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Abstract

In this paper we present an approach for constructing a 4D brain atlas of MR images
of preterm infants aged between 26-44 weeks of gestation at time of scan. The method
used for the creation of an average 4D atlas is based on the use of pair-wise non-rigid
registration to eliminate bias in the atlas towards any of the original images. In addition,
we use kernel regression to produce age-dependent anatomical templates. The resulting
unbiased 4D atlas is much sharper than currently available atlases created using affine
registration.

1 Introduction
Due to their importance in the analysis of population data, average atlases have received
increasing attention in the area of medical image analysis. Average atlases are useful in
detecting abnormalities by measuring the variations in anatomy between an atlas and an in-
dividual subject. An established method of atlas construction is to select a reference image
and register all subject images to the selected reference. However, such an atlas is biased
towards the chosen subject. To reduce or avoid bias in the atlas towards any of the regis-
tered subjects, many alternative atlas creation approaches have been proposed. [1] suggest
a method in which the bias towards a specific reference can be reduced by carring out pair-
wise registration on all pairs of images in the population, and each image is deformed by the
average of the the deformation fields estimated between the image and all other images. The
atlas is thus built by averaging all the deformed images.

There are also examples of spatio-temporal atlases in the literature. Davis et al. [2]
produced a time-varying non-rigid templates using kernel-based regression. Recently, [3]
extended the kernel-based regression approach to build a 4D probabilistic atlas of preterm
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subjects, at gestational ages of 29-44 weeks. These images were aligned using affine regis-
tration and this leads to fuzziness in the resulting atlas. This is because affine registrations
only account for global variations in translation, rotation, scaling and shearing. Moreover, it
can be difficult to register an individual subject with clear anatomical structures to a fuzzy
mean image which may not provide sufficient anatomical information to guide the registra-
tion process.

In this paper we present an approach for constructing a 4D atlas of the developing brain
using non-rigid registration of MR brain images of preterm infants. In order to achieve this,
we develop a four-dimensional extension of the approach of Seghers et al. [1]. In addition,
we use kernel regression to produce age-dependent anatomical templates. The result is an
unbiased spatio-temporal atlas which is much sharper than currently available atlases derived
via linear registrations.

2 Methods
2.1 Subjects

The atlas approach presented was applied to a database of MR images of prematurely born
neonates consisting of 205 images. The images were scanned between 26.71 to 44.29 weeks.
Infants who had major focal lesions on imaging were excluded from the study. The images
were acquired on 3T Philips Intera system with the following parameters: T2-weighted fast
spin-echo (FSE): TR = 8700 ms, TE = 160 ms, flip angle = 90 degrees, acquisition plane =
axial, voxel size = 1.15 x 1.18 x 2 mm, FOV = 220 mm, acquired matrix = 192 x 186. All
images were preprocessed using [4] (brain extraction) and [5] (bias field correction).

2.2 Kernel Regression

In this work, kernel regression [6] is used to construct a 4D time-varying brain atlas. The
technique is used across the population of interest to compute the average brain template at
any given age, using weighted support from the neighbors of the age selected. The kernel
serves to interpolate between the subjects (since there may be no subjects at exactly the age
of interest). Moreover, it serves to average out the inter-subject variation. In our work, we
use a Gaussian kernel as the weight function:

w(tk, t) =
1

σ
√

2π
e
−(tk−t)2

2σ2

The width of the kernel, σ , is a parameter that is tuned to have a comparable number of
subjects at every time-interval.

2.3 Registration

In the age range of study, the brain development incorporates global (size and shape) and
local (structure’s evolution) variations. Any estimated atlas needs to reflect these global and
local changes in order to be representative for the population of interest. Therefore, for a
given pair of images, registration was carried out in two steps. A global transformation was
first estimated using a 12 parameter affine registration. Subsequently, using the result of
the affine registration as a starting point, a non-rigid registration step was carried out. We
describe one image as the ‘target‘ and the second image as the ‘source‘. After registration,
the obtained transformation maps locations in the target to locations in the source.

Let Tglobal represent a global affine transformation and Tlocal a local non-rigid displace-
ment field. The global transformation can be represented by a translation vector d and a 9
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parameter affine matrix M encoding rotations, scales and shears: Tglobal(x) = Mx + d. The
complete transformation T that accounts for both global and local differences between a pair
of images is modelled as the sum of these local and global components:

T(x) = Tglobal(x)+Tlocal(x) = Mx+d+Tlocal(x) (1)

for each location x in the target image. The non-rigid deformations were represented using
the free-form deformation (FFD) model proposed by Rueckert et al. [7].

2.4 Atlas Construction

The method used for the creation of age-dependent average space atlas is based on the use of
pair-wise registrations and transformation averaging in a four-dimensional extension of the
approach of Seghers et al. [1]. Within a time-interval, we carried out pair-wise registrations
by, in turn, selecting all images within the time-interval as target image and subsequently, by
averaging the resulting transformations, the images are transformed into a mean image. The
pair-wise registrations eliminate bias in the atlas towards any of the original images. This
method is illustrated in Figure 1.
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Figure 1: The procedure to construct an age-dependent atlas. Within a time-interval, the
scans of all subjects are registered to all others and then used to construct a mean shape
image for each scan. The mean shape images are subsequently averaged after appropriate
intensity rescaling to compensate for global intensity differences in the original data. The
procedure is repeated at every time-interval in order to create a spatio-temporal atlas.

Let I1, ..., In represent the images for all subjects within a time-interval. Each image Ii
is in turn selected as a reference template (target image), yielding transformations Ti, j for
j = 1, ...,n. These transformations can be averaged to produce T̄i:

T̄i =
1
n

n

∑
j=1

Ti, j (2)

for each image i at a given time-interval. Details of averaging global and local transforma-
tions can be found in Aljabar et al. [8]. Hence, we define the mean shape image Īi as the
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image obtained from Ii by the spatial transformation

Īi = Ii ◦ T̄−1
i (3)

When building a 4D atlas of the developing brain, we aim to create a continuous spatio-
temporal model dependent on a parameter t which represents time, which in our case is ges-
tational age scan. Let t1, . . . , tn denote the scan time gestational ages of the database subjects.
To create such a spatio-temporal atlas we use kernel regression, similar to [2, 3]. Therefore,
equation (2) is extended to incorporate the weights derived from kernel regression:

T̄i =
∑n

j=1 w(t j, t)Ti, j

∑n
j=1 w(t j, t)

(4)

The average atlas with mean shape and mean intensities at the age t can be estimated as

A (t) = ∑n
i=1 w(ti, t)Īi

∑n
i=1 w(ti, t)

(5)

where mean shape images are voxel-wise weighted intensity averages which represent
the age-dependent average space atlas A at age t. However, before performing intensity
averaging, appropriate intensity rescaling has to be applied to compensate for global intensity
differences between the images within the time-interval of interest [1].

3 Results
In Figure 2, the final atlas is compared with an atlas constructed using affine registration
[3], and can be seen to be clearly sharper. The importance of a sharp mean image in image
registration is demonstrated in Figure 3. Each of the input images was non-rigidly registered
to the atlas at the corresponding time-point. Cross-correlation was then used to quantify the
degree of similarity between the atlas and each individual image. Figure 3 shows the average
cross-correlation at every time-point. The new atlas shares a much higher similarity with the
input images compared with the affine atlas from [3]. This is because lack of details in the
atlas can impair detailed correspondences being identified.
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3.1. Improved registration

In Figure 6, the final atlas (An) is compared with an atlas constructed

using affine registration Kuklisova-Murgasova et al. (2010) (Aa), and can be

seen to have higher level of anatomic definition with more distinct boundaries

between anatomical structures.

It is non-trivial to quantify the level of definition in an atlas so we have

carried out an assessment of atlas quality based on the registration of pairs

of images chosen from the dataset to each type of atlas.

Assume Ii, Ij are images within a time interval, and T a
i , T a

j , T n
i , T n

j are

the results of four non-rigid registration steps (using the same registration

parameters) between each of Ii, Ij and Aa, An. Applying these transforma-

tions gives an aligned version of each image to each type of template Ia
i , Ia

j

and In
i , In

j . Figure 7 shows an example of three pairs at 29, 37, 43 weeks GA

and the difference between each pair after non-rigid registration to the affine

atlas and non-rigid atlas respectively. It can be seen that, after aligning each

pair to An, fewer differences remain compared to those that remain after

alignment to Aa. This is clearer for the scans of older subjects which display

a greater level of structural complexity, for example in the level of cerebral

cortex folding.

In order to quantify these observations, cross-correlation was used to mea-

sure the similarity between the pairs after registration to each of the atlases

Aa and An. Figure 8 shows the average cross-correlation at every time-

interval. The new atlas shares a much higher similarity with the input images

compared with the affine atlas from Kuklisova-Murgasova et al. (2010). This

is because lack of details in the atlas can impair detailed correspondences
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(a)

(b)

Figure 2: Comparison of our atlas (a) with the affine atlas (b) at 30, 32, 34, 36, 38, 40, 42,
and 44 weeks GA.

4 Conclusion
In this paper we present an approach for constructing a 4D brain atlas of MR images of
preterm infants. This results in a spatio-temporal atlas which is much sharper than currently
available linearly produced atlases. Such a sharp atlas offers the potential to improve the
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Figure 3: Average similarity measure results between individual images and the new atlas
(green), the affine atlas (blue).

registration process between the atlas and individual subjects with clear anatomical struc-
tures, and can lead to more precise analyses and detection of abnormalities by measuring the
anatomical variation between the atlas and the individual subject. To our knowledge this is
the first time that such a spatio-temporal atlas with this level of clarity and detail has been
constructed using a large number of subjects and for such a wide range of ages. The atlas is
publicly available at www.brain-development.org.
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