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Abstract

We present a novel approach for probabilistic clustering of white matter fibre path-
ways using curve-based regression mixture modelling techniques in 3D curve space. The
clustering algorithm is based on a principled method for probabilistic modelling of a set
of fibre trajectories as individual sequences of points generated from a finite mixture
model consisting of multivariate polynomial regression model components. Unsuper-
vised learning is carried out using maximum likelihood principles. Specifically, condi-
tional mixture is used together with an EM algorithm to estimate cluster membership.
The result of clustering is a probabilistic assignment of fibre trajectories to each cluster
and an estimate of cluster parameters. A statistical model is calculated for each clus-
tered fibre bundle using fitted parameters of the probabilistic clustering. We illustrate the
potential of our clustering approach on synthetic and real data.

1 Introduction
White matter (WM) fibre clustering is becoming an important field of clinical neuroscience
research since it facilitates insights about anatomical structures in health and disease, allows
clear visualizations of fibre tracts and enables the calculation of relevant statistics across
subjects. A number of algorithms have been developed for clustering and labelling WM
fibre bundles in DTI. Deterministic clustering algorithms [1-3] assign each trajectory to only
one cluster, which may lead to biased estimators of cluster parameters if the clusters overlap.
Probabilistic clustering algorithms [4], on the contrary, deal with the inherent uncertainty in
assigning the trajectories to clusters. Quantitative parameters can be estimated by a weighted
average over cluster members and thus more robust results may be obtained, which are less
sensitive to the presence of outliers. Maddah et al. [4] proposed a probabilistic approach
using a gamma mixture model and a distance map. This method assumes that the number of
clusters is known and the approach requires manual user initialisation of the cluster centres.
A problem for this approach was establishing correspondence between points.

In this paper, we propose a new geometrical framework to automatically cluster WM fi-
bres into biologically meaningful neuro-tracts probabilistically. Specifically we use mixtures
of polynomial regression models as the basis of clustering. Multivariate clustering technique
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is used to describe the three dimensional propagations of the fibre trajectories which vary
in length. We use a conditional mixture approach as it naturally allows for curves of vari-
able length with unique measurement intervals and missing observations. Polynomial fits
also take advantage of smoothness information present in the data. A regression model for
each fibre bundle is constructed after performing probabilistic clustering. The probabilistic
clustering algorithm is also capable of handling outliers in a principled way.

2 Probabilistic Model for White Matter Trajectories
Basic Definitions: Let V be a set of M 3-D fibre trajectories, where each trajectory vi
is an ni × 3 matrix containing a sequence of ni 3-D points (x,y,z) in ℜ. The associated
ni× 1 vector ui of ordered points from 0 to ni− 1 correspond to points of vi and set U =
{u1,u2, . . . ,uM}. In the standard mixture model framework probability density function
(PDF) for a d-dimensional vector v, is modelled as a function of model parameters ϕ , by
the mixture density

p(v|ϕ)= ∑K
k αk pk(v|θk), (1)

in which ϕ = {αk;θk,k = 1 . . .K},αk(∑αk = 1) is the k-th component weight and pk is the
k-th component density with parameter vector θk.

In this manner a finite mixture model is a PDF composed of a weighted average of com-
ponent density functions. Each trajectory vi is generated by one of the components, but the
identity of the generating component is not observed. The parameters of each density com-
ponent pk(v|θk), as well as the corresponding weights αk, can be estimated from the data
using the EM algorithm. The estimated component models, pk(v|θk) are interpreted as K
clusters, where each cluster is defined by a PDF. The set of trajectories is clustered to a num-
ber of subsets by assigning a membership probability, wik, to each trajectory, vi, to denote
its membership of the kth cluster. The number of clusters, K, is defined by the user. Finally,
each trajectory vi is assigned to the cluster k with the highest membership probability.
Model Definition: We model the X directional position (similarly Y and Z) with a p-th order
multivariate polynomial regression model in which the order ui is the independent variable,
which is assumed with an additive Gaussian error term. The three regression equations can
be defined succinctly in terms of the matrix vi. The form of the regression equation for vi is

vi =Uiβ +εi, εi∼N(0,Σ) (2)
where Ui is the standard ni× (p+1) Vandermonde regression matrix associated with vector
ui, β is a (p + 1)× 3 matrix of regression coefficients for X , Y , and Z direction and εi is
an ni× 3 zero-mean matrix multivariate normal error term with a covariance matrix Σ. For
simplicity, we assume that Σ = diag(σ2

x ,σ2
y ,σ2

z ), so that the X , Y , and Z measurement noise
terms are treated as conditionally independent given the model.

The conditional density for the ith trajectory f is a multivariate Gaussian with matrix
mean Uiβ and covariance matrix Σ. The parameter set θ = {β ,Σ}.

p(vi|ui,θ)= f (vi|Uiβ ,Σ)= (2Π)−ni |Σ|−
ni
2 exp{− 1

2 tr[(vi−Uiβ )Σ−1(vi−Uiβ )
′
]} (3)

We can derive regression mixtures for the trajectories by a substitution of Eq (1) with the
conditional regression density components pk(v|u,θk), as defined in Eq (3).

p(vi|ui,ϕ)= ∑K
k αk fk(vi|Uiβk,Σk) (4)

Note that in this model each fibre trajectory is assumed to be generated by one of K different
regression models. Each model has its own shape parameters θk = {βk,Σk}.

The full probability density V given U , p(V |U,ϕ), is also known as the conditional like-
lihood of the parameter ϕ given the data set both V and U to be written as
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L(ϕ|V,U)= p(V |U,ϕ)= ∏N
i ∑K

k αk fk(vi|Uiβk,Σk) (5)
The model can handle trajectories of variable length in a natural fashion, since the likelihood
equation (Eq (5)) does not require the number of data points. The product form in Eq (5)
follows from assuming conditional independence of vi’s, given both ui’s and the mixture
model, since the fibre trajectories do not influence each other.
EM Algorithm for Mixture of Regression: In the E-step, we estimate the hidden cluster
memberships by forming the ratio of the likelihood of trajectory vi under cluster k, to the
sum-total likelihood of trajectory vi under all clusters:

wik = αk fk(vi|Uiβk,Σk)
∑K

j=1 α j f j(vi|Uiβ j ,Σ j)
(6)

These wik give the probabilities that the ith trajectory was generated from cluster k.
In the M-step, the expected cluster memberships from the E-step are used to form the

weighted log-likelihood function: L(ϕ|V,U) = ∑i ∑k wik logαk fk(vi|Uiβk,Σk) (7)
The membership probabilities weight the contribution that the kth density component adds
to the overall likelihood. The weighted log-likelihood is then maximized with respect to the
parameter set ϕ .

Let wik = wikIni , where Ini is an identity vector, and let Wk = diag(w
′
1k,w

′
2k, . . . ,w

′
nk) be

an N ×N diagonal matrix, where N = ΣM
i ni. Then, we use Wk to calculate the mixture

parameters.

β̂k = (U
′
WkU)−1U

′
WkV, Σ̂k = (V−U β̂k)

′
Wk(V−U β̂k)

∑N
i wik

, and α̂k = 1
N ∑i wik for k = 1, . . . ,K (8)

where V is an N×3 matrix containing all the vi measurements, one trajectory after another,
and U is an N× (p+1) matrix corresponding to Y values.

3 Methods

Synthetic Data: We have used PISTE [http://cubric.psych.cf.ac.uk/commondti] synthetic
data set (diffusion encoding directions = 30, b-value = 1000 s/mm2 and voxel resolution:
1×1×1 mm3) to demonstrate some of the basic features of our clustering algorithm, specif-
ically, its ability to cluster a 3D data set into multiple bundles accurately. Here we consider
three example noise free and noisy (SNR=15) data sets: a branching fibre, two orthogonally
crossing fibres and two straight crossing fibres. For the 3D tract reconstruction, the single-
tensor and two-tensor 4th order Runge-Kutta method were used for branching data and two
fibre crossing data respectively.
In Vivo Data: 1.5 T DW data were acquired from four healthy adults with an image matrix
of 128x128, 60 slice locations covering the whole brain, 1.875× 1.875× 2.0 mm3 spatial
resolution, b = 700 s/mm2 and 41 diffusion directions. To correct for eddy currents and
motion, each DW volume was registered to the non-DW volume of the first subject.
Corpus Callosum Clustering: Subdividing the corpus callosum (CC) into anatomically
distinct regions is not well defined but is of much importance, especially in studying normal
development and in understanding psychiatric and neurodegenerative disorders. Witelson
[5] proposed a schematic for seven subdivisions of the CC as shown in Figure 1(ii). We
further divide the splenium into its upper and lower parts to give a finer model.

The ROIs for the CC were outlined by an expert based on information from FA maps
for all four subjects. Fibre trajectories were reconstructed using the 4th order Runge-Kutta
method for the four subjects and were normalized to a common template (128x128x60 ma-
trix size and voxel size 1x1x1 unit). The CC tracts were then clustered into K=8 subdivisions.
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(i) (ii) (iii)
Figure 1: (i) Synthetic data, clustered trajectories, noisy data and noisy data clustered tra-
jectories in rows (ii) A schematic of Witelson corpus callosum subdivisions [5] based on the
midsaggital slice (iii) Clustering of the CC from the first two subjects viewed from a sagittal
orientation: the original fibre tracts (yellow) and clustered into bundles.

The choice to use third-order polynomials for the regression models as opposed to other or-
der polynomials was made for two reasons: (a) visual inspection supports this as a sufficient
choice and (b) cross-validation also confirms third-order as the optimal choice in this case.
We modelled the X position with a cubic polynomial regression model in which u is the
independent variable, x = β3u3 +β2u2 +β1u+β0, and likewise for the Y and Z directions.

4 Results and Discussion
Synthetic Data: The Synthetic data results demonstrate the clustering algorithm’s ability
to accurately separate fibre tracts into meaningful bundles. In our component regression
models for the synthetic data a cubic polynomial was used (K=2). This choice is based on
the visual inspection of fitted-versus-actual trajectory data. The noise-free synthetic data
results in complicated fibre tract structures demonstrating that our clustering algorithm is
able to cluster a 3D data set into multiple bundles accurately. The noisy synthetic example
results demonstrate the robustness of our clustering algorithm in a noisier environment.
In Vivo Data: Figure 1(iii) shows the results of clustering approximately 700 trajectories
from the corpus callosum into 8 bundles for two subjects. The membership probability of the
trajectories for each cluster is obtained and the trajectories in Figure 1(iii) are coloured based
on their maximum membership probabilities. Results showed that our clustering method
automatically differentiates CC subdivision fibre bundles consistently across subjects. As
a product of the proposed clustering method, regression models of each fibre bundles are
obtained in the X, Y, and Z directions. Averages of these quantities are then computed over
each cluster for the four subjects. The characteristics (parameters of the cubic regression
equation) of each cluster are illustrated in Table 1.

Figure 2-top row show the X, Y and Z versus order U profiles for all of the tracks with
mean curves for subject 1. The cluster groups are colour-coded (the same colour is used as
the corresponding cluster in Figure 1 (iii)), and the mean curves for each group are high-
lighted in bold. Mean curves were calculated up to U=70. The mean curve results in each
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Figure 2: Top row: all the tracts, and Bottom row: the mean curves and fitted curves for the
X, Y and Z directions respectively for subject 1.

direction show the fibre trajectory points, and how they each differ strongly with direction,
especially the Y direction in this case. The mean curve results differ not only in shape but
also in location. Figure 2-bottom row show the cubic polynomial regression models (dotted)
fitted to the eight CC subdivision cluster trajectories. The results illustrate that the cubic
polynomials provide the best fits among the regression models we considered.

Table 1: Cluster-wise average parameter measures for the sub-divided CC fibre bundles.
Rostrum Genu Rostral Anterior Posterior Isthmus Upper Lower

body mid body mid body splenium splenium
X β3 3.09e-4 4.43e-4 3.46e-4 3.74e-4 4.08e-4 3.81e-4 4.08e-4 4.31e-4

β2 -0.0348 -0.0422 -0.0367 -0.0393 -0.0363 -0.0368 -0.0350 -0.3908
β1 0.7618 0.8090 0.8246 0.9103 0.6254 0.7645 0.4964 0.6804
β0 68.034 66.389 65.139 63.545 65.336 63.948 66.064 64.994

Y β3 -8.8e-5 9.3e-5 4.99e-5 -8.6e-6 3.26e-5 -1.7e-6 1.00e-4 -2.2e-4
β2 -0.0025 -0.0176 -0.0098 -0.0021 -0.0036 0.00053 0.0171 0.0338
β1 0.6171 0.8134 0.4960 0.1942 0.1275 -0.0585 -0.6694 -1.335
β0 38.215 45.839 53.604 61.118 67.807 74.985 87.812 100.66

Z β3 -3.2e-5 8.41e-5 1.35e-4 1.59e-4 -2.6e-4 4.84e-6 8.61e-5 -3.8e-5
β2 0.0093 0.00330 3.38e-4 5.17e-5 0.0392 0.0141 0.0138 0.00234
β1 -0.5317 -0.4854 -0.6009 -0.6694 -1.4661 -0.9183 -0.5589 -0.0372
β0 38.970 44.231 51.163 54.037 54.161 51.672 40.328 28.931
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