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Abstract

This paper presents a novel technique for classifying both cell nuclei and tissue re-
gions in liver specimens by incorporating context information, linking cell nuclei and
tissue regions using Bayesian networks. The method works in two stages: (i) initial
classification of cell nuclei and tissue regions; and (ii) integrating the initial classifica-
tions using a Bayesian network to enforce consistancy (thus including context). Results
demonstrate that our method of incorporating context information is superior to the clas-
sification that uses only object based features for both nucleus and region classification.

1 Introduction
One of the key challenges for automated analysis of histopathology images is cellular seg-
mentation and classification. For segmentation, a number of algorithms have been proposed
to cope with the complexity of tissue structure and colour variation of tissue images, e.g.
active contour-based, watershed, classification-based and edge-based techniques [4]. In clas-
sification, cell nuclei are characterised by distinct appearances using object-based features
(OBFs), such as morphology, intensity and texture, to classify them into different classes [5].

Using OBFs to represent cellular structures (e.g. cell nuclei) for classification can pro-
duce poor results when morphology, texture and appearance of nuclei are only marginally
different between classes. This is often the case in interpretation of histopathology images,
and in practice histopathologists make extensive use of other information to identify and
classify tissue. To improve classification accuracy, domain-specific information, such as the
tissue type of the region containing the cell and spatial relationships between neighbouring
cell nuclei, can be used. Figure 1(c) illustrates such domain-specific context information
for liver cell nuclei that are found in certain tissue regions, e.g. hepatocytes (blue bounding
boxes) are usually found in parenchyma 1. In addition, there are expected spatial relation-
ships among nuclei types such as epithelia nuclei (represented in yellow bounding boxes).

In this paper, we present a novel technique to perform cell and tissue region classification
simultaneously in liver tissues, by incorporating context information linking cell nuclei type

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1the parenchyma are the functional parts of an organ in the body
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and tissue region type to improve performance of classification. For nuclear classification,
we first apply a Hough Transform-based technique to detect cell nuclei. Initial cell type
classification is performed using area-based and shape-based descriptors. In tissue region
classification, we classify images into different region types using texture features. The
final stage of classification is implemented by combining initial classifications and context
information to improve results using a Bayesian network.

2 Materials and Methods
2.1 Image Data
Tissue sections were processed in a routine way by formalin fixing and staining with Heam-
atoxylin and Eosin (H&E). These were digitised to produce virtual slides at a resolution of
103000 dpi using an Aperio XT virtual slide scanner (Aperio, San Diego) at 40× magnifi-
cation. Images were selected from five sample tissues of patients who have cirrhosis. Cell
nuclei ground truth were provided by a consultant pathologist specialising in liver disease
producing bounding boxes around the nuclei of different types, example is shown in Figure
1(c)), and tissue regions were manually delineated (figure 1(b)).

(a) (b) (c) (d) (e)

Figure 1: example of image data. (a) original image; (b) region map; (c) nuclei and region
maps in the tissue specimen; (d) detected nuclei (NMBR); and (e) detected nuclei (MBR).

2.2 Tissue Region Classification
Images are classified on a per-pixel basis into 3 classes (parenchyma, fibrosis and back-
ground) using Grey Scale Co-occurence Matrices (GLCMs) [6]. GLCMs are generated
based on co-occurring grey values of pixels with particular spatial relationships with re-
spect to the displacement (d) and direction (θ ). We set θ = {0◦,45◦,90◦,135◦}, d=2 and
use a sliding window of size 85×85 pixels (determined by cross validation). Thus, 4 oc-
occurrence matrices are constructed. After normalisation, texture features are extracted by
calculating statistical measurements from the matrices (entropy, correlation, contrast, inverse
difference moment and angular second moment).

Classification is performed using a Random forest classifier [1]. This combines multiple
decision trees (T ) such that the structure of each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the forest. Pre-
diction is made based on the majority decisions from the trees in forest.

2.3 Nuclei Detection and Classification
To detect cell nuclei we use a Hough transform-based technique to detect cell nuclei. This
is based on the assumption that cell nuclei are rounded with an approximately constant size
(dim) [7]. After nuclei detection, each cell nuclei is represented by a set of boundary points,
which is considered as non model-based representation (NMBR). We additionally use a
model-based representation (MBR) to represent cell nuclei by fitting a ellipse Em, where
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m={cx,cy,a,b,θ}, to the boundary points using the direct least squares technique of Fitzgib-
bon [2]. Where; cx,cy is the centre of the ellipse, a and b are minor and major axis, θ is the
angle of the major axis. Example representations are shown in figures 1(d) and 1(e).

To classify cell nuclei, we extract features from the two nuclei representations(NMBR
and MBR). In the MBR, we first classify pixels into different classes (purple, pink and white)
by applying an unsupervised learning method. This involves fitting Gaussian Mixture model
using Variational Bayesian approach. Colour priors for the mixture model are based the
mean colour of pink, purple and white pixels in training data. Features are then extracted
as follows: (i) histograms of purple and white pixels at different distances from the nuclei
boundary (generated using a signed distance transform), (ii) the ratio of purple pixels inside
and outside the ellipse. We define the area "outside" of an ellipse by scaling major/minor
axis with a constant c (c > 1) and (iii) length of major and minor axis of the ellipses. In the
NMBR, we extract shape descriptors using Hu moments [3].

We assume that there is degree of dependancy between nuclei types and tissue regions.
Therefore, classification is performed under the dependency assumption ( P(N|S,A) where N
denotes nuclei classes, S denotes tissue region types and A denotes OBFs), using a Random
forest classifier.

2.4 Combining and Improving Nuclei and Region Classification
In previous sections, we presented techniques for classifying cell nuclei and tissue region
type. In this section we present a method for improving classification accuracy by com-
bining the classification of nuclei and tissue regions with context information from nearby
nuclei and regions. Images are divided into non-overlapping tiles, or “super pixels”, (S).
Each super pixel contains a set of nuclei (N). For each S, there is associated class prior
probabilities, P(Cs|S) (where Cs is the tissue region type), which are derived from the ini-
tial per-pixel classification by averaging. Similarly for cell nuclei (N), prior probabilities on
classes are defined by the initial classification, P(Cn|N) where Cn is the set of nuclei classes.
We combine the two different types of information from cellular structures and regions using
a Bayesian network (figures 2(a) and 2(b)) - a graph that is constructed from 2 layers (super
pixels and nuclei). In the Bayesian Network framework, information from nuclei can be used
to derive posterior probabilities of region classes and vice versa. We use loopy belief prop-
agation techniques to approximate inference by organising message passing across graphs.
There are multiple possible factorisations of pairwise joint probability distributions (learned

(a) (b) (c) (d)

Figure 2: Example of Bayesian Network; (a) super pixels and nuclei in tissue; (b) a sim-
ple graph; (c) directed graph for message passing (the blue arrows are the direction that is
selected arbitrarily); and (d) the reverted direction.

from training data) over the class variables that may be represented as different Bayesian
networks. There is no inherent directionality in the conditional probabilities (i.e. no reason
for factorising P(A,B) as P(A|B)P(B) rather than P(B|A)P(A)), so to build our network we
use the following algorithm:

1. Generate factor graphs (figure 2(c)).
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2. Arbitrarily define one vertex as the root node
3. Calculate the graph distance between each other node and the root node (this can be

achieved efficiently by propagating distances out from the root. All edges to have a
distance of 1.)

4. Build the Bayesian network by defining conditional probabilities between connected
vertex with the highest distance (H) to the lowest (L), i.e. P(L|H). Where the distances
are equal an arbitrary choice is made (figures 2(c) and 2(d)).

5. Leaf nodes are then defined as vertices that are not conditioned on any other node.
Reasoning is performed using loopy belief propagation and multiple conditional probabilities
are combined using an independence assumption.

3 Experiments and Results
Our approach was evaluated using 18 liver tissue images comprising in total of 1386 cell
nuclei of 7 types (figure 3(c)). Nuclei detection was performed using prior knowledge of the
diameter of cell nuclei (at 40× magnification) dim=30 pixels. Cell type classification was
performed using various combinations of features from the NMBR and MBR. We conduct
10-fold cross validation on the feature subsets. Results are shown in Table 1.

Table 1: Nuclei classification results using the feature subsets.
Feature Accuracy
Histogram of puple/white vs. distance transform 30.13%
Major/minor+ raito of purple pixels 41.68%
Hu Moments 24.14%
MBR+NMBR 32.03%
Random classifier (the baseline) 12.50%

(a) (b) (c)

Figure 3: The confusion matrices; (a) initial classification and (b) context-based classifica-
tion. (c) nuclei classes.

MBR features and the ratio of purple pixels give the highest accuracy (41.68%). Texture
features from both MRB and NMRB do not provide good classification. This is because
there are marginal differences of textural appearance between cell nuclei subtypes, e.g. hep-
atocytes and epithelia cell nuclei.

We classifed tissue regions in the same 18 images using GCLM described in section 2.2
(sub-sampling images to 8× resolution). Evaluation is performed by 10-fold cross validation
and an accuracy of 78.20± 12.24% is achieved.

To perform the final classification using contextual information, we combine information
from initial nucle and tissue regions classifications and generate a Bayesian network (section
2.4). The results, in Figure 3(a) and 3(b), show that context-based techniques significantly
improves both nuclei classification and region classification accuracy. Accuracy of the nu-
clei classification is improved to 54.97%, while the tissue region classification accuracy is
82.35%±10.42. Example result images are illustrated in Figure 4.
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4 Discussion and Conclusion
This paper presents techniques for classifying nuclei and tissue region type in liver histopathol-
ogy images. Cell nuclei are detected using a Hough transform-based approach before nuclei
classification is performed using morphological and area-based features. For tissue region
classification, we use a texture descriptor (GLCM) and perform pixel-based classification us-
ing a Random Forest. We apply contextual information linking cell nuclei and tissue regions
using Bayesian network and loopy belief propagation.

The results show that integration of context information into classification improves clas-
sification performance (figure 3(a) and 3(b)). Nonetheless, there is still a significant difficulty
in distinguishing between fibroblast and lymphocyte nuclei types. In general, fibroblast and
lymphocyte nuclei are mixed in tissue regions, therefore the context information is not able
to effectively separate these two types of cell nuclei. This leads us to consider the cell nu-
clei detection technique which assumes that cell nuclei are rounded in shape. Therefore,
elongated shape cell nuclei are, e.g. lymphocyte, are not correctly detected, instead they
are segmented as rounded objects resulting mis-classification. Ongoing work is attempting
to improve the cell nuclei detection technique so that elongated cell nuclei will be properly
segmented.

(a) (b) (c) (d)
Figure 4: Results of nuclear classification; (a) and (c) initial classification; (b) and (d)
context-based classification (white boxes: incorrect classified nuclei)
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