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Abstract

We present an approach for deformable 3D surface reconstruction using laparoscopic
monocular video data that is based on breaking down the nonrigid reconstruction problem
into a sequence of temporally-localised rigid reconstructions. Our main contribution, the
Rigid Sliding Window algorithm provides a means to achieve this whereby Rigid Shape-
from-Motion is performed over a sliding window that adapts according to the amount of
deformation detected in the scene. Our method is particularly applicable for laparoscopy,
where, by adapting the window, it can exploit low-frequency deformations caused by for
example breathing. Our algorithm is demonstrated on both synthetic and in-vivo image
sequences.

1 Introduction and Background
An important computer vision task in Minimally Invasive Surgery is to recover the 3D struc-
ture of deformable tissues from endoscopic images. Solutions to this have several important
applications, including intra-operative surgical guidance, motion estimation and compensa-
tion and pre-operative data registration. Currently, state-of-the-art methods differ along two
main axes; the information used to infer 3D structure, and the imaging hardware. In vivo 3D
reconstruction has been attempted previously using stereo endoscopes [4, 7, 10] and active
3D methods based on structured sensors [1]. These simplify the 3D reconstruction problem
when compared with methods based on standard monocular endoscopes, yet come at the
price of considerable hardware investment and operational training. By contrast, monocular
methods require no hardware modification. The 3D reconstruction problem is considerably
more difficult however and remains an open challenge.

In this paper we study monocular laparoscopic 3D reconstruction based on Shape-from-
Motion (SfM.) SfM has been attempted previously, including the reconstruction of the ab-
dominal cavity [9] and heart [6]. Several of the recent SfM methods are based on Simulta-
neous Localisation And Mapping (SLAM) [3, 5, 8], which can provide a framework for 3D
reconstruction in real time. However SLAM necessarily assumes the 3D scene is rigid, which
is mostly an unrealistic requirement in laparoscopic data. Nonrigid deformation is caused
for example by breathing and surgical intervention, and these effects will defeat rigid-based
SfM methods. Recently, a deformable SfM method has been applied to surface reconstruc-
tion based on low-rank shape models [6]. However, selecting the number of shape bases is
usually non-trivial. An extension of SLAM to handle periodic deformations was presented
in [8].
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We present a new nonrigid SfM approach which specifically exploits the fact that the
nature of deformation in laparoscopic data often is of low temporal frequency. That is, al-
though over a full video sequence the scene is deformable, over a small temporal window
of the order of a few frames the scene motion may be approximated rigidly. We present an
algorithm which breaks down the deformable 3D reconstruction problem into a sequence of
temporally-localised rigid reconstructions. A naive implementation using fixed-sized win-
dows may produce unstable results however. This is because (i) the degree of nonrigid
motion may vary over time and (ii) there may be insufficient image motion with which to re-
liably recover 3D shape. Our method automatically tunes the temporal windows to facilitate
a good trade-off between increasing the amount of rigid baseline and reducing the degree
of nonrigid deformation over the window. We call our algorithm a Rigid Sliding Window
(RSW) approach to deformable laparoscopic reconstruction. The RSW is particularly suit-
able for laparoscopic data. In contrast to arbitrary imaging conditions, the degree of rigidity
between image frames is determined by the relative speed of the camera with respect to the
surface’s rate of change due to deformation.

The structure of this paper is broken down as follows. In Section 2 we present the RSW
algorithm. An overview of the algorithm’s principles is given in §2.1 and the complete
algorithm is given in §2.2. In §3 we present results using synthetic data of a deforming
kidney model, and provide empirical analysis of the performance of the RSW algorithm, in
particular with respect to varying camera speeds. We then present some experimental results
on real in vivo data of a deforming pig liver and in §4 we present concluding remarks and
directions for future research.

2 The Rigid Sliding Window

2.1 Principle
Our Rigid Sliding Windows reconstruction algorithm processes sequentially the laparoscopic
video by finding contiguous windows of frames for which rigid SfM is able to perform well.
The duration of these windows is determined by the amount of nonrigidity in the scene.
For example, given a highly deforming scene the rigid assumption may only be valid over
a couple of frames, whereas for an approximately rigid scene the assumption holds over
the whole video sequence. The task of the RSW algorithm is to determine the optimal
window size and to perform an approximate rigid 3D reconstruction over these windows.
The output of the algorithm is therefore not a single 3D reconstruction, but a sequence of 3D
reconstructions capturing the different deformed states of the 3D scene.

Critical to our approach is how to optimally determine the rigid window size. There is an
inherent tradeoff between having larger windows, which increases the camera baseline and
provides better stability for depth and camera pose estimation, yet remaining small enough
such that the 3D motion within the window is approximately rigid. We base our algorithm
on testing the hypothesis of rigid motion, and increasing the window size up to the point
where this hypothesis breaks down. More precisely, suppose we have a temporal window
spanning frames captured between times t0 and t1. At some time t0 ≤ i ≤ t1, suppose that

the endoscope’s projection matrix is given by Pi = [ K 03 ]
[

Ri ti
03 1

]
with rotation Ri,

translation ti and projection intrinsics K. We assume K to be known and radial distortion
undone, which can be determined easily with an offline calibration procedure [11]. Suppose
for a 3D point xp in the scene, we have its 2D position yi

p in the camera’s image at time i. xp
respects the rigid motion model over t0 ≤ i ≤ t1 if the residual error of its projection can be
explained by image noise. Assuming additive gaussian noise, we have:

rp,i =
(
ψ (xp;K,Ri, ti)−yi

p
)
∼ N

(
µ =

[
0
0

]
,Σ = σ2I2

)
(1)
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with ψ (xp;K,Ri, ti) =
[

u/w
v/w

]
and [u,v,w]T = Pi

[
xp
1

]
. We can test whether the point

violates the rigid assumption at time i if rp,i is an outlier with respect to the noise model. We
chose to use the z-score statistic. Here, rp,i is marked an outlier if z = r>p,iΣ−1rp,i > τ for
some tolerance τ . Returning back to the RSW concept, we can infer that a window between
t0 and t1 supports rigid motion if the ratio of the number of outliers to the number of inliers
is small. Conversely, if it is large then the window is too large to support rigid motion. The
idea of testing the rigid hypothesis in this way, and adjusting the sliding window accordingly
as it advances through the frame sequence is at the core of our RSW algorithm.

Algorithm 1 RSW 3D Reconstruction
t0← 1, t1← 1 //Sliding window initialised to start of sequence
Mode 1: Window Expansion
repeat

t1← t1 +1, call rigidS f M(t0, t1)
until ratio of inliers < ρ
//Rigid assumption is now violated
if baseline ≥ b then

Output reconstruction for window t0 to (t1−1)
goto Mode 2

else
//Reconstruction unachievable:
t0 = t0 +1, t1 = max(t0, t1−1)
goto Mode 1

end if
Mode 2: Window Contraction
repeat

t0← t0 +1, call rigidS f M(t0, t1)
until ratio of inliers ≥ ρ or t0 == t1
//Rigid assumption is now satisfied
goto Mode 1

2.2 Algorithm Details
We present pseudo-code for our RSW in Algorithm 1. The window is parameterised by
start and end frames t0 and t1 respectively. These are initially set at the first frame, and are
then modified according to two distinct operation modes. In Mode 1: Window Expansion,
t1 is incremented up to the point where the rigid motion model is violated (i.e. the inlier
ratio becomes less than a tolerance ρ .) At each iteration a call to rigidS f M(t0, t1) is made
which denotes calling a rigid SfM algorithm using frames in the window t0 to t1. This
involves the following general processes (1) tracking points over the window and (2) solving
for the camera poses and 3D points. Usually this is done with RANSAC model estimation
followed by bundle adjustment. If the rigid model becomes violated at time t1, we test
whether there has been a sufficient motion baseline to stably estimate 3D structure between
times t0 to (t1−1). A simple strategy we take is to estimate the baseline using mean disparity
of the inliers over the window. In all our tests we have set b = 5 pixels. If the baseline is
insufficient it means that there is high deformable motion at time t0, and a rigid reconstruction
is unachievable. Here the sliding window advances without outputting a reconstruction. If
the baseline was sufficient, the algorithm outputs the reconstruction and proceeds to Mode
2: Window Contraction. In this mode the sliding window is contracted by incrementing t0,
until the window satisfies the rigid model again. At this point we return to Mode 1, and the
process of expanding the window using t1 repeats again.

3 Experimental Results
Synthetic data. We designed a synthetic experimental setup to show empirically the per-
formance of the RSW algorithm by simulating the motion of a laparoscope viewing a de-
forming organ. The setup was as follows. A 3D kidney model (comprising 1820 vertices
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bounded by a volume of 120mm2) was deformed via free-form deformation into a plausible
deformed state 1(a). The mean vertex displacement between these states was 7.6mm. A 60-
frame sequence (2 seconds at 30fps) was then generated by linearly interpolating between
the undeformed and deformed states. A laparoscope camera was synthesised with intrinsics
given by a calibration of a Karl Storz 2.9mm zero degree laparoscope. We synthesised the
motion by pivoting the laparoscope about a virtual trocar 1(b). Defining the world coordi-
nate frame at the trocar pivot, the camera’s position is given by M = Rx (θ)Tz (d), where
Tz denotes a translation along the negative z axis by dmm, and Rx (θ) denotes a rotation
about the x axis by an angle of θ radians. The performance of the RSW algorithm is directly
influenced by the amount of deformation exhibited by the 3D scene relative to the amount of
rigid motion between the camera and the scene. To test this, we simulated the motion of the
camera with varying speed whilst observing the deforming kidney, which we position at a
distance of h = 65mm from the trocar. Specifically, at frame i, the camera’s position is given
by: θ = kiπ/500 and d = 20+ki/3, where k denotes a speed factor that we vary from 0 to 1.
Figure 1(c) shows, for each camera speed the distance between the camera’s position in the
1st and 60th frames (second column) and the average optic flow magnitude between consec-
utive frames (third column.) It is important to note that at k = 0.0, the optic flow is entirely
generated by nonrigid deformation, yet as the camera speed increases the optic flow becomes
dominated by the rigid motion. We ran the RSW algorithm for each camera speed as follows.
We synthesised image correspondences by randomly selecting 90 vertices which remained
visible to the camera and perturbed their image positions with noise σ = 1.0. We set the
RSW’s free parameters to ρ = 0.7 and τ = 1.96. Figure 1(d) shows the reconstruction per-
formance as a function of k. The Root Mean Squares Error of the points’ 3D positions (solid
red) clearly reduces with increased camera speed. We also note that the average window size
increases, showing that the RSW algorithm is exploiting more frames with increased cam-
era speeds. We also compared against the RMSE error obtained by performing rigid SfM
(including bundle adjustment) over the whole 60 frames (dashed red). Since this does not
handle deformable motion, this clearly results in less accurate reconstructions.

(a) Kidney model in un-
deformed (top) and de-
formed (bottom) states

(b) Laparoscope
model

(c) Motion infor-
mation

(d) Synthetic reconstruction results

Figure 1: Experiments with a synthetic kidney model.

In-vivo liver sequence. A second set of experiments was conducted on real in-vivo data.
The data comprises a sequence spanning 120 frames capturing a pig liver which deforms
due to respiration. The data spans just over one breathing cycle. Two example frames are
shown in Figure 2(a,b). We ran the RSW algorithm with the same values for ρ and τ , but
with σ = 1.5. We used optic flow [2] to estimate the image motion between t0 and t1. Flow
estimates failing left/right constancy were removed, and 4,000 random samples from the flow
field were kept with which to reconstruct the point clouds (shown in blue.) The point clouds
for the two example frames are shown in 2(c-d). In the absence of ground truth data, no
quantitative performance measures are available for this sequence, however qualitatively the
reconstructions look reasonable, and capture the slant and gradual curve of the liver surface.
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(a) Frame 24 (b) Frame 76 (c) Point cloud (Frame 24) (d) Point cloud (Frame 76)

Figure 2: In-vivo experiments with a pig liver.

4 Conclusion and Future Work
In this paper we have presented an approach for reconstructing deformable 3D surface from
image sequences by posing the task as solving multiple, temporally local rigid reconstruc-
tions. We have provided the Rigid Sliding Window, an algorithm for sequentially processing
an input video and determining subwindows for which the rigid hypothesis holds. In future
work we aim to conduct more experiments to further validate the method, exploit smooth
camera motion to help stabilise results in very narrow windows, and aim to reconstruct a
complete 3D surface model using the set of multiple rigid reconstructions.
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