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Abstract

With the advent of digital histopathology imaging and automatic image analysis,
colour constancy across multiple microscope slides has become an important issue. Colour
variation due to chemical, user or protocol inconsistency is widespread.This paper
presents an approach for computationally efficient context aware colour classification.
A ‘context vector’ derived from the colour distribution of the complete image is com-
bined with the per-pixel information to improve pixel classification performance. The
context vector implicitly encodes global image information such as whetherthe slide is
under/over stained, or cut thinly, or thickly. The method is evaluated for segmentation
accuracy on two data sets with different stains, and as a pre-processing method for a cell
nuclei detection algorithm.

1 Introduction

Histopathology is the diagnosis of disease by examination of tissue. In order to visualise
tissue sections (which are virtually transparent), tissuesections are prepared using coloured
histochemical stains that bind selectively to cellular components. Colour constancy is a
problem in histopathology based on light microscopy due to:variable chemical colour-
ing/reactivity from different manufacturers/batches of stains, colouring being dependent on
staining procedure (timing, concentrations etc.), and light transmission being a function of
section thickness. Lyonet al. [5] outline the need for standardisation of reagents and proce-
dures in histological practice. However, such rigorous standardisation is not practised in the
majority of hospital laboratories and complete standardisation is not possible without purer
(and less variable) reagents (requiring action from multiple chemical manufacturers, and an
associated increase in cost). Current practises are limited to physical and procedural quality
control methods, including subjective assessment of stainquality and inter-laboratory com-
parisons of staining, in order to minimise the visible variability in staining and its impact on
diagnostic quality.

With the advent of digital imaging and automatic image analysis colour consistency in
histopathology has become more of an issue. For example, many commercial automatic
image analysis algorithms require parameters defining the expected colour of anatomy of
interest and fail if these parameters are incorrect. This paper presents methods for taking
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into account the variation in staining (and other preparation inconsistencies) using ‘context
aware’ colour classification. We define ‘context aware’ to bethe inclusion of global (whole
image) information in local (i.e. per-pixel) analysis. This is achieved using a low dimen-
sional embedding of a colour histogram of the whole image, incombination with per-pixel
representations.

2 Methods and Materials
2.1 Slide Preparation
Data used in experiments in this paper was acquired from our existing digital repository
subject to relevant ethical permissions. Tissue was formalin fixed, paraffin embedded, cut in
≈5 micron sections using a microtome, and mounted on standardglass microscope slides.
Samples were stained using Haematoxylin and Eosin counterstain (H+E), or Haematoxylin
and DAB (H+DAB). Virtual slides were obtained by scanning at20x or 40x magnification
using an Aperio XT scanner (Aperio, San Diego). Sets of 60 1000×1000 representative sub-
images at native resolution for each stain pair (12 images× 5 batches) were extracted from
these gigapixel images via the ImageServer http interface (JPEG quality=100%).

2.2 Context Aware Colour Classification Using Low Dimensional
Histogram Projections

Classification of individual pixels by colour into different classes relating to different stains,
or background, is an important first step in many digital pathology applications. Per-pixel
colour classification was performed based on a feature vector constructed from the RGB val-
ues at a given pixel concatenated with a whole image specific ‘context vector’. Pixels were
classified into 3 classes; ‘Stain 1’ (Haematoxylin), ‘Stain2’ (Eosin, or DAB), and back-
ground (i.e. no stain). The context vector consisted of a lowdimensional projection of a
histogram of colour prototypes. The histogram was constructed using the highly computa-
tionally efficient Oct-tree based colour quantisation method of Gervautz [3]. This method
works by iteratively partitioning a 3D colourspace into 8 equal sized regions to form a tree
of regions of increasingly small size. In practise, a sparsetree is built containing only nodes
relating to colours which occur in the training set. Leaves in this sparse tree are labelled with
a unique ‘prototype identifier’. The number of leaves can be reduced by subsuming multiple
leaves of tree by their common parent node (which then becomes a leaf). In our implemen-
tation subsumption is based on the node with the fewest associated pixels until there are
only 256 prototypes (a common heuristic and quantisation level often used in colour palette
construction). This prototype histogram generation process is related to the widely used bag-
of-words family of methods (e.g. [2]); the ‘words’ in this case being colour prototypes. The
process of feature generation for a given pixel is illustrated in figure1. The low dimensional
projection of each image histogram (Hn) is performed using Principal Components Analysis
(PCA) on a training set of histograms from different images (equation1).

Ĥn = ET
h (Hn− H̄) (1)

Using equation1, the histogram of any image (whether in the training set or not) can then
be represented as it’s projection in a truncated Eigenspace(Ĥn), whereEh is the truncated
eigenvector matrix, and̄H is the mean of, the training histogram set. Dimensionality reduc-
tion of the context vector is necessary to avoid the (potentially high dimensional) context
vector dominating the 3 dimensional colour vector in classification. An added advantage is
the computational saving of performing classification using a low-dimensional feature. Use
of a class unaware dimensionality reduction method (i.e. PCA), rather than a class aware
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dimensionality method (e.g. Linear Discriminant Analysis- LDA), allows projections to be
performed once per image, rather that once per pixel, as a single image histogram typically
represents multiple pixel classes. There is an obvious computational saving in this.

Figure 1: Overview of Pixel Feature Generation in Training Stage: A per-pixel RGB colour
value is combined with a per -image colour histogram projection in eigenspace. Manual
labelling of pixels (using an interactive tool) assigns class labels to particular pixels in the
image, which form the training set. Test set generation follows the same protocol, except
that the Oct-tree and Eigenvectors estimated at training time are used.

Classification was performed using supervised learning by the Relevance Vector Machine
(RVM) method [7, 8] (http://dclib.sourceforge.net/). This method can classify a 1000x1000
image in a fraction of a second, whereas a Support Vector Machine trained on the same
data takes many 10s of seconds. Additionally, the RVM provides a probabilistic (rather
than binary) output. As we have a 3-class problem, and the RVMis a 2-class classifier,
classification was implemented using the ‘one against all’ approach [4], training 3 RVM
models per data set and normalising as in equation2.

P(Classn|C) =
PClassn(Classn|C)

Ps1(s1|C)+Ps2(s2|C)+Pbgd(bgd|C)
(2)

WhereClassn ∈{ s1,s2,bgd}, PClassn(Classn|C) is the probabilistic output of the RVM
model trained with pixels fromClassn as positive examples and pixels from the other two
classes as negative examples, andC is the combined feature vector (figure1). Other classi-
fiers (e.g. Random Forests [1]) were also evaluated, as were alternative colour representa-
tions (e.g. LAB). The method was evaluated for per-pixel colour classification accuracy, and
as a method for estimating image specific colour deconvolution matrices as a pre-processing
method prior to nuclei detection (following section).

2.2.1 Image specific colour deconvolution for Nuclei Detection

Colour deconvolution (C.D.) [6] is a method for ‘unmixing’ different stains in RGB mi-
croscopy images. In this work we extract an image relating tothe Haematoxylin stain (a
nuclear stain) as a precursor to Nuclei detection with a Hough Transform based method
[Self citation]. C.D. requires a representation of the absorption factors of the mixed stains (a
‘colour deconvolution matrix’), the accuracy of which effects the accuracy of the unmixing.
C.D. is based on a subtractive model of image formation (equation 3).
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Figure 2: Boxplots of 5-fold cross validation of colour+context based segmentation with
different context vector dimensionalities. Left: H+E Data, Right: H+DAB data

An relates to the amount of stainn at that pixel, andcr|g|b,n defines the ‘colour deconvolution
matrix’ (absorption factors) for a particular stain of interest.cr|g|b,n may be calculated from
an example set of colours for each stain. The mean colour of regions of interest (one for each
stainn) was used in this work (¯rn, ḡn, b̄n) (Equation4).
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(4)

A complement (cross product of[cr,1,cg,1,cb,1] and [cr,2,cg,2,cb,2]) is used to complete
the (3×3) colour deconvolution matrix if only 2 stains are used (as in the experiments in
this paper). We estimate example colours for each channel using the colour classification
method presented in section2.2 to define pixels of interest for each stain. Pixels assigned a
probability greater than some threshold (0.99 is used in experiments) are used to calculate the
example colours for each channel. Nuclei detection is applied to the resultant Haematoxylin
image, and to greyscale, and probability images for comparison.

3 Results and Conclusions

Figure2 presents the accuracy of per-pixel colour classification with, and without, our con-
text vector. A clear (statistically significant) increase in accuracy is observed when using
context. It is interesting to observe that most of the context seems to be encoded in the first
context dimension and there is little increase in accuracy when using >1D context. Sim-
ilar trends were observed when using a Random Forest classifier and other colourspaces,
although the RGB+RVM combination performed best (Random Forests tended to over-fit).

Figure3 presents precision-recall curves for nuclei detection using a Hough transform
based nuclei detector (with varying edge detector threshold) applied to a greyscale version
of images, and pre-processed images representing the Haematoxylin stain channel extracted
in various ways. The first observation is that methods based on Haematoxylin channel ex-
traction result in higher precision over using a greyscale image over a range of recall values.
Image specific deconvolution (based on our classifier) outperforms all other methods at high
recall values. Deconvolution with ‘standard vectors’ (H=[0.644,0.717,0.267],E=[0.093,0.954,0.283])
supplied with standard implementations of [6] performs well at low recall (i.e. there are few
false positives), but results in a significantly lower maximum recall than other methods as
weakly stained nuclei are not represented in this image. Image specific colour deconvolution
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Figure 3: Average Precision-recall curves for Hough based nuclei detection over 8 Haema-
toxylin and Eosin stained liver images (2059 nuclei) with different pre-processing methods.

seems to be a better approach to extracting a stain-specific image than using a probability
image in this context. This is unsurprising as this representation allows us to represent the
degree of staining, whereas the probability image is simplya probability that the dominant
stain at that pixel is Haematoxylin (independent of degree of staining).

In conclusion, the method presented demonstrates that inclusion of whole image context
information (a low-dimensional embedding of a colour histogram) can aid per-pixel colour
based classification/segmentation. We have demonstrated the utility of this to colour decon-
volution matrix estimation, and that this can improve the performance of nuclei detection.
We continue to evaluate new applications of these ideas.
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