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Abstract

Discrete optimization offers attractive capabilities for non-rigid medical image reg-
istration. Based on previous work on stereo vision with large displacement spaces, we
propose a novel non-rigid registration method. The main idea to minimize the compu-
tational burden to constant time complexity is to reduce the search space hierarchically
from coarse to fine levels. The large search space helps us to avoid local minima in the
optimization scheme. We apply our method to a number of challenging registration tasks.
Our approach compares very favourably against state-of-the-art registration methods.

1 Introduction

Non-rigid image registration is a key technique in medical image analysis. It is used widely
for motion tracking, atlas-based segmentation and multimodal fusion, during radiation treat-
ment for image guided radiotherapy (IGRT), and for improving scan quality by compensating
for motion. Generally, the non-rigid alignment of two images has several million degrees of
freedom and leads to a non-convex optimization problem. In the past, the great majority of
techniques has focused on formulations based on continuous optimization. Generally, a cost
function consisting of a dissimilarity term and a regularization penalty is minimized using
gradient descent. However, continuous optimization only converges to a global optimum
for a convex problem, so that in practice local minima often deteriorate the accuracy of the
alignment. Discrete optimization, in contrast, enables search over a larger space of possible
solutions and therefore minima, closer to the global optimum, can be found. The increased
complexity of the optimization due to the extended search space has previously discouraged
wider use in image analysis. However, recent advances in the mathematical foundation and
programming techniques for more efficient optimization have spurred the application of dis-
crete optimization for many computer vision problems.
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2 Method
The main concept of discrete optimization is to formulate a problem on a Markov random
field (MRF), which is an undirected graphical model. The corresponding graph consists of
a set of nodes (which correspond to a set of pixels p ∈ P in an image) and edges N (which
connect neighbouring pixels). Each random variable corresponds to a node and takes values
from a set of labels fp ∈L . Labels correspond to tissue classes in segmentation, intensities
in restoration, disparities in stereo vision or displacements in registration. The optimization
process determines a probability for every label assignment. We are interested in finding
the label with maximum posterior probability (MAP). This problem can be converted to an
equivalent problem of energy minimization, given by the function:

E( f ) = ∑
p∈P

Sp( fp)+ ∑
(p,q)∈N

R( fp, fq) (1)

In image registration, Sp( fp) is the cost of the similarity term for assigning label fp to pixel
p. R( fp, fq) measures the pairwise cost of assigning labels fp and fq to two neighbouring
pixels, and is equivalent to a regularization term. To perform the inference on the MRF, we
adopt an efficient implementation of the max-product belief propagation (BP) algorithm. A
comparative study of other message passing schemes can be found in [5]. The BP algorithm
updates and passes messages iteratively for all nodes in parallel. Initially, for each node a
message vector m0

p→q with a length given by the number of labels is set to zero. The update
at time t is found by calculating:

mt
p→q( fq) = min fp(Sp( fp)+R( fp, fq)+ ∑

s∈N(p)\q
mt−1

s→p( fp)) (2)

The label, which minimizes the final belief vector bq( fq) = Sq( fq)+∑p∈N(q) mT
p→q( fq) after

T iterations, is selected for each node. In [2] a hierarchical message passing scheme is intro-
duced: to achieve faster convergence, messages are only calculated and passed on for groups
of neighbouring nodes, and the size of the neighbourhood is reduced in subsequent steps.
This reduces the computational complexity to O(PL 2). However, the memory required is
also proportional to P ·L and thus for a medical application impractical.

We adapt a recent approach called constant space belief propagation (CSBP), which
drastically reduces complexity by also reducing the search space hierarchically [6]. For the
coarsest level (largest neighbourhood of grouped nodes) the similarity cost is calculated for
each pixel and label, aggregated within the neighbourhood and the k labels with the smallest
corresponding cost are selected. This search space reduction is performed at the beginning of
each level. Using this reduction, the number of possible labels L is divided by 2d/2 (image
dimension d). Since the number of individual nodes increases by a factor of 2d from coarse
to a fine levels, the overall complexity remains constant at O(P) for all levels. 1

In [3] a different non-rigid registration approach called drop is presented. It is based
on discrete MRF labeling and applied to 3D medical image registration. The large search
space is reduced using a multiresolution and warping scheme. This is different from our ap-
proach, where all similarity cost calculations are performed on the original image resolution
and small features are not lost, even for large deformations (this is a particular problem in
pulmonary image registration). Another main advantage of discrete optimization is the fact
that no derivatives of similarity term and regularizer are needed. Therefore a much larger

1An implementation of our registration framework can be found at http://users.ox.ac.uk/~shil3388
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Figure 1: Example of synthetic 2D registration experiment. Left: Non-aligned colour chan-
nels of cryosection. Middle: Registered using our approach. Right: The histogram of reg-
istration errors demonstrates how the quantization error of the discrete registration (mode
≈ 0.5) can be efficiently reduced using a smoothing spline.
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61.3 (23.1) 3.14 (2.13) 2.78 (5.40) 0.18 (0.22) 11 3.14 (6.52) 0.14 (0.21) 8 12.3 (13.9) 0.67 (0.49) 20.7 3.52(6.07) 0.15 (0.17) 22.4

71.0 (21.3) 6.44 (4.51) 6.17 (12.4) 1.08 (2.05) 11 2.34 (6.52) 0.15 (0.25) 8.3 8.34 (12.0) 0.70 (0.50) 20.7 2.57 (5.47) 0.17 (0.18) 22.4

59.7 (24.6) 3.18 (2.37) 11.6 (16.1) 0.62 (0.79) 25.4 9.20 (15.4) 0.45 (0.72) 9 10.5 (11.2) 0.58 (0.42) 45.8 4.48 (6.15) 0.22 (0.20) 47.5

59.7 (24.6) 3.18 (2.37) 18.9 (24.1) 1.18 (1.64) 13.2 12.3 (23.4) 0.79 (1.53) 9 13.6 (14.6) 0.75 (0.57) 15.9 6.89 (10.0) 0.35 (0.36) 17.6

71.0 (21.3) 6.44 (4.51) 8.08 (12.57) 0.92 (1.19) 25.4 12.7 (21.5) 1.42 (2.28) 9.9 10.03( 15.9) 1.05 (1.41) 45.8 5.04 (11.6) 0.52 (1.14) 47.5

71.0 (21.3) 6.44 (4.51) 12.0 (18.3) 1.59 (2.03) 13.2 - - 12.6 (19.1) 1.44 (1.93) 15.9 9.26 (17.4) 1.03 (1.79) 17.6

Figure 2: Comparative overview of registration accuracy, measured in average angular error
(AAE) in degrees and target registration error (TRE) in pixels. Computation times are given
in seconds. Best results per category are typed in bold letters. (Note: We could not find a
setting for drop to obtain a good solution for target B using GO.)

variety of metrics can be used without approximations (note that the widely used L1 norm
is not differentiable). Additionally, truncated norms can be used without further modifica-
tion, which allows to deal with outliers (such as noise or missing data) or discontinuities
in the deformation field. A disadvantage of discrete optimization frameworks is the lack of
subpixel accuracy. We overcome this by fitting a smoothing spline to the obtained discrete
vector field, using the csaps function of the Matlab Curve Fitting Toolbox, with a weight-
ing parameter p = 0.001. This leads to a reduction of the mode of the target registration error
(TRE) (Fig. 1 c). Alternatively, a continuous optimization step could be followed up.

3 Experiments and results
We tested our new registration algorithm on both synthetic datasets with known deformations
and on expert validated clinical 3D data. We compare our constant space belief propagation
csbp implementation against the popular drop2 algorithm and a continuous Gauss-Newton
optimization framework [4]. For the synthetic registration experiments we deform the target
image of an aligned pair of a cryosection slices of the chest using random control point
displacements on a uniform B-spline grid. We use a maximum displacement of 24 and 48
pixels for two target images A and B respectively. For multimodal registration tasks the

2publicly available for download at www.mrf-registration.net
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Figure 3: Registration result for Case 5 of 4DCT dataset. Left: axial, middle: sagittal and
right: coronal plane. Top row before and bottom row after registration, using the proposed
method. Target image displayed in magenta and source in green (complementary colour).

TRE (std) in 
mm

before reg. continuous drop 4DLTMd csbp

Case 1

Case 2

Case 3

Case 4

Case 5

4.01 (2.91) 1.020 (0.499) 1.000 (0.519) 0.97 (1.02) 0.829 (0.944)

4.65 (4.09) 1.177 (0.828) 1.048 (0.603) 0.86 (1.08) 0.842 (0.953)

6.73 (4.21) 1.950 (1.794) 1.378 (1.018) 1.01 (1.17) 0.995 (1.058)

9.42 (4.81) 1.895 (1.884) 1.578 (1.389) 1.40 (1.57) 1.271 (1.241)

7.10 (5.15) 2.504 (2.491) 1.858 (2.180) 1.67 (1.79) 1.256 (1.520)

Figure 4: Comparative overview of landmark registration accuracy (in mm) for the extreme
phases of clinical 4DCT datasets. Our approach achieves the highest accuracy for all 5 cases.

target and source images are taken from different colour channels, an example image pair
before and after registration is shown in Fig. 1. The registration accuracy is measured as
both angular error (AAE) (between ground truth and estimated displacements) and TRE.

We use a diffusion regularization function which penalizes the square of the gradient of
the deformation field in both our proposed csbp method and the continuous framework. drop
additionally uses B-splines as a transformation model. For single modal registrations we
employ sum of squared differences (SSD) as a similarity term and either normalized cross
correlation (NCC) or gradient orientation (GO) as similarity terms, respectively, for multi-
modal tests. Fig. 2 gives an overview of the obtained registration accuracies. While both
discrete methods perform better than the continuous approach, our approach (with spline-
fitting for subpixel accuracy) shows its advantages over drop in the multimodal cases. The
lower TRE demonstrates the effectiveness of the large initial search space using the original
resolution images. To evaluate our findings for real clinical data we perform registrations on
manually labeled 4D CT datasets [1]3. The images are taken throughout one breathing cycle
with average landmark distances of up to 10 mm for the two extreme phases at inhale and
exhale. Manual landmarks are given for 300 anatomical locations. Particular challenges for
these registration tasks is changing contrast between tissue and air, because the gas density
changes due to compression, discontinuous sliding motion between lung lobes and the lung
rib cage interface, and large deformations of small features (lung vessels, airways). The reg-

3publicly available for download at www.dir-lab.com

190



HEINRICH et al.: NON-RIGID REGISTRATION THROUGH DISCRETE OPTIMIZATION 5

istration result for our approach is displayed in Fig. 3 for the most difficult case 5. One 3D
registration with our proposed method for images with dimensions of 256x256x100, using
NCC as similarity metric, and an initial label space of L = 4725 takes about 60 minutes
(compared to ≈30 minutes for drop), where two thirds of the time are spend on the initial
data cost computation. The resulting TRE in mm are given in Fig. 3. 4DLTMd [1] is a spe-
cific method for breathing cycle CT registration, which is so far the best ranking algorithm
out of 13 for these datasets. Our approach consistently outperforms all other methods.

4 Conclusion
We have presented a novel deformable registration method based on discrete optimization.
Our constant space belief propagation enables fast, memory efficient optimization of de-
formable registration on high resolution medical 3D volumes without the need for resam-
pling or warping schemes. We demonstrate its superior accuracy over continuous optimiza-
tion methods and previously proposed discrete methods on a range of medical images. Our
approach gives very good results particularly for large deformations and multimodal regis-
trations, and it effectively avoids local minima. In the future, we would like to address an
alternative solution for the initial data cost computation to improve speed compared to the
naïve brute force approach and apply it to clinical multimodal scans.
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