13].
A local phase estimate, Ψ(l)

n , is obtained from filter steering by the polynomial functions

sp(φ ,k) and sq(φ ,k) on fn: Ψ(l)
n = 6

(K/2−1
∑

k=0
sp(φ ,k) f (l)

k (xn,yn)+
K/2−1

∑
k=0

sq(φ ,k)( f (l)
k (xn,yn))∗

)
.

For each pixel, we match local orientation O(l)(xn,yn) with phase estimate Ψ(l) in a 8-
connected neighbourhood. The extracted centreline locations are refined by the subpixel
information held in the phase shift between pixels. In scale-space, we link and weight the
candidate locations at different scales to filter out the noise.
Objective Validation For validation, we take a patch (ROI) near the macula region with
a high density of microvasculature. First, we establish our ground-truth as the centrelines
vaverage(x,y) within the ROI on faverage. Then we segment the vessel centrelines vn(x,y)
(within the same ROI) frame-by-frame in the co-registered pre- and post-op sequences. Com-
paring the centreline locations from each individual frame against ground-truth, we define
the centerline error measurement (CEM), for a given ROI area with vessel length L, as:

CEM =
1
L

L−1

∑
n=0
‖vn(x,y)− vaverage(x,y)‖

where ‖ ·‖ is the Euclidean distance. This is a fairer assessment of registration quality as the
clinically interesting fine-scale microvasculature contribute more strongly to the error metric
than a spatially-averaged global measure.
Experiments
We tested our proposed method on 384 retinal angiograms (4288-by-2848 pixels per frame,
captured by a Zeiss retinal camera at 30 degrees field) from 6 patients. Each patient has
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one pre-op and one post-op sequence, with ∼ 65 frames per sequence. We processed our
sequences using MATLAB 2009 on an Intel Dual Core CPU with 3.48G RAM. Our seg-
mentation evaluation used ROIs of size 101×101 pixels near the macula containing complex
orientations, and with clearly displayed capillaries ranging from 5-10 pixels in width. We
compared our algorithm with an affine model, that accounts for pairwise rotation, scale,
translation and shearing. The validation and segmentation procedures were controlled, so
the same ROIs were used in both models. Both algorithms ran on the same machine, and
both algorithms used the same local and global references to give a fair comparison. Figure
1(b) presents the comparison results of centreline error measure (CEM) between the outputs
of the two algorithms. For fine structures, the affine model has on average 2-3 pixel mis-
alignments and large error bars, up to 13-14 pixels. Our model, on the other hand, has a
much more stable performance at 0.1-0.15 averaged pixel misalignment and no more than
0.3 pixel in all registered frames.

(a) (b)Figure 1: (a) Temporal average faverage of registered sequences (pre- and post- pulmonarycardiac bypass opera-
tion) for each patient (a total of 6 patients) (b) Top: CEM of registered sequences per patient from our algorithm;
Bottom: CEM of registered sequences per patient using affine model. Note the different scales.

Conclusions
In this paper, we first suggested a novel joint registration procedure with promising results in
both the spatial and temporal domains. We then presented a novel pixel-wise wavelet scale-
space approach for centreline segmentation without thresholding or region-growing, which
is used for evaluation of registration accuracy. This allows comparison and non-invasive
monitoring of fine-resolution microvasculature from an existing well-established technique.
It provides the potential for detecting temporal changes in the circulation (possibly caused by
microembolism) in real-time to allow for preventative measures to avoid aggravated blood-
clotting impinging on patients’ quality of life and post-operative recovery.
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