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Abstract

In this paper we propose a method for automatic placement of landmark points in 3D
volumes, for use in morphological studies, which addresses the issue of quantitative es-
timation of measurement error. We are given a sample 3D volume of image slices (and a
number of manually annotated landmark points) and develop an algorithm that is capable
of estimating landmark locations in a similar but novel 3D volume. Problems are found
which arise from the local minima generated when constructing likelihood functions us-
ing shifted noisy image patches, which must be addressed during both localisation and
covariance estimation. The method is tested using Monte-Carlo in order to evaluate the
quantitative validity of error estimates.

1 Introduction
In photogrammetry and computer vision localisation is generally constrained to purpose
made patterns, affixed to the object ([1], pp. 5-10), with uncertainty assessed accordingly
[5, 6, 7]. By contrast, our definition of landmark refers to a chosen location in a 2D im-
age or 3D volume for the purpose of identifying corresponding locations in a second data
set, in order to study natural shape variations. For automated location based upon statistical
estimators, the accepted approach for assessment of errors is based upon the Cramer-Rao
bound (CRB) [8], and this is the starting point for our work. Here we use smoothing in order
to remove the effects of spatial noise in data, which (if ignored) can generate problems for
optimisation, such as local minima. We therefore have to deal with these effects in order to
obtain meaningful CRB estimates.

We assume we are given a number of reference mark-up locations within corresponding
3D volume data. We also assume that the problem of locating the corresponding object
has been solved so that we are provided with the approximate orientation of the data and
initial estimate of the landmark point. What is now required is an accurate measurement for
the position of the corresponding landmark in the target block. Our approach is based on
probability theory and template matching.

We use multiple reference examples of previous manual mark-up locations. The decision
of how many reference candidates we need here should be based upon the resulting locali-
sation accuracy. This requires a well-defined method to analytically extract the position of
a single landmark point from the candidate positions available. One approach to search for
landmark points in a 3D volume is to use its sub-volumes (e.g. 40×40×40 data points) and
reduce the 3D search problem to searching in three 2D images corresponding to the central
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orthogonal planes. We expect information available for localisation to allow us to exceed
sub-pixel accuracy (i.e. better than human repeatability) even for small regions, provided
that there is at least some high contrast edge structure. It is important to note that error es-
timates must be valid, for instance landmark error estimates and corresponding variations
along the minimum curvature direction must be quantitatively consistent.

Our approach is novel because: (a) we make use of direct measurement from a correctly
scaled likelihood function (correctly scaled in this context means −2logL is distributed as
a χ2 [2]); (b) we compute quantitatively valid parameter covariances (location accuracy);
(c) we show that sufficient accuracy is obtained using three orthogonal slices; (d) we use
pre-processing in order to concentrate on where the information is, i.e. edges [2].

We focus on several important aspects of the problem to show that (a) without smoothing
the data we cannot find a valid minima for the cost function; (b) using pre-processing we can
obtain independence to grey-level scale (e.g. illumination and MR pulse sequence). We now
discuss the main issues we must consider in order to deal with real-world data.

Scale: In this work apparent scale change is introduced due to developmental processes
as well as the inherent differences in mature samples. However, unlike more general com-
puter vision problems, the overall scale of a given structure in an image is largely fixed. We
therefore assume that one overall approximate scaling of the data is sufficient to allow us to
locate small sub-regions (e.g. a scale factor error of 5% will produce a negligible one-pixel
shift in data at the edges of a region 40 pixels across).

Rotation: The accuracy of the automated estimate of initial orientation will need to be
better than a degree in order to limit the effects of error on localisation (e.g. an error of half a
degree will produce sub-pixel effects at the edge of a 40 pixel wide block) and its covariance.
By matching to multiple candidate references we can however mitigate against large rotation
errors using statistical criteria in order to select the examples with a good structural match.
To quantitatively indicate how well sample data conforms to a predefined model, we plan to
define a χ2 based hypothesis. Such tests can also be used to identify missing landmarks.

Irregularities: For specific local bone structures there are a variety of shapes for which
consistent landmark points need to be estimated. Manual annotation needs to have a clear
strategy for defining landmarks on variable structures. Automation is therefore a challenging
problem. One approach is to learn an appearance model [11] corresponding to the three
orthogonal slices of each block. However, in our application we expect to have to work with
a minimum number of reference examples ((insufficient to construct an accurate model),
while at the same time topological differences between corresponding locations for identified
structures are likely to be quite large, making appearance modelling inappropriate.

2 Methodology
We develop a matching algorithm for three orthogonal slices from the reference data block
against the ones from the target data block. We use template matching based on the vertical
and horizontal gradients corresponding to these image slices. This results in an algorithm
which is robust to noise and imaging equipment settings. However, it is necessary to derive
the method from appropriate statistical theory in order to define error covariances and so that
meaningful χ2 values can be used to confirm the goodness of fit.

We are given a reference and a target volume. In the reference volume, we are given a
point for the manual landmark which is the origin of a small block (40×40×40 pixels). For
this reference block we are given scaling and orientation values so that we can initially apply
these to the target block. We then extract the corresponding re-scaled orthogonal slices, from
the reference volume, in order to refine rough estimates of the landmark position.
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Template Matching: According to [3] by applying the variational principle to the prob-
lem of matching two scaled noisy image patches, one can define the optimisation function

χ2 ∝
N

∑
n

(αIn−βJn)2 s.t. α2 +β 2 = 1 (1)

It follows that rather than using two scale factors α and β , one may use a single scale
factor γ = α/β . For similar patches it can be shown that γ =

√
B/A where

A =
N

∑
n

I2
n , B =

N

∑
n

J2
n and C =

N

∑
n

InJn (2)

To avoid lengthy execution times, one may expand the patch similarity measure and write

χ2 = [
N

∑
n

(γIn− Jn)2]/[σ2(1+ γ2)] = (γ2
N

∑
n

In +
N

∑
n

J2
n −2γ

N

∑
n

InJn)/[σ2(1+ γ2)] (3)

χ2 = (γ2A+B−2γC)/[σ2(1+ γ2)] = 2(B− γC)/[σ2(1+ γ2)] (4)
When choosing the reference image patch to be J, it follows that B is the constant term

while A is varying as the target image patch is moved around. Hence minimizing χ2 in Eq.
(4) is equivalent to minimizing

χ2
C = (−2γC)/[σ2(1+ γ2)] = [2/(1+ γ2)][(−γC)/σ2)] (5)

As this process requires adjustment to the assumed likelihood function (re-scaling the
noise estimate) during optimisation, we can make a direct analogy to the method of Expec-
tation Maximisation (EM). The standard proof of convergence for EM requires that we are
not allowed to change the assumed likelihood distribution during the optimisation. Rather
this should be fixed during the Maximisation step, and re-estimated during the Expectation
step. Hence the (1 + γ2) term can be eliminated during optimisation 1. The term C works
well when used in a conventional optimiser such as Simplex [9]. However, here rather than
using gray-level image patches and least-square differences directly, their gradients in the
horizontal and vertical directions are used. This reduces the dependency upon absolute scal-
ing of the data making it more suitable for matching with MRI and CT datasets, though at the
expense of reducing the capture range of the cost-function. In this case, C is the summation
of the 6 dot products of the two-component gradient vectors originated from the 3 reference
and target image patches. When using the analytic approach to compute the covariance, the
constant terms are cancelled and χ2 is automatically reduced to χ2

C.
Measurement Covariance: According to [2, 3], one may compute the inverse covari-

ance matrix using the derivatives of χ where
C−1

θ = ∑
i
(5θ χi)T ⊗ (5θ χi)|θ=θmax (6)

However, in practice, as the contribution to the information (inverse covariance) matrix
is assessed from each individual data point, this approach may be unstable in the presence of
noisy data resulting in an unrealistic (over accurate) covariance. As a covariance is simply
the second order shape of the total likelihood function, an alternative approach can be derived
by observing the total change in χ2 as a function of changes in the parameters ([10], page
11). This averages out the effects of noise giving more realistic estimates of parameter
covariance. According to [4], the inverse covariance matrix C−1

θ of parameters θ which is
defined based on χ2 is χ2 = χ2

0 +∆θ TC−1
θ ∆θ (7)

The χ2 function used in the optimisation of parameters will be equal to χ2
0 when there

are no changes (∆θ ) in the optimum parameter values. For specific changes, however, we
1If we were not to do this, the consequence would be an optimisation which had an optimal solution of γ = 0

i.e. a perfect match with infinite error on the re-scaled data.
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can find linear equations between the unknown elements of the inverse covariance matrix
C−1

θ and the corresponding value obtained from the χ2 function.

3 Experiments
We experiment with a CT scan of a Musculus mouse skull provided by our collaborators
[12]. This consisted of 1003 image slices (656× 656 pixels). We used five landmarks as
reference points to test our measurement method. These were two well-constrained points
at the end of two jaws, one point constrained well in vertical direction at the top of skull,
and, two points constrained well in horizontal direction on the sides of skull. A novel 3D
volume could be used to locate the landmarks corresponding to the examples given in the
reference volume, but the systematic subjective error in landmark definition creates problems
for defining the localisation gold standard with sufficient precision to accurately assess the
covariances. Here we take the approach of using the same volume perturbed with Monte-
Carlo noise to evaluate the results and covariances. In order to approximate use of a second
data set, the level of added noise needs to be large enough so that the two noise fields are
statistically independent. By varying the level of added noise we can also boost our test
sample, 4 noise levels over 5 markup locations allows us to test the statistical method with
20 samples. We evaluate if the covariances estimated are a quantitatively valid summary of
the localisation accuracy. We test how the optimisation works both when it starts from the
answer (reference point) and from a rough estimate of the answer (up to 3 pixels away from
the answer in each direction). We also change the volume orientation slightly providing
more realistic data to investigate the behaviour of the method when the reference and test
data come from two slightly different mouse skulls. We use a mean estimate of the image
noise around these points (σ = σo = 110). To study the error residuals using Monte Carlo
test we focus on the added noise that makes the ratio of χ2/DoF about unity (DoF: degrees
of freedom). Here DoF = 40×40×6. For Monte Carlo tests we adjust the χ2 function by
removing γ2σ2

a term from σ2(1+ γ2) in Eq. (5), where σ2 = σ2
o +σ2

a /2, σ2
o is the variance

for original noise and σ2
a is the variance for added noise.

In Fig. 1, we plot all error residuals ∆x/
√

Cxx , ∆y/
√

Cyy and ∆z/
√

Czz against standard
deviation of the added noise for all five landmark points. As mentioned earlier ∆x, ∆y and
∆z correspond to the smoothed image data with smoothing parameter η (in pixels) fixed at
η = 1 while

√
Cxx,

√
Cyy and

√
Czz correspond to non-smoothed image data η = 0 (Figs. 1.a,

1.b and 1.c). We observed that by adding noise at σa = 600 the ratio of χ2/DoF becomes
about unity. We then expect the error residuals observed in the Monte-Carlo study to fall
in the range [-2.5, 2.5] with their rms about unity. In Fig. 1, for σa = 600, when starting
from answer the rms is 1.66 (1.a), when starting from a rough estimate of the answer the
rms increases to 1.92 (1.c), and finally, when starting from the answer in the rotated block
the rms increases again to 2.01 (1.b). In Fig. 1.d, we show that the minima cannot be found
reliably when starting from a rough estimate of the answer if non-smoothed data are used.
The plot corresponds to the same five landmarks used earlier. Here the error residuals are
generally far too large to suggest that a good minimum was found. Hence by comparing this
plot (η = 0) to that in Fig. 1.c, where the image data are smoothed for optimisation (η = 1),
we can conclude that smoothing is necessary in order to find a minima.

4 Conclusions
The need for computing covariances together with any measurement has been overlooked in
the appearance model literature. We proposed a method that fills this gap for quantitative
landmark measurement and assessment. Our technique combines derivative and smoothing
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operations to reduce the dependency on absolute grey-scale and spatial noise. We show
empirically that the covariances obtained without smoothing are applicable to the results
obtained with.

Figure 1: Monte Carlo test: error residuals against the standard deviation of added noise (5 land-
marks), where (in a, b and c) optimisation is performed on smoothed data while covariances correspond
to non-smoothed data; starting from the answer without (a) and with rotation (b) of the reference data
block, and, starting from a rough estimate of the answer without rotation (c and d), while in (d) both
optimisation and covariances correspond to non-smoothed data.
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