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Abstract

The paper presents a series of experiments which involve the use dish&&dial
Basis Function algorithm for non-rigid medical image registration. Therdkgo is
a point-based registration technique which enables sub-second registtaring the
evaluation stage of standard-sized MR or X-ray CT datasets without fosscaracy
as compared to standard methods. In this paper we illustrate that theacaidirthe
registration improves when using increasingly more salient feature gostndmarks
and regular surfaces) without affecting the speed of the algorithm. Iipiteaset of
curves are extracted using a combined watershed and active caalganithm, then tiled
and converted to a regular surface using a global parametrizatiorithigoNumerical
results exhibit target registration errors less than 2mm on intra-subggstnation of MR
image datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADBtabase
whilst preserving sub-second performance for the Fast Radias Blprithm whereas
competing algorithms exhibit slower performances.

1 Introduction

We aim to show that a previously introduced algorithr@] for non-rigid medical image
registration, called the fast RBF algorithm, is largelyansitive to the number of landmarks
used in terms of its performance speed during the evaluatage. Increasing the num-
ber of landmarks during registration should improve accyrprovided the landmarks are
accurately placed. Alternative algorithms will slow dovire tmore landmarks are used. In
previous research, we validated the fast RBF algorithm pglsilandmarks. To enable us
to use many accurately placed landmarks - which is not maldby using single anatomi-
cal landmarks - we use correspondimmrameterized surfaces. The remainder of this pape
describes the method we used to obtain parameterized pon@isig surfaces, the fast RBF
principle and an experiment comparing the fast RBF methadtéwnative non-rigid regis-

tration methods.

(© 2011. The copyright of this document resides with its authors
It may be distributed unchanged freely in print or electrdoims.

1The evaluation stage involves the application of a prewofised model to the entire voxel dataset which is

usually more time consuming then the ‘calculation stage’wieen the model parameters are determined.

2The word ‘corresponding’ which is frequently used in thigpearelates to the corresponding landmarks for

each of the two volumes to be registered which - where thistishocase a *' is used for clarity.
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2 Methodsand algorithms

2.1 Surface generation and parametrization

We first extract a set of curves along Z-slices from both insagdoe registered. For this pur-
pose, two popular techniques, active contours and watésskere used to create a sufficient
number of curves (point sets). Both methods, when usedithdilly, have certain limita-
tions, i.e. the watershed segmentation method is sengitimeage noise, hence causing over-
segmentation, whilst active contours suffer from inidation problems. Both techniques can
overcome each other’s limitations as the watershed algorgirovides initialization for the
active contour whilst the latter smoothens the result hewo&ling over-segmented bound-
aries PJ. Once a boundary contour is obtained, we resample eacle euitl a fine set of
points (at pixel level) into a coarser one (at edgel leveltgtinuously reducing a given set
of points into a two point set based on the computation of apoidt value. This process
terminates when the number of points in a given set is less ah&qual to a user defined
number. The final result is a set of corresponding boundangniearks on each slice which
are then triangulated to form a 3D surface by applying theadwg-front algorithmg]. In
order to remesh the 3D surface, we first need a suitable p&iaat®n technique (confor-
mal and equi-areal) to flatten the 3D surface and then neeshenf@ing technique to convert
it back to a parameterized 3D surface. We used the fast angtralgorithm of Yoshizawa
et al. [L1] to parameterize the original mesh and represent it on asguidre as a 2D mesh.
Their technique is a global parametrization method based simape-preservation method
originally proposed by Floater ii]. After parametrization, we resample the 2D mesh using
a regular 2D grid and find the correspondir8D spatial position in the original mesh for
each vertex (point) of the 2D grid.

2.2 Fast Radial Basis Functions method

We assume a Radial Basis Function (RBF) formulatior3D:

S0 = S A @(I% — yil)i =0.1....m o)
j; j j

fori =1...mevaluation points/voxels (targets) represented by tlyetaectox;, the spline
parameterd; for j = 1...nlandmarks represented by the source (landmark) vegtor

Based on the work by Livne and WrigHi][and extended to 3D 8] the above equation
can be simplified by representing the RBF on a regular coardewth fewer nodes than the
full voxel set. The main principle of the fast RBF method i®twapsulate source and target
points in separate grids of site It results in a two stage process conversion of the RBF in
Equationl. The first stage replaces the origirsalr ce points with their corresponding grid
points by using a centerquth order tensor product interpolation:

elxi=yil) =5 @snwpwseX—Y .55 (2)

j:\]keaj<k>

wherej =0,1,...,nand for dimensiotk = 1,2, 3 :

aj(k) = {Jk: |YJ(kk) —ygk)| < pH/Z}, where wj,, are the new centerepth-order interpola-

3The radial basis functiop can take several forms, but the biharmonic spline (BH®)) = r, is optimal in
minimizing the bending energy potential in 30 [
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tion weights from the coarse centr\éJ%‘) to the landmark positionyagk). The second stage
replaces the origindlarget points with their corresponding grid points using the same a
proach:

o(lxi=Yol) = 3 @@, @(1X 11,1505 = Yall) 3)

U

wherei =0,1,....m,J = (J;1,J2,J3), and for dimensiok = 1,2,3 :
Ei“‘) = {lk : |X|(kk) — xi(k)| < pH /2}, whereaw,, are the centerepth-order interpolation weights

from the coarse evaluation pomlik) to the leveh (original image grid size) evaluation point

xi(k). The procedure used to distribute the known RBF coefficigfiys) at each landmark

position to the surrounding nodes of givdis calledanterpolation.
3 Experiments

The aim of the experiments presented in this paper is to shevnsensitivity in terms of
speed of the fast RBF method to an increasing number of a@etydaced landmarks, the
latter aiming to improve the registration accuracy duringleation. Five different meth-
ods are compared, which are: (1) Brute force (non-optim)i&®8IF; (2) Brute force (non-
optimized) RBF with hardware acceleration; (3) Fast RBF; Kdst RBF with hardware
acceleration; (5) Grid based approach by Levin et d].wfith two different grid size$. The
MR datasets of three subjects of the ADNI database (adnulda.edu) were used and re-
sampled to 258with slice thicknesses of Imm. These datasets were usest ioti@-patient
point-based non-linear registration from the originaledat to its natural deformed version
(see Figurel columns 1 and 2 of second row).

To assess the accuracy of our technique, we us@atyet Registration Error (TRE)® and
the Normalized mutual Information (NMI) (Studholme et al. 10]).

4 Resultsand Discussion

Tablel shows that the NMI of the larger landmark set (475) is beltentwhen using just 20

landmarks. The average TRE is slightly worse, however thiedstrd deviation is substan-
tially smaller despite being measured over a much largesfsetlidation points illustrating

a statistically more significant result. The evaluationdiof the fast RBF method (both
software and hardware versions) is only marginally affédig increasing the number of
landmarks with a factor of more than 20, unlike all other rethwhich are proportion-

ally more affected. The %NMI metric shows the performancéhefoptimised techniques
in comparison to the non-optimised ‘Brute force’ softwasséd method (gold standard).
The fast RBF method implemented in hardware exhibits thiedggcorrespondence (99%+)
implying minimal loss of accuracy due to fast RBF optimieatand hardware acceleration.

5 Conclusion

We have evaluated the fast RBF non-rigid registration niefbomedical imaging data us-
ing parameterized surfaces to derive large numbers of ameblandmarks. The algorithm

4Levin et al. B, 4] proposed a method for accelerating point based non-rigistration by using the fast
tri-linear interpolation capability of modern graphics daon a standard PC. Their implementation evaluates ¢
thin-plate spline (TPS) warp at discrete points on a condilglersized grid that overlays each image data slice.
5The TRE is the RMS error between the homologous validatiodriearks after registration.
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20 landmarks | Eval. Time in sec. NMI %NMI TRE in mm.

Brute force S/W 28.55(1.54) 1.202(0.043) 100.00 1.63(0.49)
Brute force H/W 0.51(0.05) 1.192(0.036) 99.1 1.63(0.49)
Fast RBF S/W 0.025 15.27(0.47) 1.202(0.043) 100.0 1.63(0.49)
Fast RBF H/W 0.025 0.53(0.04) 1.199(0.041) 99.6 1.63(0.49)
Grid 13 0.43(0.01) 1.144(0.066) 95.1 1.63(0.49)
Grid 138 16.31(1.08) 1.144(0.066) 95.1 1.63(0.49)
450+25 landmarks | Eval. Time in sec. NMI %NMI  TRE in mm.

Brute force S/W 486.48(4.02) 1.227(0.013) 100.00 1.81(0.20)
Brute force H/W 2.42(0.47) 1.214(0.027) 99.9 1.81(0.20)
Fast RBF S/W 0.025 31.15(1.04) 1.226(0.024) 100.0 1.81(0.20)
Fast RBF H/W 0.025 0.62(0.02) 1.221(0.021) 99.6 1.81(0.20)
Grid 13 2.69(0.06) 1.145(0.051) 93.4 1.81(0.20)
Grid 138 282.25(2.78) 1.142(0.052) 93.1 1.81(0.20)

Table 1:Results after applying a BHS basis function for non-rigigiseation of the MR-T1 ADNI datasets of
the same subject taken at different time points. 20 landmarks used for training and 20 for validation in the
upper half table. In the lower half table, 450 surface-bdaadmarks were used for training, while another 450
surface-based landmarks were used for validation, plus diti@thl 25 manually placed landmarks were used. All
tests were run over 5 subjects. Values are averages witbasthaeviation in parentheses. The second column
shows the evaluation time of the RBF in seconds. The thirdnenlshows the NMI. The next column shows the
%NMI as compared to the Brute-Force Software used as themgstdadard. The fifth and final column shows the
TRE in mm. which is evaluated on the validation landmarks - noée the latter is the same for all methods as its
calculation is based on the same BHS model.

when implemented in hardware yields sub-second evalustioes on a standard PC with
high-end video adapter card. The evaluation (warp) timb@fRast RBF algorithm is signifi-
cantly less susceptible to the number of landmarks usedmapared to the tested competing
methods. Considering that more accurately placed landsniamsrove accuracy implies that
this algorithm is favourable for applications where botleegb and accuracy are of impor-
tance, such as in IGS (Image Guided Surgery). In the futureviVeise the parameterized
surface and will do experiments on medical image data witighen degree of non-rigid

dist

ortion.
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Figure 1:The first two images in first row shows the correspondiagning andvalidation (red and blue) land-
marks before registration, and after (red, blue and greqrecatisely) registration, while the last two images show
the corresponding parameterized surfaces. The second oowléft to right show arbitrarily selected transverse
slices from the full resolution MR datasets (ADNI databaxfg)atient 002_S_0954. The first two images illustrate
the original and deformed MR image before registration, wihitelast two images show corresponding registered
and absolute difference images after the registration @xpeat, respectively.
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