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Abstract

Motion models are a potentially promising solution to thelyppem of respiratory mo-
tion in both image acquisition and image-guided intenvargi Such models are typically
based on a single input signal, such as an MRI navigator oditmhragm. However,
it is possible to form models based on two signals positicatedifferent anatomical lo-
cations. This paper investigates whether this is desimbit®t. Cardiac motion models
based on single input signals and pairs of input signals Yeemed from MRI data ac-
quired from 10 volunteers and 1 patient. A measure of theracyguof these motion
models was computed. The results suggest that two signatlsiade more accurate,
but only in the presence of significant cycle to cycle breghinotion variability. Over-
all the best individual virtual navigator was positionedtbe upper chest, and the best
pairing consisted of virtual navigators on the upper chadtlawer chest. These findings
have potential significance for researchers working in tea af motion-corrected image
acquisition or motion-corrected image-guided interveamgi
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Respiratory motion can cause severe problems in both imagesition and image-guided

interventions. In image acquisition it can cause artefd@sdegrade image quality, and in
image-guided interventions it can cause registrationrsbyetween the guidance information
and the real anatomy, making the guidance information kesshie and potentially danger-
ous. Common solutions to the problem of respiratory moti@baeath-holding and gating.
However, both have their shortcomings: breath-holdingnmstéd to short periods of time

(typically less than 30 seconds), and gating increasegmaamedure time. Motion models
offer an alternative strategy in which the motion of the oi@ is estimated and corrected
for whilst allowing the subject to breathe freely.

Motion models typically model a motion field as a function df-® input signal. By ac-

quiring this 1-D signal during image acquisition or an intrtion, the function is applied to
produce an estimate of the true motion field. For exampl&]iar affine cardiac respiratory
motion model was formed by coregistering magnetic resomamaging (MRI) data. The

model estimated an affine transformation as a function oflfieat diaphragm translation,
and was used to motion-correct guidance information in Ergided cardiac interventions.
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Much previous work on respiratory motion modelling has miémdeassumption that the
motion of organs due to breathingagclic, i.e. it is the same from cycle to cycle. Such
‘average-cycle’ models take a single signal as input, ssdh@diaphragm translation from
MRI or X-ray [2]. However, in reality breathing motion is more complex thhis, and is
rarely the same from cycle to cyclg][

Motion models based on multiple 1-D signals can potentiatigdict different types of
motion for each cycle if the multiple signals vary in diffatevays relative to each other.
Examples of multiple signals include:

a signal and @recursory signal (i.e. its value at a previous time steg) [
a signal and its derivatives],

a signal and its amplitude], and

signals at multiple anatomical location p].

In this paper we investigate the last option, i.e. motion aiedased on signals po-
sitioned at multiple anatomical locations, specificallyhwieference to cardiac respiratory
motion models. Our hypothesis is that cycle-to-cycle bmeat variability can be captured
by using multiple signals at different locations, and thasequently such multiple signal
models should be more accurate than single signal modéteipresence of such variabil-
ity. We have previously published preliminary results #. [ Here we include improved
validation, two extra datasets and test extra signal placésn

2 Methods and materials

Figurel gives an overview of our experimental set-up. Two types ofl Mi&ta are required
to form the motion models: a single static 3-D high resoluiimage, and a series of lower
resolution 3-D dynamic scans at arbitrary respiratory tomss (see Sectiof.1). To enable
us to test different anatomical locations for our input sighwe compute ‘virtual naviga-
tors’ from the dynamic scans, positioned at a number of iffelocations (Sectiofi.?).
Motion models are formed from individual and pairs of suckigators using motion esti-
mates computed by image registration between the highutgsoland dynamic MRI scans
(Section2.3). Finally, an error measure for each motion model is deteech(Sectior?.4).
We performleave-one-out validation: each dynamic image is left out in turn, and a ooti
model formed from all remaining dynamics; the motion esteddy this model is compared
to the actual motion estimated by registration of the left-aynamic.
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Figure 1:An overview of the motion model accuracy experiments.
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2.1 Materials

Data were acquired from 10 volunteers and 1 patient. Vokmsté-J consisted of 9 males
and 1 female, aged 20-32. Patient A was male, aged 4, andweawleMRI scanning as
preparation for a pulmonary vascular resistance studyetatisation. All MRI data were
acquired using a 1.5T Philips Achieva MRI scanner. The Wity sequences were used:

e High resolution 3-D: 3D balanced TFE, respiratory gated at end-expiratiordiaar
gated at late diastole, typically, 120 sagittal slices, #Rms, TE=2.2ms, flip angle=90
acquired voxel size .29x 2.19 x 2.74mn? (reconstructed .B7 x 1.37 x 1.37mn?),
acquisition windows 100ms, navigator window 5mm, scan timye5 minutes.

e Dynamic 3-D: 3-D TFEPI, cardiac gated at late diastole, typically, 20ed, TR =
10ms, TE = 4.9ms, flip angle = 20acquired voxel size.Z x 3.6 x 8.0mn? (recon-
structed 22 x 2.22 x 4.0mn?), TFE factor 26, EPI factor 13, TFE acq. time 267.9ms.

The dynamic 3-D sequence acquires one 3-D volume every heatt A sample scan is
shown in Figure2. These scans were acquired with the subjects breathingan thfferent
breathing patterns: normal breathing (i.e. no breathisguction given), fast breathing, and
deep breathing. This was done to maximise the amount of ¢getgcle breathing motion
variability. 100 dynamic images (volunteers A-D) or 40 dgmaimages (volunteers E-J and
patient A) per breathing pattern were acquired.

2.2 Computing virtual navigators

To test different anatomical positionings for the 1-D inpiginals we produced ‘virtual nav-
igator’ signals by postprocessing the dynamic 3-D MRI inggéhe virtual navigators were
computed as follows: 3-D rectangular regions of interestewaanually defined for each
virtual navigator on each subject’s dynamic images; oneadyo image was chosen as a
reference; for each other ‘target’ dynamic image, the airhavigator value was determined
as the translation along the long axis of the rectangle tlaimmsed the correlation between
the reference image intensities and the translated targage intensities within the rectan-
gle. All virtual navigator signals were manually inspected! modified if they were found
to be inaccurate. Virtual navigators positions/orietasiare illustrated in Figur&

UCHEST: upper chest, anterio-posterior direction
LCHEST: lower chest, anterio-posterior direction
UABD: upper abdomen: anterio-posterior
direction

LABD: lower abdomen, anterio-posterior direction
DIA: diaphragm, head-foot direction

POST: posterior wall of the heart, anterio-
posterior direction

LAT: lateral wall of the heart, medio-lateral
direction

Figure 2:Positioning of virtual navigators on a dynamic MRI scan.

2.3 Registration and motion modelling

The affine motion models were formed using a technique sinvldahat described inZ.
First, motion estimates were made by registering each 34iauyc scan to the 3-D high
resolution image. The registrations were performed witlngnsity-based affine registra-
tion algorithm using normalised mutual information as aikinty measure. An elliptical
mask covering the four chambers and major vessels of thé Wwaarused as a region of
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interest for computing the similarity measure. NeX @rder polynomials were fitted to the
variation of each of the 12 affine motion parameters as fanstof the input signal(s) used.
Univariate polynomials were used for single signal models$ lhivariate polynomials were
used for two signhal models. Separate polynomials were useiddpiration and expiration
data to capture the hysteresis effegjt [The motion models formed in this way estimate a
set of 12 affine motion parameters given an input signal (orgiasignals) and a breathing
direction (inspiration or expiration).

2.4 Error measure

To compare different input signals for motion model forroatiwe define a motion model
error measure: theoot-mean-square error in prediction (RMSEP) p]. The RMSEP mea-
sures the difference between transforming a set of landsriaykthe original registration
transformations (see Secti@m3) and the transformations estimated by a motion model. To
determine the overall ‘leave-one-out’ RMSEP for a singlbjscat and input signal(s), we
compute the root-mean-square of these errors over a setdfiarks positioned on a Carte-
sian grid in a region of interest around the heart. Finatlg, RMSEP over all subjects for a
specific input signal(s) is the root-mean-square of the RM8&ues of all subjects.

3 Reaults

We computed overall RMSEP values for motion models basedllasingle signals and
every combination of signal pairings. Figusshows the RMSEP values computed using all
dynamic MRI images, i.e. for all 3 breathing patterns coredinOverall the mean RMSEP
for single signal models wasZ/mm, and for pairs of signals it was88mm. Using a 2-
tailed unpaired student’s t-test we found a statisticatipisicant difference between the two
sets of RMSEP valuep(< 0.01).

We also computed the same figures for individual breathitigpes. The mean RMSEP
values for single/paired signal models wer@®2 53mm for normal breathing,25/295mm
for fast breathing and.23/41mm for deep breathing. However, for these experiments we
found no statistically significant difference in the RMSEBufies ¢ = 0.83 for normal
breathingp = 0.53 for fast breathing, and = 0.62 for deep breathing).

4 Discussion and conclusions

We have presented an analysis of the impact of using motiotelaawith input signals

positioned at multiple anatomical locations. Our restutisve that, compared to the more
commonly used single signal models, two signal models perfeetter when all breathing

patterns are combined, but no better for individual breafipatterns. This is an interesting
finding, because during a single breathing pattern it isamasle to expect that breathing
motion variability would be less, whereas when combinintadeom different breathing

patterns we would expect the variability to be greater. e these results support our
original hypothesis that two signal models perform bettethie presence of cycle-to-cycle
breathing variability. Overall the best individual virtusavigator was positioned on the
upper chest, and the best pairing consisted of navigataitseompper chest and lower chest.
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Figure 3:Leave-one-out RMSEP values over all breathing patterns.

These findings will be of interest to researchers workindgnearea of motion modelling
for both image acquisition and image-guided interventibmsnany applications there is the
possibility to acquire multiple input signals, for exampléhe MRI scanner using navigator
echos or when using an optical tracking system such as tharMBeal-time Position Man-
agement (RPM) system. In these cases it would be worth cemsglincluding extra input
signals if breathing motion variability is anticipated.
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