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Abstract

This paper proposes a novel reflectional asymmetry descriptor to quantize the asym-
metry appearance of melanocytic lesions. The new reflectional asymmetry descriptor
based on global point signatures (GPS) of the pigmentation model enable to characterize
the shape and pigmentation information simultaneously. The experiment results from
311 dermoscopy images shows that the proposed asymmetry descriptor has more dis-
crimination power than descriptors without GPS, which gives 85.12% sensitivity and
76.38% specificity for melanoma diagnosis.

1 Motivation
Asymmetric appearance usually represents an abnormal reproduction of biological cells
within body organs and tissues, with probability to become metastatic and aggressively
spread thorough the body. Malignant melanoma, which accounts for 75% mortality caused
by skin cancers [1], is one of these examples. Accordingly ABCD rules- standing for asym-
metry (A), border irregularity (B), colour variegation (C) and diameter of the lesion (D)-
have been developed for clinical diagnosis to identify melanoma. In particular, asymmetry
characterizing the extrinsic contour or shape of the lesion has been transferred into auto-
matic computed quantities. Stoecker et al. [2] computed the principal axes and determined
the reflectional asymmetry of the lesion in terms of area differences across axis. Andreassi
et al. [3] segmented a lesion across 360 axes and exploited the variance of area differences
to generate a contour asymmetry measure. Stanganelli et al. [4] used the size function to
quantify the shape and colour asymmetric appearance of the two-halves of the lesion. How-
ever, these asymmetry detection approaches share some similar shortcomings. Firstly, most
of the existing asymmetry descriptors are shape dependent or sometimes colour dependent
alone, while dermatologists comprehensively analyze both during clinical diagnosis. Sec-
ondly, recent approaches simply combined the shape and colour asymmetry descriptors. But
separating shape and colour asymmetry detection might yield two different reflectional axes.

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

75



2 LIU ET AL.: MIUA 2011

This paper proposed a new asymmetry descriptor able to simultaneously quantify the spa-
tial and colour distributions of the cutaneous lesions. A pigmentation model is constructed
by mapping colour information, like red, green or blue values in an RGB image, to the third
axis of a Cartesian coordinate. Then the global point signatures (GPSs) of the pigmenta-
tion model are applied to measure the reflectional asymmetry of the lesion by minimizing
the histogram difference of the GPSs. Compared with asymmetry descriptor without GPSs,
the proposed asymmetry detector proved more efficient in describing the abnormality of the
cutaneous skin lesions.

2 Methodology
2.1 Pigmentation Modelling
Several pre-processing steps are applied to remove the hairs on the skin [5], flatten the homo-
geneous regions meanwhile preserve the edges [6], and isolate the areas of pigmented skin
lesions from the surrounding normal skin [7]. Then the pigmentation model is constructed
by assigning colour values as Z axis, and spatial information of the isolated lesion as X and
Y axes respectively. In order to make the spatial and pigmentation provide comparable con-
tributions when building the asymmetry descriptor, the model is scaled down in a bound box
as follow. First normalize the Xlesion so that its range is 1 (supposing Xlesion has larger range
than Ylesion). Then compress the Ylesion to the range of r, where r = Ylesion/Xlesion. Finally Z
axis representing colour information is normalized to the range of [0 1] by dividing 255.

Figure.1 shows the pigmentation models calculated from an isolated malignant melanoma
(MM) and a benign nevus (BN) images. The outer boundary of the shape stands for the
spatial distribution of the lesion, and the pigmentation asymmetry can be reflected by the
asymmetry of the pigmentation model along Z direction.

Figure 1: Pigmentation model from dermatoscopy images. (i) MM (ii) BN.

2.2 Computing the GPSs
The proposed asymmetry descriptor is based on GPSs, which are derived from Laplace Bel-
trami operator [8]. The Laplace Beltrami operator is defined as the divergence of the gradi-
ent on a surface function in Riemannian manifold and it can be approximated by the graph
Laplacian matrix by heat kernel [9], where the eigenvectors of the Laplacian matrix embed
the points on the manifold to low dimensional representations. GPSs are used because they
integrate the shape and colour information on the pigmentation model simultaneously. More-
over, it has been proved that GPSs are robust to the metric deformations [10] which might
be introduced by the camera positions or various lighting conditions during data acquisition.

Suppose a set of feature vectors x1,x2, . . . ,xω ∈ M and M is a d-dimensional Rieman-
nian manifold. An adjacency graph connecting edges between points can be constructed by
computing the heat kernel Wi j as,

Wi j =

{
e−

(xi−x j )
2

4σ i f x j is the k nearest neighbor o f xi
0 otherwise

(1)
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where t is the standard deviation of neighbour points, and k is the number of nearest
neighbours. Then the Laplance matrix L can be calculated as L = D−W , where D is a diag-
onal weight matrix with the entries Dii =−∑ j Wi j. Since the Laplance matrix is symmetric,
negative and semi-defined, it has an eigen-decomposition with a set of eigenvectors φu and
the corresponding eigenvalues λu as Lφu = λuDφu(0 = λ0 < λ1 < λ2 < .. . < λω−1). The
manifold M can then be embedded in the GPS spaces [8] as,

gps(p) = {φ1(p)√
λ1

,
φ2(p)√

λ2
, . . . ,

φu(p)√
λu

, ...} (2)

In our work, M is the pigmentation model in 3-dimensional space. The eigenvectors
corresponding to the first few eigenvalues determine the optimal embeddings. In practice,
the first eigenfunction with λ0 = 0 is neglected because it generates a constant function. In
addition, the eigenfunctions associated with repeated eigenvalues could introduce rotational
symmetries that are not stable for small non-isometric perturbations [10]. Therefore we
restrict our searching for reflectional asymmetry detection in the first 6 eigenfunctions with
non-zero and non-repeated eigenvlaues.

2.3 Reflectional Asymmetry Descriptor
Because the Laplace operator L uniquely determines the metric of the manifold, M is in-
trinsically symmetric if there is a self-mapping T : M → M, making both φu and φu ◦ T
the eigenvectors of L. Suppose gpsu is the uth(1 < u < 6) component in the GPSs with
p ∈M, and T = {t1, t2, . . . , t6} be the sign sequence. For a complete symmetric object, the
GPSs with non-repeated eigenvalues only holds two possible mappings around the reflec-
tional symmetry axis as gpsu ◦T = gpsu and gpsu ◦T = −gpsu. As such, the selfmapping
T can be determined by a sign sequence with entries of either positive (+1) or negative (-1).
But because skin lesions are not the exact symmetric object, the complete symmetry mea-
sure |gps(p) ◦T | = |gps(p)| will not fulfil. We thus generate a region-based descriptor in
histogram to quantify the reflectional asymmetry distribution of the skin lesion in the GPSs.

The gravity centroid of a lesion is first defined, and the lesion is segmented into 180
segments around the polar coordinate across the centre. For each segment, we built the
histogram with 100 bins, and the descriptor of each segment l in signature u is,

Desu,l(T ) = 1
Nl

∑100
n=1 f (gpsn

u,l(T ))∗ v(gpsn
u,l(T )) l = 1,2, . . . ,180 (3)

where f represents the frequency counts in each bin, v is the bin location of gpsu,l(T ) in
histograms and Nl is the number of pixels in each segment.

For a single gpsu(T ), the Desu(T ) value can be plotted in 1D space from 0 to π . As the
principal axis must exist in these 180 segments, we assume one segment as the principal axis
at each time, and translate part of the Des(T ) to ensure 90 elements on both sides along the
axis. The values of histogram on the left and right sides are then compared by minimizing
the Euclidean distance to find the optimal reflectional symmetry plane. Considering there
are 6 GPSs, the asymmetry degree of a dermoscopy image can be quantified as,

Asy(T ) = min(
6

∑
u=1

90

∑
l=1
‖DesL

u,l(T )−DesR
u,l(T )‖2

2) (4)

where DesL
u,l represents the left side and DesR

u,l stands for the right part of the histogram.
Because the asymmetry descriptor is a function of the sign sequence T , the minimum asym-
metry measure also indicates the potential optimal reflectional axis. So the process inte-
grates the asymmetry measure and the reflectional axis searching simultaneously. Moreover,
since GPSs integrate the shape and colour asymmetry detections simultaneously, it avoids
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the problem of yielding two different symmetry planes when the symmetric appearance of
shape and colour are analyzed separately.

Figure.2(i) show the images corresponding to the first 6 GPSs with optimal T computed
from blue channel in RGB images of the MM and the BN in Figure.1. All the gps(T )
from the BN display approximate symmetric appearance in a given direction, whereas it is
difficult to find an appropriate symmetry plane fit for all the gps(T ) of the MM. The first
two gps(T ) are usually indicators for shape asymmetry quantization, while higher orders of
gps(T ) reflect the pigmentation asymmetry inside the lesion. Figure.2(ii) plots the trans-
lated histograms with minimum asymmetry measure of the GPSs. The BN shows symmetric
appearance on left-right side of the translated histograms, while the optimal translated his-
tograms of the MM greatly fluctuate, which result in a large asymmetry measure for classi-
fication purpose.

Figure 2: Visualization of the asymmetry descriptor of the MM and the BN in Figure.1. (i) The first
six GPSs with the optimal T. (ii) Translated histograms given minimum asymmetry measures.

3 Experimental Results
The asymmetry descriptors for melanoma diagnosis is validated on 311 dermoscopy images
with resolution ranging from 448× 336 to 1098× 826 pixels [11, 12]. There are 88 MMs
and 223 BNs. The asymmetry feature vector is 6-dimensional with the minimum asymmetry
measures obtained from red, green and blue channels in an RGB image, and their asymmetry
measures in the direction perpendicular to the optimal reflectional axis.
3.1 Comparison with Asymmetry Detector without GPSs
In order to demonstrate the efficiency of the proposed asymmetry descriptor, we compute the
shape and colour asymmetry descriptor without GPSs and compare the classification results
with that from the descriptors in GPSs. The asymmetry detectors without GPSs are defined
similarly as the proposed one. Specifically, a lesion is first segmented into 180 segments.
Then each segment is represented by the proportion of segment areas in the whole lesion
SDesl , or by colour histogram CDesl . Finally the asymmetry measure without GPSs can be
quantified by minimizing the histogram differences in [0 π] as (6).

SDesl = Nl
N , CDesl = 1

Nl
∑100

n=1 f (colourn
l )∗ v(colourn

l ) (5)

SAsy = min(∑90
l=1

∥∥SDesL
l −SDesR

l

∥∥2
2), CAsy = min(∑90

l=1

∥∥CDesL
l −CDesR

l

∥∥2
2) (6)

Figure 3: pdfs of the asymmetry descriptors. (a) the proposed asymmetry descriptor in GPSs. (b)
colour asymmetry descriptor without GPSs. (c) shape asymmetry descriptor without GPSs.

Figure.3 plots the probability density functions (pdfs) of MMs and BNs calculated from
the GPS-based descriptors, and the shape and colour asymmetry detectors without GPSs.
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Compared the pdfs from measures without GPSs, the pdf computed in GPS spaces provides
better distribution separation.

3.2 Performance Evaluation
Three different classifiers are applied to validate the classification accuracy, including Sup-
port Vector Machine (SVM), Artificial Neural Networks (ANN) and Bayesian classifier
(BC). During the training-testing process, 155 dermatoscopy images are randomly selected
for training and the other half of data are used for testing. For each classification algorithm,
we automatically execute the program 30 times and record the average sensitivity, speci-
ficity and accuracy as the final classification results to complement the bias introduced by
the insistence of random selection of the training data.

Table.1 shows the classification results of asymmetry descriptors with and without GPSs
computed by 3 classifiers. Similar to the results in ure.3, the accuracy of the GPSs-based
descriptor is approximately 4% higher than that of the combination of shape and colour
descriptors without GPSs. The best diagnosis of the proposed asymmetry descriptor for
testing data is 85.12% sensitivity and 76.38% specificity with the SVM classifier.

Table 1: Statistics of the classification results from asymmetry descriptors with and without GPSs.
Training(%)(without/ with GPSs) Testing(%)(without/ with GPSs)
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

SVM 86.65/ 88.17 77.15/ 81.50 79.84/ 83.39 82.94/ 85.12 70.96/ 76.38 74.08/ 78.85
ANN 76.08/ 79.80 74.89/ 75.42 75.23/ 76.66 75.10/ 76.33 69.70/ 74.28 71.24/ 74.86
BC 80.21/ 87.39 72.72/ 77.82 74.70/ 80.53 76.93/ 81.72 67.51/ 72.08 70.18/ 75.31

4 Conclusions
This paper proposes a novel histogram based reflectional asymmetry descriptor computed
from global point signatures of the pigmentation model of the skin lesions. Experiments
show that the proposed asymmetry descriptor is more efficient in distinguishing melanoma
from benign nevi than the asymmetry detectors without GPSs. The classification results
achieved by the SVM classifier proved competitive with 85.12% sensitivity and 76.38%
specificity respectively.
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[4] M.dŠAmico,M.Ferri,I.Stanganelliős, Qualitative Asymmetry Measure for Melanoma Detection,IEEE Interna-

tional Symposium on Biomedical Imaging: Nano to Macro,pp.1155-1158,2004.
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