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Abstract

With the advent of digital histopathology imaging and automatic image analysis,

colour constancy across multiple microscope slides has become aampssue. Colour
variation due to chemical, user or protocol inconsistency is widespr@dis paper
presents an approach for computationally efficient context awaraircolassification.
A ‘context vector’ derived from the colour distribution of the complete g@as com-
bined with the per-pixel information to improve pixel classification perfange. The
context vector implicitly encodes global image information such as whétleeslide is
under/over stained, or cut thinly, or thickly. The method is evaluateddgmentation
accuracy on two data sets with different stains, and as a pre-progessthod for a cell
nuclei detection algorithm.

1 Introduction

Histopathology is the diagnosis of disease by examinatfaissue. In order to visualise
tissue sections (which are virtually transparent), tisserions are prepared using coloured
histochemical stains that bind selectively to cellular poments. Colour constancy is a
problem in histopathology based on light microscopy due \ariable chemical colour-
ing/reactivity from different manufacturers/batches t@iiiss, colouring being dependent on
staining procedure (timing, concentrations etc.), anktligansmission being a function of
section thickness. Lyoet al. [5] outline the need for standardisation of reagents and proc
dures in histological practice. However, such rigorouadsadisation is not practised in the
majority of hospital laboratories and complete standatws is not possible without purer
(and less variable) reagents (requiring action from migdtghemical manufacturers, and an
associated increase in cost). Current practises are tinotphysical and procedural quality
control methods, including subjective assessment of sjaatity and inter-laboratory com-
parisons of staining, in order to minimise the visible vatiiity in staining and its impact on
diagnostic quality.

With the advent of digital imaging and automatic image asiglgolour consistency in
histopathology has become more of an issue. For exampley s@nmercial automatic
image analysis algorithms require parameters definingtpeated colour of anatomy of
interest and fail if these parameters are incorrect. Thpeparesents methods for taking
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into account the variation in staining (and other preparathconsistencies) using ‘context
aware’ colour classification. We define ‘context aware’ tahmeinclusion of global (whole
image) information in local (i.e. per-pixel) analysis. $h$ achieved using a low dimen-
sional embedding of a colour histogram of the whole imagepmbination with per-pixel
representations.

2 Methods and Materials

2.1 Slide Preparation

Data used in experiments in this paper was acquired from xistirey digital repository
subject to relevant ethical permissions. Tissue was famfiaed, paraffin embedded, cut in
~5 micron sections using a microtome, and mounted on starglasd microscope slides.
Samples were stained using Haematoxylin and Eosin cotaite$i+E), or Haematoxylin
and DAB (H+DAB). Virtual slides were obtained by scannin@2@k or 40x magnification
using an Aperio XT scanner (Aperio, San Diego). Sets of 6MXAMOO representative sub-
images at native resolution for each stain pair (12 imagé&sbatches) were extracted from
these gigapixel images via the ImageServer http interfileEG quality=100%).

2.2 Context Aware Colour Classification Using Low Dimensionk
Histogram Projections

Classification of individual pixels by colour into differeclasses relating to different stains,
or background, is an important first step in many digital pkiby applications. Per-pixel
colour classification was performed based on a feature veeotwstructed from the RGB val-
ues at a given pixel concatenated with a whole image speciittéext vector’. Pixels were
classified into 3 classes; ‘Stain 1’ (Haematoxylin), ‘Stain(Eosin, or DAB), and back-
ground (i.e. no stain). The context vector consisted of adawensional projection of a
histogram of colour prototypes. The histogram was consttuasing the highly computa-
tionally efficient Oct-tree based colour quantisation mdtlef Gervautz §]. This method
works by iteratively partitioning a 3D colourspace into &iabsized regions to form a tree
of regions of increasingly small size. In practise, a spaesis built containing only nodes
relating to colours which occur in the training set. Leavethis sparse tree are labelled with
a unique ‘prototype identifier’. The number of leaves candmiced by subsuming multiple
leaves of tree by their common parent node (which then bese@nteaf). In our implemen-
tation subsumption is based on the node with the fewest assdixels until there are
only 256 prototypes (a common heuristic and quantisatieal leften used in colour palette
construction). This prototype histogram generation pgecgrelated to the widely used bag-
of-words family of methods (e.g2]); the ‘words’ in this case being colour prototypes. The
process of feature generation for a given pixel is illustdah figurel. The low dimensional
projection of each image histogrady) is performed using Principal Components Analysis
(PCA) on a training set of histograms from different imageguationl).

Hn = Eq (Hh—H) (1)

Using equatiori, the histogram of any image (whether in the training set oy cen then
be represented as it's projection in a truncated Eigensfiéie whereEy, is the truncated
eigenvector matrix, and is the mean of, the training histogram set. Dimensionaétjurc-
tion of the context vector is necessary to avoid the (paddéipthigh dimensional) context
vector dominating the 3 dimensional colour vector in cligssiion. An added advantage is
the computational saving of performing classification gaarlow-dimensional feature. Use
of a class unaware dimensionality reduction method (i.eAR&ther than a class aware
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dimensionality method (e.g. Linear Discriminant AnalysldDA), allows projections to be
performed once per image, rather that once per pixel, agéesmage histogram typically
represents multiple pixel classes. There is an obvious atatipnal saving in this.
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Figure 1: Overview of Pixel Feature Generation in Trainingg®: A per-pixel RGB colour
value is combined with a per -image colour histogram prapecin eigenspace. Manual
labelling of pixels (using an interactive tool) assignsssléabels to particular pixels in the
image, which form the training set. Test set generatiorovadl the same protocol, except
that the Oct-tree and Eigenvectors estimated at training &re used.

Classification was performed using supervised learnin@éyrelevance Vector Machine
(RVM) method [7, 8] (http://dclib.sourceforge.ngt/ This method can classify a 1000x1000
image in a fraction of a second, whereas a Support Vector Madinained on the same
data takes many 10s of seconds. Additionally, the RVM presid probabilistic (rather
than binary) output. As we have a 3-class problem, and the R/K2-class classifier,
classification was implemented using the ‘one against alreach f], training 3 RVM
models per data set and normalising as in equaition

Pa1(s1|C) + Ps(s2|C) + Phga(bgd(C)

WhereClass, €{sl,s2,bgd}, Pojass, (Class|C) is the probabilistic output of the RVM
model trained with pixels fronClass, as positive examples and pixels from the other twc
classes as negative examples, @nd the combined feature vector (figute Other classi-
fiers (e.g. Random Forest$]|] were also evaluated, as were alternative colour reptasen
tions (e.g. LAB). The method was evaluated for per-pixebaoklassification accuracy, and
as a method for estimating image specific colour deconwsiutiatrices as a pre-processing
method prior to nuclei detection (following section).

P(Clasg|C) = 2

2.2.1 Image specific colour deconvolution for Nuclei Deteitin

Colour deconvolution (C.D.)q] is a method for ‘unmixing’ different stains in RGB mi-
croscopy images. In this work we extract an image relatinthéoHaematoxylin stain (a
nuclear stain) as a precursor to Nuclei detection with a Holigansform based method
[Self citation]. C.D. requires a representation of the apson factors of the mixed stains (a
‘colour deconvolution matrix’), the accuracy of which effe the accuracy of the unmixing.
C.D. is based on a subtractive model of image formation (@aua).

R 255x [13_, e #Antrn
G | = | 255x[]3_, & AnCen 3)
B 255x [13_, & AnCn
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Figure 2: Boxplots of 5-fold cross validation of colour+text based segmentation with
different context vector dimensionalities. Left: H+E Daaght: H+DAB data

An relates to the amount of stamat that pixel, ana; g, , defines the ‘colour deconvolution
matrix’ (absorption factors) for a particular stain of irgst. ¢; g, » may be calculated from
an example set of colours for each stain. The mean colougadms of interest (one for each
stainn) was used in this workr§, gn, bn) (Equationd).

Cin —log((fn+1)/256) —log((fn+1)/256)
Can | = | —10g((@n+1)/256) | /|| ~log((gn+1)/256 (4)
Con —log((bn+1)/256 —log((bn+1)/256

A complement (cross product ¢ 1,Cq1,Cp 1] and|cr2,Cy2,Cp2]) is used to complete
the (3x3) colour deconvolution matrix if only 2 stains are used (ashie experiments in
this paper). We estimate example colours for each chanivaj tise colour classification
method presented in secti@® to define pixels of interest for each stain. Pixels assigned a
probability greater than some threshold (0.99 is used ieexpents) are used to calculate the
example colours for each channel. Nuclei detection is adpb the resultant Haematoxylin
image, and to greyscale, and probability images for corapari

3 Results and Conclusions

Figure2 presents the accuracy of per-pixel colour classificatiah vand without, our con-
text vector. A clear (statistically significant) increaseaiccuracy is observed when using
context. It is interesting to observe that most of the cargerms to be encoded in the first
context dimension and there is little increase in accurabgmnusing >1D context. Sim-
ilar trends were observed when using a Random Forest casaiid other colourspaces,
although the RGB+RVM combination performed best (Randonests tended to over-fit).
Figure 3 presents precision-recall curves for nuclei detectiongisi Hough transform
based nuclei detector (with varying edge detector threghagplied to a greyscale version
of images, and pre-processed images representing the ltaghmastain channel extracted
in various ways. The first observation is that methods basddaematoxylin channel ex-
traction result in higher precision over using a greysaalage over a range of recall values.
Image specific deconvolution (based on our classifier) otdpas all other methods at high
recall values. Deconvolution with ‘standard vectors[0.644,0.717,0.267],E=[0.093,0.954,0.283]
supplied with standard implementations 6f performs well at low recall (i.e. there are few
false positives), but results in a significantly lower maximrecall than other methods as
weakly stained nuclei are not represented in this imagegénsaecific colour deconvolution
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Figure 3: Average Precision-recall curves for Hough basedendetection over 8 Haema-
toxylin and Eosin stained liver images (2059 nuclei) witfiedent pre-processing methods.

seems to be a better approach to extracting a stain-speudige than using a probability
image in this context. This is unsurprising as this reprizgem allows us to represent the
degree of staining, whereas the probability image is simapgbyobability that the dominant
stain at that pixel is Haematoxylin (independent of degffestaoning).

In conclusion, the method presented demonstrates thasioal of whole image context
information (a low-dimensional embedding of a colour hggtom) can aid per-pixel colour
based classification/segmentation. We have demonstiataditity of this to colour decon-
volution matrix estimation, and that this can improve thefgenance of nuclei detection.
We continue to evaluate new applications of these ideas.

References

[1] L. Breiman. Random forestdachine Learning45:5-32, 2001.

[2] C. Dance, J. Willamowski, L. Fan, C. Braya, and G. Csurka.ECCV International
Workshop on Statistical Learning in Computer Visipage Visual categorization with
bags of keypoints, 2004.

[3] Michael Gervautz and Werner Purgathofer. A simple mdthar color quantization:
Octree quantization. IiNew Trends in Computer GraphicSpringer Verlag, Berlin,
1988.

[4] C-W. Hsu and C-J. Lin. A comparison of methods for mutigd support vector ma-
chines.IEEE Transactions on Neural NetworKk3(2):415-425, 2002.

[5] H. Lyon, A. De Leenheer, and et. al. Standardization @fgents and methods usid
in cytological and histological practice with emphasis gesl stains and chromogenic
reagentsHistochemical Journal26:533-544, 1994.

[6] A. Ruifrok and D. Johnston. Quantification of histochealistaining by color deconvo-
lution. Analytical & Quantitative Cytology & Histology23:291-299, 2001.

[7] M. Tipping. Sparse Bayesian learning and the relevares#or machine.Journal of
Machine Learning Research:211-244, 2001.

[8] M. Tipping and A. Faul. Fast marginal likelihood maxiratgon for sparse Bayesian
models. InProc. International Workshop on Atrtificial Intelligence dStatistics 2003.



