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Abstract

The paper presents a series of experiments which involve the use of the Fast Radial
Basis Function algorithm for non-rigid medical image registration. The algorithm is
a point-based registration technique which enables sub-second registration during the
evaluation stage of standard-sized MR or X-ray CT datasets without loss of accuracy
as compared to standard methods. In this paper we illustrate that the accuracy of the
registration improves when using increasingly more salient feature points(i.e. landmarks
and regular surfaces) without affecting the speed of the algorithm. Initially, a set of
curves are extracted using a combined watershed and active contoursalgorithm, then tiled
and converted to a regular surface using a global parametrization algorithm. Numerical
results exhibit target registration errors less than 2mm on intra-subject registration of MR
image datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Database
whilst preserving sub-second performance for the Fast Radial Basis algorithm whereas
competing algorithms exhibit slower performances.

1 Introduction

We aim to show that a previously introduced algorithm [9] for non-rigid medical image
registration, called the fast RBF algorithm, is largely insensitive to the number of landmarks
used in terms of its performance speed during the evaluationstage1. Increasing the num-
ber of landmarks during registration should improve accuracy, provided the landmarks are
accurately placed. Alternative algorithms will slow down the more landmarks are used. In
previous research, we validated the fast RBF algorithm on single landmarks. To enable us
to use many accurately placed landmarks - which is not practical by using single anatomi-
cal landmarks - we use corresponding2 parameterized surfaces. The remainder of this paper
describes the method we used to obtain parameterized corresponding surfaces, the fast RBF
principle and an experiment comparing the fast RBF method toalternative non-rigid regis-
tration methods.

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronicforms.

1The evaluation stage involves the application of a previously fitted model to the entire voxel dataset which is
usually more time consuming then the ‘calculation stage’, i.e.when the model parameters are determined.

2The word ‘corresponding’ which is frequently used in this paper relates to the corresponding landmarks for
each of the two volumes to be registered which - where this is not the case a ‘*’ is used for clarity.
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2 2 METHODS AND ALGORITHMS

2 Methods and algorithms

2.1 Surface generation and parametrization

We first extract a set of curves along Z-slices from both images to be registered. For this pur-
pose, two popular techniques, active contours and watersheds were used to create a sufficient
number of curves (point sets). Both methods, when used individually, have certain limita-
tions, i.e. the watershed segmentation method is sensitiveto image noise, hence causing over-
segmentation, whilst active contours suffer from initialization problems. Both techniques can
overcome each other’s limitations as the watershed algorithm provides initialization for the
active contour whilst the latter smoothens the result henceavoiding over-segmented bound-
aries [2]. Once a boundary contour is obtained, we resample each curve with a fine set of
points (at pixel level) into a coarser one (at edgel level) bycontinuously reducing a given set
of points into a two point set based on the computation of a midpoint value. This process
terminates when the number of points in a given set is less than or equal to a user defined
number. The final result is a set of corresponding boundary landmarks on each slice which
are then triangulated to form a 3D surface by applying the advancing-front algorithm [6]. In
order to remesh the 3D surface, we first need a suitable parametrization technique (confor-
mal and equi-areal) to flatten the 3D surface and then need a resampling technique to convert
it back to a parameterized 3D surface. We used the fast and robust algorithm of Yoshizawa
et al. [11] to parameterize the original mesh and represent it on a unitsquare as a 2D mesh.
Their technique is a global parametrization method based ona shape-preservation method
originally proposed by Floater in [1]. After parametrization, we resample the 2D mesh using
a regular 2D grid and find the corresponding∗ 3D spatial position in the original mesh for
each vertex (point) of the 2D grid.

2.2 Fast Radial Basis Functions method

We assume a Radial Basis Function (RBF) formulation3 in 3D:

s(xi) =
n

∑
j=0

λ (y j)φ(‖xi −y j‖), i = 0,1, . . . ,m. (1)

for i = 1. . .m evaluation points/voxels (targets) represented by the target vectorxi, the spline
parametersλ j for j = 1. . .n landmarks represented by the source (landmark) vectory j.

Based on the work by Livne and Wright [5] and extended to 3D [8] the above equation
can be simplified by representing the RBF on a regular coarse grid with fewer nodes than the
full voxel set. The main principle of the fast RBF method is toencapsulate source and target
points in separate grids of sizeH. It results in a two stage process conversion of the RBF in
Equation1. The first stage replaces the originalsource points with their corresponding grid
points by using a centeredp-th order tensor product interpolation:

φ(‖xi −y j‖) = ∑
j:Jkεσ (k)

j

ω jJ3ω jJ2ω jJ1φ(‖xi −Y(J1,J2,J3)‖) (2)

where j = 0,1, . . . ,n and for dimensionk = 1,2,3 :

σ (k)
j :=

{
Jk : |Y (k)

Jk
− y(k)

j | < pH/2
}

, whereω jJk are the new centeredpth-order interpola-

3The radial basis functionφ can take several forms, but the biharmonic spline (BHS),φ(r) = r, is optimal in
minimizing the bending energy potential in 3D [7]
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tion weights from the coarse centresY (k)
Jk

to the landmark positionsy(k)
j . The second stage

replaces the originaltarget points with their corresponding grid points using the same ap-
proach:

φ(‖xi −YJ‖) = ∑
Ikεσ̄ (k)

i

ω̄iI3ω̄iI2ω̄iI1φ(‖X(I1,I2,I3)−YJ‖) (3)

wherei = 0,1, . . . ,m, J = (J1,J2,J3), and for dimensionk = 1,2,3 :

σ̄ (k)
i :=

{
Ik : |X (k)

Ik
− x(k)

i | < pH/2
}

, whereω̄iIk are the centeredpth-order interpolation weights

from the coarse evaluation pointX (k)
Ik

to the levelh (original image grid size) evaluation point

x(k)
i . The procedure used to distribute the known RBF coefficientsλ (y j) at each landmark

position to the surrounding nodes of gridY is calledanterpolation.

3 Experiments

The aim of the experiments presented in this paper is to show the insensitivity in terms of
speed of the fast RBF method to an increasing number of accurately placed landmarks, the
latter aiming to improve the registration accuracy during evaluation. Five different meth-
ods are compared, which are: (1) Brute force (non-optimized) RBF; (2) Brute force (non-
optimized) RBF with hardware acceleration; (3) Fast RBF; (4) Fast RBF with hardware
acceleration; (5) Grid based approach by Levin et al. [4] with two different grid sizes4. The
MR datasets of three subjects of the ADNI database (adni.loni.ucla.edu) were used and re-
sampled to 2563 with slice thicknesses of 1mm. These datasets were used to test intra-patient
point-based non-linear registration from the original dataset to its natural deformed version
(see Figure1 columns 1 and 2 of second row).
To assess the accuracy of our technique, we use theTarget Registration Error (TRE)5 and
theNormalized mutual Information (NMI) (Studholme et al. [10]).

4 Results and Discussion

Table1 shows that the NMI of the larger landmark set (475) is better than when using just 20
landmarks. The average TRE is slightly worse, however the standard deviation is substan-
tially smaller despite being measured over a much larger setof validation points illustrating
a statistically more significant result. The evaluation time of the fast RBF method (both
software and hardware versions) is only marginally affected by increasing the number of
landmarks with a factor of more than 20, unlike all other methods which are proportion-
ally more affected. The %NMI metric shows the performance ofthe optimised techniques
in comparison to the non-optimised ‘Brute force’ software based method (gold standard).
The fast RBF method implemented in hardware exhibits the highest correspondence (99%+)
implying minimal loss of accuracy due to fast RBF optimization and hardware acceleration.

5 Conclusion

We have evaluated the fast RBF non-rigid registration method for medical imaging data us-
ing parameterized surfaces to derive large numbers of anatomical landmarks. The algorithm

4Levin et al. [3, 4] proposed a method for accelerating point based non-rigid registration by using the fast
tri-linear interpolation capability of modern graphics cards on a standard PC. Their implementation evaluates a
thin-plate spline (TPS) warp at discrete points on a configurable sized grid that overlays each image data slice.

5The TRE is the RMS error between the homologous validation landmarks after registration.
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20 landmarks Eval. Time in sec. NMI %NMI TRE in mm.

Brute force S/W 28.55(1.54) 1.202(0.043) 100.00 1.63(0.49)
Brute force H/W 0.51(0.05) 1.192(0.036) 99.1 1.63(0.49)
Fast RBF S/W 0.025 15.27(0.47) 1.202(0.043) 100.0 1.63(0.49)
Fast RBF H/W 0.025 0.53(0.04) 1.199(0.041) 99.6 1.63(0.49)
Grid 13 0.43(0.01) 1.144(0.066) 95.1 1.63(0.49)
Grid 138 16.31(1.08) 1.144(0.066) 95.1 1.63(0.49)
450+25 landmarks Eval. Time in sec. NMI %NMI TRE in mm.

Brute force S/W 486.48(4.02) 1.227(0.013) 100.00 1.81(0.20)
Brute force H/W 2.42(0.47) 1.214(0.027) 99.9 1.81(0.20)
Fast RBF S/W 0.025 31.15(1.04) 1.226(0.024) 100.0 1.81(0.20)
Fast RBF H/W 0.025 0.62(0.02) 1.221(0.021) 99.6 1.81(0.20)
Grid 13 2.69(0.06) 1.145(0.051) 93.4 1.81(0.20)
Grid 138 282.25(2.78) 1.142(0.052) 93.1 1.81(0.20)

Table 1:Results after applying a BHS basis function for non-rigid registration of the MR-T1 ADNI datasets of
the same subject taken at different time points. 20 landmarks were used for training and 20 for validation in the
upper half table. In the lower half table, 450 surface-basedlandmarks were used for training, while another 450
surface-based landmarks were used for validation, plus an additional 25 manually placed landmarks were used. All
tests were run over 5 subjects. Values are averages with standard deviation in parentheses. The second column
shows the evaluation time of the RBF in seconds. The third column shows the NMI. The next column shows the
%NMI as compared to the Brute-Force Software used as the golden standard. The fifth and final column shows the
TRE in mm. which is evaluated on the validation landmarks - note that the latter is the same for all methods as its
calculation is based on the same BHS model.

when implemented in hardware yields sub-second evaluationtimes on a standard PC with
high-end video adapter card. The evaluation (warp) time of the Fast RBF algorithm is signifi-
cantly less susceptible to the number of landmarks used as compared to the tested competing
methods. Considering that more accurately placed landmarks improve accuracy implies that
this algorithm is favourable for applications where both speed and accuracy are of impor-
tance, such as in IGS (Image Guided Surgery). In the future wewill use the parameterized
surface and will do experiments on medical image data with a higher degree of non-rigid
distortion.
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