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Abstract

In this study, a fast and clinically feasible residual-bootstrapping algorithm using a
geometrically constrained two-tensor diffusion model is employed for estimating uncer-
tainty in fibre orientation. Voxels are classified based on tensor morphologies before
applying a single or two tensor residual-bootstrapping algorithms. Classification of ten-
sor morphologies allows the tensor morphology to be considered when selecting the most
appropriate bootstrap procedure. A constrained two-tensor model approach can greatly
reduce data acquisition and computational times for whole bootstrap data volume gen-
eration compared to other multi-fibre model techniques, facilitating widespread clinical
use. Tractography with two-tensor residual-bootstrapping is also developed to estimate
the connection probabilities between brain regions, especially regions with complex fibre
configurations. Experimental results on a hardware phantom and in vivo data demonstrate
the superior performance of our approach compared to conventional approaches.

1 Introduction
Bootstrapping of repeated DWMRI data sets allows non-parametric estimation of uncer-
tainty in the inferred fibre orientation [1]. Model-based bootstrap methods (wild-bootstrap
[2] and residual-bootstrap [3]) using a single data set have been presented as an alternative
to conventional bootstrapping (repetition-bootstrap). Chung et al. [3] demonstrated that the
residual-bootstrap performs better than the wild-bootstrap with higher accuracy in estima-
tion of uncertainty. However, model-based and conventional bootstrap tractography methods
using DTI can fail when fibre tracts pass through voxels containing complex configurations
[4]. These configurations are often characterised by disk-shaped (planar) forms of the tensor.
The development of new models based on HARDI seeks to provide solutions to this prob-
lem. HARDI-based methods, including multi-tensor models [5] and Q-ball imaging, require
longer acquisition times than conventional DTI and are generally not suitable for clinical
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applications. To solve some of the above problems, a geometrically constrained two-tensor
model for resolving fibre crossings was introduced in [6].

More than a third of voxels in human white matter contain crossing fibre bundles at the
current resolution of DWMRI, and these voxels challenge statistical models for tensor esti-
mation and fibre tracking. Therefore, developing a proper bootstrap method for estimating
fibre orientation in these voxels is important. Yuan et al. [4] showed that conventional and
model-based bootstrapping may fail to quantify the uncertainties in DTI derived parameters
in oblate voxels. Therefore, to use bootstrap methods correctly, the morphology of a tensor
must be known. The validity of bootstrapping algorithms strongly depends on the correct
specification of the fitted model used to estimate tensors. This raises concerns about the
validity of bootstrapping those fibre pathways that pass through voxels containing different
tensor morphologies. Our solution is to classify tensor morphologies before the application
of bootstrap algorithms, which allows the use of appropriate tensor morphologies.

In this work, a residual-bootstrapping algorithm for estimating uncertainty in fibre ori-
entation is presented based on constrained two-tensor diffusion model and voxel tensor mor-
phologies. A probabilistic tractography algorithm is then developed to reconstruct fibre path-
ways using two-tensor residual bootstrap datasets.

2 Two-Tensor Residual-Bootstrapping Algorithm
Step 1- Data Acquisition and Initial Tensor Fitting. Intensities of the measured diffusion-
weighted signals are quantified for a single-tensor model by:

Si = S0e−bgT
i Dgi , i = 1,2, ...,N.

Applying a log-transformation to the model equation, the estimation of D becomes a well-
known multiple linear regression form: Yi = (XD)i +εi, i = 1,2, ...,N, where X is a design
matrix of different diffusion gradient directions, (XD)i is the product of the ith row of X and
D, and εi is a random sample from the residuals of the original regression model.

To estimate the tensor D, the model-equation is solved by the linear least squares (LLS)
method: D̂ = (XT X)−1XTY. The residuals from the LLS fit used to generate the residual-
bootstrap samples in Step 4 are calculated from: ε = Y −XD̂.
Step 2- Classifying Tensor Morphology. To classify tensor morphologies, we developed
an algorithm based on three equalities described in Zhu et al. [7], where the algorithm
sequentially checks whether each voxel in the image is isotropic, oblate, or prolate. A Two-
tensor residual-bootstrap (TTRB) algorithm was applied to oblate voxels and single-tensor
residual-bootstrap (STRB) algorithm to the other voxels.
Step 3- Constrained Two-Tensor Model Estimation. A geometrically constrained two-
tensor model [6] was used to find the two diffusion tensors and reduce the number of degrees
of freedom in the original multi-tensor model [5].This model assumes that both fibre tracts
are constrained in the plane spanned by the first two eigenvectors from the single-tensor
fit and this now becomes a 2D problem. The gradient vectors are transformed into 2-D
coordinate system; g→ g̃.

E(qi) = Si/S0 = f e−bg̃T
i DAg̃i +(1− f )e−bg̃T

i DBg̃i

where DA and DB represent the tensor from each compartment, and f and (1− f ) are the
signal fractions from DA and DB. The equation becomes a system of non-linear equations and
minimises to ∑i(Ê(qi)−E(qi))2, which gives the estimated tensor elements D̂A, D̂B and the
fraction f̂ . The LM optimisation algorithm is used to estimate non-linear equations. In each
gradient direction i(i = 1, ...,N), a residual εi is calculated according to εi = E(qi)− Ê(qi).
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Step 4- Residual-Bootstrap Sample Generation. The residual vector ε from the single-
tensor fit or two-tensor fit used to generate the RB samples. The RB approach assumes that
all residuals have similar distributions and a residual value ε∗j randomly chosen among the
set of all residuals ε . Model-based resampling is then performed to construct many data sets,
Y ∗ or E(qi)∗: Y ∗j = XD̂+ε∗j , for voxels with single-tensor and E(qi)∗j = Ê(qi)+ε∗j for voxels
with two-tensor. Resampling ε∗ = [ε∗1 ,ε∗2 , ...,ε∗N ] and estimating D∗ or D∗A and D∗B from Y ∗

or E(qi)∗ are repeated for a fixed large number n to acquire n independent RB samples.
Step 5- Probabilistic Fibre Tractography. Having generated n tensor volumes, a 4th order
Runge-Kutta tracking algorithm was used to propagate streamlines bidirectionally from seed
points. The algorithm was repeated for n volumes to generate n tracts for each seed point.
Every voxel in a volume contains either 1 or 2 principal eigenvectors as appropriate for the
tensor morphology of the particular voxel. If the seed point voxel has two tensors then two
separate trajectories are generated from the seed point using two fibre orientations. The
deterministic tracking algorithm then propagates the trajectories to the next position. If the
next position contains two fibre orientations, we choose the diffusion tensor which has the
smallest angular difference to the principal eigenvector calculated from the previous position.

3 Methodology
Phantom Data: 3T DW-data were acquired from a physical phantom with 3x3x3 mm3 voxel
resolution, b =1500 s/mm2 and 64 diffusion directions (www.lnao.fr/spip.php?article106).
In Vivo Data: 3T DTI data were obtained on a healthy volunteer with 2x2x2 mm3 voxel
resolution using 32 diffusion-encoding gradient directions and b = 1300 s/mm2. The ac-
quisition was repeated 8 times for conventional-bootstrap analysis. The diffusion-weighted
images were first corrected for bulk motion and eddy current distortions.
TTRB: We applied the TTRB algorithm to the phantom data and the first of the eight re-
peated in vivo diffusion-weighted datasets and generated 1000 RB volumes. The probabilis-
tic tractography was applied to the RB volumes of phantom data from 4 pre-defined seed
positions. Fibre tracts were generated from user-defined regions in in vivo data based on
prior anatomical knowledge to delineate the corpus callosum (CC), superior longitudinal
fasciculus (SLF) and corticospinal tract (CST). A comparison of the results of our method
with that of the STRB method applied using the same starting points to extract the same fibre
structures in the phantom and in vivo data are presented.
TTCB: Two-tensor conventional-bootstrap (TTCB) method was used to randomly generate
samples for every voxel in each diffusion-encoded image of the in vivo data. In each iteration
5 samples were randomly sampled with replacement from the 8 data acquisitions. The signal
for each voxel was calculated as the average of the 5 selected samples. This procedure was
repeated for each voxel and diffusion-encoded dataset. The resulting data is one volume
bootstrap sample. Single or constrained two-tensor models according to the morphology
of the voxels, were fitted to the bootstrap data to estimate diffusion tensors for each voxel.
A complete bootstrap tractography dataset was obtained by iteratively running the random
sampling method 1000 times to generate multiple volume bootstrap data. Fibre tracts were
generated using the same region and the tracking threshold as the TTRB tracking.
Performance Analysis: The phantom data was used to test the performance of the STRB
and TTRB probabilistic tracking algorithm. Performance measures were calculated as the
error (ξ ) in tract estimation, which is a function of distance d from the seed point. The
distance di at the point (xi,yi,zi), is the cumulative total of all the Euclidian distances of
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(i) (ii) (A) (ii) (B) (ii) (C) (ii) (D)
Figure 1: Phantom Data Results (i)(a) Ground truth, crossing regions and a branching region
(b) Voxel classification (linear (+), planar(*) or spherical (o) shape) and constrained two-
tensor model estimation. (ii)Tracking results from 4 seed points (red square) A, B, C and D.
(a) Results of STRB (green) and TTRB (yellow) (b) Probability map of STRB and (c)TTRB.

neighbouring points along the curve up to the point (xi,yi,zi) from the seed point. The
positive distances and negative distances are defined by the two directions of a curve from
a seed point. The error ξi at distance di is defined as the Euclidian distance between the
ground-truth curve point at di and the resultant curve point at di from the seed point. The
overall range of d is defined as the maximum d at both ends of the ground-truth curve. The
ground truth curves and the curves of the two probabilistic methods from the 4 seed points
of the phantom data were assessed. From the 1000 probabilistic curves, average error values
were computed for each method and for each seed point at 10 mm distances.

4 Results and Discussion

Phantom Data: In Figure 1(A), ideally, one would expect the tractography trajectories start-
ing from the seed point to cross regions 1 and 3; instead as STRB tracts enter the fibre cross-
ing region the fibre tracts diverge in the wrong direction. The TTRB result, however, shows
that the trajectories correctly cross the region and tracts are similar to the expected ground
truth. In Figure 1(B), the seed point selected as a target shows the branching ability of the
TTRB algorithm. The estimated pathways of STRB have leaked and are dispersed, which
makes the main pathway of connectivity more difficult to comprehend. For seed points C
and D the TTRB tractography correctly follows the fibre direction through the fibre-crossing
regions: Region 3 and Region 2, while the STRB results do not.
Performance Analysis: Consider the plots of average error at different distances from the
4 seed points (Figure 2(i)), generally, the error increases with distance from the seed point
for both methods. STRB errors largely increase with distance compared with TTRB errors
after the tracts enter crossing regions (Region 1, 2, and 3) in all cases, because STRB tracts
diverge in the wrong direction (Figure 1 (A), (C) and (D)) in these regions.
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(i) (ii)
Figure 2: (i) Comparison of STRB and TTRB from four seed points A, B,C and D with the
average error (in mm) at different distances from the seed point. (ii) In vivo tracking results:
CC, SLF and CST in rows; STRB,TTRB and TTCB in columns.

In Vivo Data: TTRB fibre tracking techniques were able to more accurately delineate the
callosal radiation than STRB tractography (Figure 2 (ii)). The TTRB tractography method
was able to traverse regions of crossing fibres and connectivity observed throughout the
lateral frontal and parietal lobes while STRB tracts only showed connectivity between the left
and right superior frontal gyri of both hemispheres. TTRB tractography results of the SLF
show more white matter connections passing through the seed point, demonstrating not only
central parts of the SLF, but also fibres reaching more distally, as well as links and projections
to parts of the inferior longitudinal fascicle, cingulum and links between subcortical areas,
not observed for STRB. The results of the CST illustrate that STRB and TTRB are able to
reconstruct the CST from the cortex to the spinal cord from a seed point placed in the internal
capsule. STRB results indicate that a number of streamlines erroneously cross and project
into the contralateral hemisphere. TTRB and TTCB produced very similar reconstructions of
all three tracts and higher fibre dispersion values were observed compared to STRB results,
especially as the tracts move further from the seed point.
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