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Abstract
Brain iron deposits have recently been suggested as biomarkers for small brain vessel

diseases. Here, we present a novel, automated method for segmenting brain iron deposits
in the basal ganglia from structural MRI data. It is based on minimum-variance cluster-
ing of intensities from T1- and T2∗-weighted volumes, and a supervised cluster selection
algorithm. This method was evaluated with MR data from 24 subjects and compared with
iron deposit masks segmented manually by an experienced rater. A median Jaccard sim-
ilarity index of 0.64 between manual and automatically generated segmentation masks
is promising and encourages further investigations to improve the computing speed and
accuracy of the method.

1 Introduction
Iron is essential for many human cellular functions involving enzymes and prosthetic groups.
In the brain, excess iron is usually stored in form of the soluble protein ferritin which pro-
vides protection against iron induced brain tissue damage and is used as an iron source
during times of iron deficiency. Iron can also be found in form of the insoluble iron-complex
hemosiderin, which is mainly associated with brain microbleeds and iron deposits in the
basal ganglia. Histopathological investigations revealed that basal ganglia iron deposits
(BGIDs) are closely related with small blood vessels and that they can show calcifications.
Recently, a clinical study suggested brain microbleeds and BGIDs, which increase in preva-
lence and extent with age, as biomarkers for small vessel dysfunction[4].

MRI is commonly used to detect IDs in brain tissue. Water shielded paramagnetic
molecules, such as hemosiderin, ferritin and deoxyhemoglobin, as well as calcium, dephase
proton spins in their vicinity, which locally shortens the transverse relaxation time and causes
hypointense regions on T2- and T2∗-weighted magnitude images. T1-weighted magnitude im-
ages can provide additional information about the chemical state of IDs[1]. A recent study
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already showed that fused T1- and T2∗-weighted magnitude images can be used to differ-
entiate IDs from calcium because calcium appears hypointense in T1-weighted magnitude
images[6].

Currently, IDs in MRI data are segmented and rated manually by radiologists, which
can be very time consuming and prone to a high degree of inter-observer variability. A
recent study compared two semi-automated methods for segmenting IDs based on thresh-
olding and minimum variance quantization as implemented in the software MCMxxxVI[7],
which showed good intra- and inter-observer reliability. However, both methods have limi-
tations regarding further automation and observer independence[6]. To address these issues,
we have developed a new method for reliably and automatically identifying BGIDs from
structural MRI data which we describe below.

2 Method

The automatic BGID segmentation method requires registered, bias corrected T1- and T2∗-
weighted volumes, binary masks of normal-appearing white matter, and basal ganglia struc-
tures, which are generated in a preprocessing step. In the subsequent segmentation step,
potential BGID hypointensities are identified, collected and clustered. Individual clusters
are scored and clusters with scores above an arbitrary threshold are selected to create BGID
masks. The threshold can be chosen either manually or automatically.

2.1 Preprocessing

Firstly, the T1- and T2∗-weighted volumes were affine registered to T2-weighted volumes
with FSL1 FLIRT[2]. The bias field of the registered T1- and T2∗-weighted volumes was
removed with FSL FAST[10]. We generated masks of the normal-appearing white matter
using MCMxxxVI as it has been validated on scans from older subjects[7]. Lastly, FSL
FIRST was used to segment basal ganglia structures, caudate nucleus, globus pallidus and
putamen, and to generate binary basal ganglia masks[3].

2.2 Hypointensities collection and clustering

Intensities of registered, bias-corrected T1- and T2∗-weighted volumes which are potentially
associated with BGIDs are identified in all slices and collected in a set D . Firstly, ROI
masks MROI are calculated by adding a margin to basal ganglia masks to compensate for
possible segmentation errors. Intensities pairs (IT 1,reg,bc, IT 2∗,reg,bc) within the ROI from reg-
istered, bias-corrected T1- and T2∗-weighted volumes, and with an IT 2∗,reg,bc intensity below
a cutoff intensity IT 2∗,reg,bc,max are added to the set D . The cutoff intensity is defined as
IT 2∗,reg,bc,max = mWM − n sWM with the cutoff factor n ∈ R+. White matter mean mWM and
standard deviation sWM are estimated from IT 2∗,reg,bc intensities within the volume covered
by the white matter mask. Finally, Ward’s average-linkage agglomerative clustering method
is used to partition the set D into k subsets by minimising the inter-cluster and maximising
the intra-cluster variance[8].

1http://www.fmrib.ox.ac.uk/
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2.3 Scoring and selection of clusters
After clustering, we assign a score Si to each cluster according to the likelihood that they
contain BGID intensities. A score:

Si = f ( IT 2∗,med,i ) = 1− IT 2∗,med,i

IT 2∗,reg,bc,max
i = 1..k (1)

is calculated for each of the k clusters after clustering with Ward’s method. Here, IT 2∗,med,i
is the median of IT 2∗,reg,bc intensities of each cluster. The scoring function f implements the
believe that BGID intensities are on average darker than white or grey matter intensities.

BGID intensity clusters with a score above a cutoff Scuto f f are selected to generate BGID
masks.The cutoff score can be chosen either manually by searching for the optimal score, or
automatically based on a linear relationship with the factor WD according to:

Scuto f f = α +WDβ = α +
IT 2∗,med

IT 2∗,max− IT 2∗,min
β α,β ∈ R (2)

with IT 2∗,max, IT 2∗,min and IT 2∗,med as the maximum, minimum and median IT 2∗,reg,bc intensi-
ties of set D , respectively. The parameters α and β can be estimated from the optimal cutoff
score and corresponding width factor WD of subjects in a training set.

3 Experimental results and discussion
The presented method was evaluated using T1-, T2∗- and T2-weighted volumes acquired from
24 generally healthy, community-dwelling older subjects from the Lothian Birth Cohort
19362, with imaging parameters described in [9]. We compared the BGID masks, obtained
with manual and automatic cutoff score selection, with reference masks generated with a
published, semi-automated method by an experienced rater[7]. The Jaccard index was used
to measure the spatial, in-plane coincidence of generated and reference BGID masks[5].

Figure 1 shows segmentation results with k = 16 clusters and cutoff factor n = 1.2 for a
representative subject. The Jaccard indices for manual and automatic cutoff score selection
were 0.71 and 0.57, respectively. The automatic segmentation results were generated in
a 5-fold cross-validation run. The manual segmentation result approximates the reference
masks reasonably well whereas the automatic segmentation generally produces a slightly
larger region than the reference masks. A Matlab3 implementation of the cross-validation
of the segmentation algorithm, using the pMatlab library4 to distribute processing across six
standard 2.66GHz processor cores, takes about 40min for all 24 subjects to complete.

Figure 2 shows how the number of clusters k influences the performance of the segmen-
tation method at n = 1.2 for all subjects. The performance with manual cutoff score selection
improves for k = 16 and stays about the same for increasing number of clusters. It seems
that for k = 8 there is still a significant number of clusters which contain a mixture of BGIDs
and grey or white matter intensities. Those clusters seem to be broken up for higher k val-
ues that enable a more fine-grained cluster selection. The performance with automatic cutoff
score selection generally follows the same pattern as with manual cutoff score selection. The

2http://www.psy.ed.ac.uk/research/lbc/LBC1936.htm
3http://www.mathworks.com/
4http://www.ll.mit.edu/pMatlab/
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Figure 1: Segmentation result for a representative subject The first column shows
cropped, bias corrected T2∗-weighted images with basal ganglia hypointensities from slice
38 to 40. Column two and three shows images from the first column with overlaid reference
BGID masks, and either masks from the method with manual or automatic cutoff score se-
lection, respectively. The colours in those two columns indicate the agreement between the
BGID masks: bright (red, green) coloured voxels indicate that they appear in only one of the
masks while dark (blue) voxels indicate a perfect match. The forth column shows the man-
ual mask where higher colour saturation levels indicate brighter voxels in the T1-weighted
image, and possibly a different chemical state of the iron deposits[1].

linearity between WD and Scuto f f (Equation 2) from all 24 subjects increases with increas-
ing number of clusters k, with a linear correlation coefficient of 0.66, 0.84, 0.90, 0.91 for
k = 8,16,24,32, respectively. It seems that cluster granularity and the parameter linearity is
sufficiently high at k = 16 for the automated method to work well.

For subjects with approximately the same numbers of BGIDs, grey and white matter
intensities used for hierarchical clustering results in a cluster hierarchy with three main
branches for BGIDs, grey and white matter intensity clusters, respectively. This suggests
that BGID clusters seem to separate well from grey and white matter clusters, and the num-
ber of clusters could be decreased to k = 3 without any significant loss of accuracy. For
subjects with small or large BGIDs, the BGID intensities either have too little or too much
weight in the clustering process which causes an increased aggregation of BGID intensi-
ties with grey or white matter intensities. This seems to originate from the fact that Ward’s
method is generally biased towards forming equal sized clusters. Then an increase in the
number of clusters is required to be able to separate the BGID clusters from the others.

Currently, this method is designed to segment IDs in the basal ganglia. Segmenting
IDs in other brain regions may be more difficult due to the presence of blood vessels, areas
filled with air or deposits of different minerals. All those features may cause hypointensities
similar to IDs, which would have to be detected and filtered either before or after clustering.

4 Conclusions

We have developed and evaluated an automated segmentation method for BGIDs. The result-
ing BGID masks are promising and tend to be close to reference masks from an experienced
rater. The next step will be to improve the accuracy and increase the computation speed of
the method by evaluating other clustering and cluster selection algorithms.
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Figure 2: Performance of the segmentation method for different number of clusters k
with manual and automatic parameter selection A boxplot shows the minimum, 25th-,
50th-, 75th-percentile, and maximum of the distribution of Jaccard indices from each subject.
The median Jaccard indices for each k are 0.62, 0.71, 0.71, 0.73 with manual parameter
selection, and 0.55, 0.64, 0.64, 0.64 with automatic parameter selection.
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