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Abstract 

Aortic pulse wave velocity is an important diagnostic measure and has been 

associated with significant cardiovascular mortality. Our hypothesis is that this 

parameter can be measured using displacement fields obtained by registration of 

time-series images.  This paper presents a method in which a form of the wave 

equation is used as a regularization term in the registration process.  It is 

demonstrated that the method can capture the pulse wave velocity from numerical 

phantom images, even when noise is added to these images.  It is further 

demonstrated that the method yields plausible results when operated on a real 4D 

image dataset. 

1 Introduction 
Aortic pressure wave velocity (PWV), or simply wave velocity, has been identified as an 

important parameter in the diagnosis of cardiovascular disease and risk. The ‘gold 

standard’ invasive measurement for the aortic wave velocity involves direct measurement 

of pressure using two catheter tipped cannulae inserted via the femoral artery and 

positioned at known positions in the aorta.  If the difference in arrival times of the pressure 

wave between these two points can be determined and the distance between them is 

knownthe average wave velocity between these two points can be computed.  The usual 

analysis, the ‘foot–to-foot’ method, uses a measurement of the position of the initial 
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upswing of the pressure wave as a timing point [1].  The assumption is that this 

measurement is relatively uncorrupted by the presence of any reflected wave.  For a 

distance of 0.2 m between the measurement points and a wave velocity of 5m/s the 

measured delay will be 40 ms.and therefore high temporal resolution is required.  This 

method is invasive.  Non-invasive methods which have been proposed include Doppler 

ultrasound [2] and velocity-encoded CMR images, including transit-time, flow area and 

cross-correlation methods [3].  These methods generally use a waveform analysis similar 

to the invasive approach. 

This paper presents a method in which wave velocity is computed from time series 

(4D) images of the aorta using constrained image registration.  The constraint is derived 

from the physics of wave transmission in a uniform elastic cylinder. Advantages of this 

method are that all of the local information in the image set contributes to the computation 

of the wave velocity parameter, high temporal resolution is not required and the method is 

not sensitive to the presence of wave reflections. Typically the length of aorta which can 

be imaged from the valve plane to the femoral bifurcation is ~30-40 cm. 

2   Theory  
For a cylindrical axi-symmetric vessel the variation of pressure in the vessel with time (t) 

and position along the vessel axis (z) obeys the wave equation 
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if the effects of viscosity can be ignored, which they generally can for flow in the aorta.  In 

this equation c is the wave velocity in the vessel.  Clinically we do not have direct access 

to the pressure in the vessel but it can be shown that the pressure is given by 
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E is the Young’s modulus of the vessel wall material, h is the wall thickness, ν is Poisson’s 

ratio and Rref is a reference vessel radius (typically the average radius over the cardiac 

cycle).  pref is the pressure required to statically expand from the unpressurised radius Ro to 

Rref. and r(z,t) is the fractional change in radius as the pressure in the vessel changes from 

p(z,t) to pref  pref is taken to be independent of t and z.   In the present work we can take Rref 

to be independent of z since we are concerned with cylindrical vessels of constant radius. 

The variable r can then be used as a surrogate for pressure in the wave equation.  

We take cross-sectional images normal to the vessel axis at several equally spaced 

points along the vessel axis and across the cardiac cycle.  For our ideal vessel these images 

will be circular and will expand and contract uniformly as the pressure in the vessel 

changes.  The expansion of the vessel relative to a reference cross-sectional image can be 

obtained by image registration.  f(x,y,z) is the cross-sectional image at the point z along the 

vessel axis when the pressure is pref and m(x,y,z,t) is the image at the same point z when the 

pressure is p(z,t),   

The fractional change in radius, along with possible displacements dx(z,t), dy(z,t) along 

the x and y axes can be obtained by image registration of f and m.  Based on the approach 

to image registration presented in [4,5] we can show that for small values of r(z,t), dx(z,t), 

and dy(z,t) the relationship between the intensities of the two images at the common co-

ordinate x,y is given by 
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There is one of these equations for each pixel.  Writing the equations in matrix form we 

have equation 4a.  One of these equations can be solved for each cross-section.  However 

we also know that the values of r taken along the z axis should satisfy the wave equation.  

This equation can be used as a constraint in the registration to produce a set of r values 

consistent with the image data and the wave equation.  In matrix form the constraint can be 

written as equation 4b where Lz and Lt are discrete second order differentials along the z 

and t axes 
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The constrained solution of equations 4a and 4b minimizes a cost function of the form 

of equation 4c.  There are two parameters in this equation, c and λ.  λ balances the relative 

importance given to the data and the constraint when equation 4c is minimised.  c is 

initially unknown, although clinical values of wave velocity typically lie within a known 

range (~5-10 m/s)..  The solution we propose to find c is as follows.  A suitable value of c 

is chosen i.e. a value within the known clinical range of values, and equations 4 solved.  

The values of r are then inserted into the equation 
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which can then be solved for c
2
.  The matrix Lz

+ 
is the pseudo-inverse of Lz ; solution of 

equation 5 produces a more robust value of c than solution of equation 4b.  This new value 

is then inserted back in to equations 4 and a new r vector computed..  The process is 

iterated until a stable value of c
2
 is obtained.  Experimentally the algorithm is insensitive to 

the chosen starting value of wave velocity. 

3    Materials 

3.1   Simulated data 

The wave equation has an analytical solution for a general cosine pressure wave.  The 

solution for a general cyclic pressure wave can be obtained by summing up the solutions 

for the individual Fourier components of the pressure wave.  40 components were used. A 

program was written to compute the pressure within a cylindrical vessel as a function of 

time t and axial position z for a typical cardiac pressure input.  Vessel dimensions (radius 

and wall thickness) and material properties (Young’s modulus, blood density and 

viscosity) were specified.  Vessel radius as a function of time and axial position was 

computed.  These radii were converted into cross sectional images.   The length of the 

vessel was 300 mm, the radius 10mm and the wall thickness 0.5 mm.  The spacing 

between slices was 10mm and the timestep 20ms. 
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Material properties were chosen to give a wave velocity of 7 m/s.  In practice wave 

reflections will occur within the aorta and pressure waves travelling in both directions will 

be present.  The theory still holds for such a situation since the wave equation is satisfied 

by waves travelling in either direction  The data set used here contains a backward wave 

with amplitude ~ 25% of the forward wave. 

3.2   Physical phantom 

A physical phantom consisting of a water filled cylindrical silicone tube through which 

water was pumped using a realistic pressure cycle was imaged in an MR scanner with a 

cardiac cine sequence.  The images of the vessel were segmented to produce a set of cross 

sectional images..  The scanned length was 29 cm.  Physical dimensions were similar to 

the aorta.  The Young’s modulus for the silicone was 1.01 MPa, Poisson’s ratio was 0.45 

and wall thickness 1mm.  The calculated wave velocity was 7.8 m/s. 

4    Methods and Results 

4.1   Calculation of wave velocity: simulated data. 

The wave velocity was calculated for different values of true wave velocity and λ.  Values 

of λ (0,0.1,1,10) were used.  Table 1 shows the calculated wave velocities.     

Table 1     

                                       λ  

Wave velocity (m/s) 

0 0.1 1 10 

5 4.96 4.95 4.95 4.94 

7 6.80 6.79 6.80 6.80 

10 10.07 10.07 10.07 10.07 

 

In practice the vessel data is to be extracted from clinical images which generally 

contain noise. In order to assess the sensitivity of the algorithm to image noise, Gaussian 

noise of standard deviation 10% of the maximum image amplitude was added to the cross 

sectional images.  30 data sets were produced.  Values of c were computed from each of 

these data sets and mean and standard deviation computed.  These are shown in Table 2 for 

four values of λ.    

Table 2   Noise standard deviation 10% of  maximum image amplitude. n = 30 

Wave velocity  m/s 

λ 0 0.1 1 10 

Mean  (sd) 6.651 (0.233)  6.693 (0.163) 6.672 (0.150) 6.674 (0.153) 

4.2    Calculation of wave velocity: physical phantom. 

Calculation of wave velocity from the physical phantom data for a range of λ are shown 

in Table 3. The calculated measured wave velocity from the image data was 6.32 m/s with 

a λ of 100.  No direct pressure measurements were available and so an accurate assessment 
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of wave velocity using the foot-to-foot method was not possible.   In this case increasing λ 

moved the computed value closer to the expected value. 

Table 3     

λ 0.1 1 10 100 

Wave velocity  m/s 5.47 5.53 5.67 6.32 

 

5    Discussion and conclusions. 
We have described an algorithm based on constrained image registration for extracting 

estimates of pulse wave velocity from images of a cylindrical vessel based on constrained 

image registration and have applied it to simulated and physical data.  The method is 

shown to be capable of calculating wave velocity with reasonable accuracy even in the 

presence of significant noise levels. In the absence of noise the constraint has little effect 

as far as ideal simulated data is concerned, as might be expected.  The computed value of 

wave velocity is close to the true value.  With no constraint the effect of noise on the 

accuracy of the estimate of wave velocity appears to be greater than with the constraint, 

although this trend does not appear to be particularly sensitive to the value of λ chosen.  

The method has also been used with image data from the physical phantom. The results 

obtained are consistent with an estimate of wave velocity derived from the physical 

dimensions and the material properties of the phantom.  In this case the effect of the 

constraint appears more significant. No independent direct measurement of wave velocity 

was available.   

In practice real aorta are not axially symmetric cylindrical vessels.  Extraction of 

equally spaced cross sections normal to the vessel axis, so simulating a cylindrical vessel, 

is fairly straightforward. However, such vessels are also significantly tapered and this may 

require a modification of the constraint if the algorithm is to work on such data.   This is 

being explored and we intend to extend the method to clinical data. 
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