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Abstract

Motion models are a potentially promising solution to the problem of respiratory mo-
tion in both image acquisition and image-guided interventions. Such models are typically
based on a single input signal, such as an MRI navigator on thediaphragm. However,
it is possible to form models based on two signals positionedat different anatomical lo-
cations. This paper investigates whether this is desirableor not. Cardiac motion models
based on single input signals and pairs of input signals wereformed from MRI data ac-
quired from 10 volunteers and 1 patient. A measure of the accuracy of these motion
models was computed. The results suggest that two signal models are more accurate,
but only in the presence of significant cycle to cycle breathing motion variability. Over-
all the best individual virtual navigator was positioned onthe upper chest, and the best
pairing consisted of virtual navigators on the upper chest and lower chest. These findings
have potential significance for researchers working in the area of motion-corrected image
acquisition or motion-corrected image-guided interventions.

1 Introduction

Respiratory motion can cause severe problems in both image acquisition and image-guided
interventions. In image acquisition it can cause artefactsthat degrade image quality, and in
image-guided interventions it can cause registration errors between the guidance information
and the real anatomy, making the guidance information less reliable and potentially danger-
ous. Common solutions to the problem of respiratory motion are breath-holding and gating.
However, both have their shortcomings: breath-holding is limited to short periods of time
(typically less than 30 seconds), and gating increases scan/procedure time. Motion models
offer an alternative strategy in which the motion of the organ(s) is estimated and corrected
for whilst allowing the subject to breathe freely.

Motion models typically model a motion field as a function of a1-D input signal. By ac-
quiring this 1-D signal during image acquisition or an intervention, the function is applied to
produce an estimate of the true motion field. For example, in [2] an affine cardiac respiratory
motion model was formed by coregistering magnetic resonance imaging (MRI) data. The
model estimated an affine transformation as a function of head-foot diaphragm translation,
and was used to motion-correct guidance information in image-guided cardiac interventions.
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Much previous work on respiratory motion modelling has madethe assumption that the
motion of organs due to breathing iscyclic, i.e. it is the same from cycle to cycle. Such
‘average-cycle’ models take a single signal as input, such as the diaphragm translation from
MRI or X-ray [2]. However, in reality breathing motion is more complex thanthis, and is
rarely the same from cycle to cycle [1].

Motion models based on multiple 1-D signals can potentiallypredict different types of
motion for each cycle if the multiple signals vary in different ways relative to each other.
Examples of multiple signals include:

• a signal and aprecursory signal (i.e. its value at a previous time step) [4],
• a signal and its derivative [6],
• a signal and its amplitude [3], and
• signals at multiple anatomical locations [4, 5].
In this paper we investigate the last option, i.e. motion models based on signals po-

sitioned at multiple anatomical locations, specifically with reference to cardiac respiratory
motion models. Our hypothesis is that cycle-to-cycle breathing variability can be captured
by using multiple signals at different locations, and that consequently such multiple signal
models should be more accurate than single signal models in the presence of such variabil-
ity. We have previously published preliminary results in [5]. Here we include improved
validation, two extra datasets and test extra signal placements.

2 Methods and materials

Figure1 gives an overview of our experimental set-up. Two types of MRI data are required
to form the motion models: a single static 3-D high resolution image, and a series of lower
resolution 3-D dynamic scans at arbitrary respiratory positions (see Section2.1). To enable
us to test different anatomical locations for our input signals, we compute ‘virtual naviga-
tors’ from the dynamic scans, positioned at a number of different locations (Section2.2).
Motion models are formed from individual and pairs of such navigators using motion esti-
mates computed by image registration between the high resolution and dynamic MRI scans
(Section2.3). Finally, an error measure for each motion model is determined (Section2.4).
We performleave-one-out validation: each dynamic image is left out in turn, and a motion
model formed from all remaining dynamics; the motion estimated by this model is compared
to the actual motion estimated by registration of the left-out dynamic.

Figure 1:An overview of the motion model accuracy experiments.

168



MCGLASHAN, KING: BREATHING MOTION VARIABILITY 3

2.1 Materials

Data were acquired from 10 volunteers and 1 patient. Volunteers A-J consisted of 9 males
and 1 female, aged 20-32. Patient A was male, aged 4, and underwent MRI scanning as
preparation for a pulmonary vascular resistance study catheterisation. All MRI data were
acquired using a 1.5T Philips Achieva MRI scanner. The following sequences were used:

• High resolution 3-D: 3D balanced TFE, respiratory gated at end-expiration, cardiac
gated at late diastole, typically, 120 sagittal slices, TR=4.4ms, TE=2.2ms, flip angle=90o,
acquired voxel size 2.19× 2.19× 2.74mm3 (reconstructed 1.37× 1.37×1.37mm3),
acquisition window≈ 100ms, navigator window 5mm, scan time≈ 5 minutes.

• Dynamic 3-D: 3-D TFEPI, cardiac gated at late diastole, typically, 20 slices, TR =
10ms, TE = 4.9ms, flip angle = 20o, acquired voxel size 2.7×3.6×8.0mm3 (recon-
structed 2.22×2.22×4.0mm3), TFE factor 26, EPI factor 13, TFE acq. time 267.9ms.

The dynamic 3-D sequence acquires one 3-D volume every heartbeat. A sample scan is
shown in Figure2. These scans were acquired with the subjects breathing in three different
breathing patterns: normal breathing (i.e. no breathing instruction given), fast breathing, and
deep breathing. This was done to maximise the amount of cycle-to-cycle breathing motion
variability. 100 dynamic images (volunteers A-D) or 40 dynamic images (volunteers E-J and
patient A) per breathing pattern were acquired.

2.2 Computing virtual navigators

To test different anatomical positionings for the 1-D inputsignals we produced ‘virtual nav-
igator’ signals by postprocessing the dynamic 3-D MRI images. The virtual navigators were
computed as follows: 3-D rectangular regions of interest were manually defined for each
virtual navigator on each subject’s dynamic images; one dynamic image was chosen as a
reference; for each other ‘target’ dynamic image, the virtual navigator value was determined
as the translation along the long axis of the rectangle that maximised the correlation between
the reference image intensities and the translated target image intensities within the rectan-
gle. All virtual navigator signals were manually inspectedand modified if they were found
to be inaccurate. Virtual navigators positions/orientations are illustrated in Figure2:

Figure 2:Positioning of virtual navigators on a dynamic MRI scan.

2.3 Registration and motion modelling

The affine motion models were formed using a technique similar to that described in [2].
First, motion estimates were made by registering each 3-D dynamic scan to the 3-D high
resolution image. The registrations were performed with anintensity-based affine registra-
tion algorithm using normalised mutual information as a similarity measure. An elliptical
mask covering the four chambers and major vessels of the heart was used as a region of
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interest for computing the similarity measure. Next, 2nd order polynomials were fitted to the
variation of each of the 12 affine motion parameters as functions of the input signal(s) used.
Univariate polynomials were used for single signal models and bivariate polynomials were
used for two signal models. Separate polynomials were used for inspiration and expiration
data to capture the hysteresis effect [2]. The motion models formed in this way estimate a
set of 12 affine motion parameters given an input signal (or pair of signals) and a breathing
direction (inspiration or expiration).

2.4 Error measure

To compare different input signals for motion model formation, we define a motion model
error measure: theroot-mean-square error in prediction (RMSEP) [5]. The RMSEP mea-
sures the difference between transforming a set of landmarks by the original registration
transformations (see Section2.3) and the transformations estimated by a motion model. To
determine the overall ‘leave-one-out’ RMSEP for a single subject and input signal(s), we
compute the root-mean-square of these errors over a set of landmarks positioned on a Carte-
sian grid in a region of interest around the heart. Finally, the RMSEP over all subjects for a
specific input signal(s) is the root-mean-square of the RMSEP values of all subjects.

3 Results

We computed overall RMSEP values for motion models based on all single signals and
every combination of signal pairings. Figure3 shows the RMSEP values computed using all
dynamic MRI images, i.e. for all 3 breathing patterns combined. Overall the mean RMSEP
for single signal models was 5.27mm, and for pairs of signals it was 4.83mm. Using a 2-
tailed unpaired student’s t-test we found a statistically significant difference between the two
sets of RMSEP values (p < 0.01).

We also computed the same figures for individual breathing patterns. The mean RMSEP
values for single/paired signal models were 2.39/2.53mm for normal breathing, 2.85/2.95mm
for fast breathing and 4.23/4.1mm for deep breathing. However, for these experiments we
found no statistically significant difference in the RMSEP figures (p = 0.83 for normal
breathing,p = 0.53 for fast breathing, andp = 0.62 for deep breathing).

4 Discussion and conclusions

We have presented an analysis of the impact of using motion models with input signals
positioned at multiple anatomical locations. Our results show that, compared to the more
commonly used single signal models, two signal models perform better when all breathing
patterns are combined, but no better for individual breathing patterns. This is an interesting
finding, because during a single breathing pattern it is reasonable to expect that breathing
motion variability would be less, whereas when combining data from different breathing
patterns we would expect the variability to be greater. Therefore these results support our
original hypothesis that two signal models perform better in the presence of cycle-to-cycle
breathing variability. Overall the best individual virtual navigator was positioned on the
upper chest, and the best pairing consisted of navigators onthe upper chest and lower chest.
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Figure 3:Leave-one-out RMSEP values over all breathing patterns.

These findings will be of interest to researchers working in the area of motion modelling
for both image acquisition and image-guided interventions. In many applications there is the
possibility to acquire multiple input signals, for examplein the MRI scanner using navigator
echos or when using an optical tracking system such as the Varian Real-time Position Man-
agement (RPM) system. In these cases it would be worth considering including extra input
signals if breathing motion variability is anticipated.
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