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Abstract
Conventional methods for shape analysis, based upon Procrustes and PCA, seem in-

capable of dealing with ‘non-landmark’ features, meaning measured positions not asso-
ciated with well defined locations. This is due to an assumption of homogeneous errors,
associated with an attempt to extract linear models with biologically meaningful descrip-
tions. We propose a shape analysis system based upon the description of landmarks with
measurement covariance which will extend the modelling process to ‘pseudo-landmarks’
such as boundaries and surfaces. We discuss the properties of our approach and how these
covariances can be considered characteristic of the local shape. The method has been im-
plemented and tested on measurements from fly wing, hand and face data. We use these
data to explore possible advantages and disadvantages over the use of Procrustes/PCA.

1 Introduction
Over a decade during 70’s, bio-mathematical and biometrical aspects of biological shape
studies were treated separately. This early work was later criticised during 80’s by Book-
stein [4], Goodall [9] and Kendall [11]. Later Bookstein [5] worked towards converging
notations from Goodall, Kendall and himself, for the biometric analysis of landmark data in
a bio-mathematically interpretable framework of shape. As a consequence of these efforts,
the standard method for analysis of variation in landmark position is generally regarded as
“Procrustes”. It comprises a least squares alignment of a set of landmark features to a mean
shape, and this is often followed by eigen-vector analysis of the linear correlations in vari-
ation around that mean. While the technique is now very popular the approach has several
limitations with regard to the types of variation with which it can deal. One of these limi-
tations is due to the assumption associated with taking least-squares differences and eigen
vector summaries of distributions. Though many regard these as simply definitional, and in
particular associated with shape, any statistical interpretation suggests that data are measures
with homogeneous noise. It is this statistical interpretation we intend to investigate here.

Although landmarks are generally carefully chosen in order to allow accurate measure-
ments of position within the image, problems will occur if ‘pseudo landmarks’, measured
from smooth curves (and only accurately localised in one dimension 1D), are input to the
analysis. Landmarks with a high degree of variability can act as outliers in the alignment
stage, generating correlated compensating shifts and rotations of the other points. As PCA
aims to describe the main sources of variation, high levels of such correlated movement will
then necessarily contaminate the extraction of eigen-vectors. This contamination cannot be
considered a genuine biological variation, as it has occurred purely due to the uncertainty in
the measurement. This in turn follows from the subjective definition of the landmark lead-
ing to the view that problems can be avoided via appropriate definition. The mathematical
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concept of homology (and mapping) underlies many of the considerations behind much theo-
retical work which is described with the mathematical formalisms of iso-morphism. Because
of such restrictions on the definition of landmarks, semi-landmarks were introduced in order
to allow inclusion of other points which are not homologous among the specimens, where a
unique corresponding location can not be uniquely defined. Measurement at these locations
must be augmented by a constraint, such as bending energy [6, 13], in order to recover the
information missing due to the nature of local structure. However, it is easy to construct
examples where such resolution of corresponding locations is not biologically meaningful.

From a statistical perspective a homology must be augmented by distributions indica-
tive of the extent to which a correspondence can be established. The standard way to deal
with inappropriate weighting of data in a least-squares fit is to introduce weighting, or more
generally to generalise the least-squares cost to a Mahalanobis distance, computed using
measurement covariances. By avoiding the requirement of specifying a unique homologous
location, this has the advantage of accommodating varying information in measured data
without having to re-create missing data or to reject some points as outliers.

There have been several attempts in the literature to include measurement errors for land-
mark points. Fitzpatrick et al [10] worked on the relationship between localization error and
registration error in rigid-body, point-based registration. Chui and Rangarajan [7] proposed
a general framework for non-rigid point matching where outliers are effectively rejected.
Goodall [8] suggested a method which assumed a single covariance for all landmark pertur-
bation. It has been noted that such a matrix is inestimable [12]. Goodall himself acknowl-
edged that “as a model of measurement error this is a drawback, as the direction of greatest
variation may vary considerably between landmarks”. Despite this problem, later work [14]
generalised this idea to a Bayesian framework. Instead, we suggest an approach which can
support the process of landmark location as measurement, with a covariance describing the
localisation of each landmark separately. For example, Rohr et al [15] used such covariance
matrices in a Mahalanobis distance form for non-isotropic data. This was, however, for the
purpose of image registration using splines. As we believe this to be the correct statistical
form for this problem, we investigate possible generalisations of Procrustes along these lines,
and show one of several ways that measurement covariance can be reliably estimated.

2 The Method
Suppose that there are K shapes (2D) in our data-set and each shape vector wk contains N
landmark points, i.e. wk = [w1x,w1y,w2x,w2y, ...,wNx,wNy]. We apply a scale sk, a rotation
Rk and a translation tk to the original data to get an aligned version of the data called zk;
zkn = skRk(wkn− tk). The mathematical description of the model so far can accommodate
any value of scale or orientation for the definition of mean model. We hence define the
orientation of mean shape so that the line between a specified pair of points is horizontal.
This also has the benefit that initial estimates of alignment for sample k can be set according
to the relative positions of these points. We use the average distance between these landmarks
to rescale the mean shape at each iteration so that scale remains numerically defined.

We assume a common, fixed, 2x2 covariance for each landmark derived from the mea-
surement process. These are composed into the matrix C. This is a tri-diagonal matrix,
the diagonal line of which contains data for individual landmarks. Outside of the 2x2 co-
variances, the off diagonal elements of C are zero, i.e. there are no correlations between
landmark measurements (biological correlations are however to be modelled by the PCA
process). The use of a fixed data covariance cancels out when taking the weighted mean to
regenerate the conventional formula m = (1/K)∑K

k=1 zk, where zk = [zk1,zk2, ...,zkN ].
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In order to apply the PCA as a standard statistical tool and obtain a model, we introduce
ghost points. Ghost points gT

k = W (zk−m)T are defined in the original coordinate system
and, being scaled projections relative to the shape centroid, are an alternative way to sum-
marise the original measurement. Projection to ghost points amplifies the spatial variation
in directions which are well measured relative to those which are not so that the resulting
locations have isotropic errors. In turn, this allows accurately measured structure to be en-
coded in the most significant eigen vectors of the linear model. The whitening matrix W
is computed by applying singular value decomposition to C−1; C−1 = UTVU . By making
W T IW equivalent to C−1 we find that W = V 1/2U .

Application of PCA to gk follows for construction of the shape covariance, giving the
eigen vectors e j and values µ j for the whitened space of ghost points as those which minimise
the unexplained variance for fixed J < N. For any specific shape example k, linear factors
λ jk can be computed to best approximate zk with the model z′k as follows.

F =
K

∑
k=1

gT
k gk ≈

J

∑
j=1

µ jeT
j e j , z′k = m+W−1

J

∑
j=1

λ jke j (1)

Here J parameter is the number of eigen vectors used in the model and λ jk = e j.gk. In
order to find the best Rk, tk,sk parameters for each k, the cost function we would expect to be
minimised (e.g. using simplex) is a Mahalanobis distance. A genuine Likelihood should be
based upon the variation of the data around the assumed model. Failure to do this results in
only partial registration and residual distributions which cannot be meaningfully interpreted.
Using this argument, if we wish to align to the mean shape we should use a covariance B
consistent with the distribution around this mean. It therefore quantifies the entire variation
of the sample as opposed to the noise in the measurement. The Likelihood function is

log(Pk) = (m− zk)T B−1(m− zk) , B =
1
K

K

∑
k=1

(m− zk)(m− zk)T (2)

This also stabilises the alignment process with respect to poorly localised landmarks, but
unlike C, B is independent of eigen vector estimation. We can therefore iteratively com-
pute the best alignment and B prior to construction of the linear shape model. As an initial
estimate of the model and transformed data is required, it makes sense to start from the Pro-
crustes result. To reach the best possible alignment we should iteratively estimate Rk, tk and
sk using the assumed e j, m, C−1 (or B−1) and W−1. This gives us a new zk, and so, a new m
and F for construction of e j. For fixed covariances, convergence can be monitored via con-
struction of the total Likelihood log(P) = ∑K

k log(Pk). The measurement covariance may
be computed using the final estimates of zk and z′k either as a new estimate of the assumed
C, or as a consistency check;

C =
1
K

K

∑
k=1

(z′k− zk)(z′k− zk)T (3)

When attempting to estimate C, the use of free parameters during model fitting reduces
the sample covariance obtained from residuals. A possible outcome of this is the over weight-
ing of landmarks leading to a runaway convergence on one landmark, during iterative esti-
mation. For an eigen vector e defined in the ghost space, the total correction would be

∆C =
W−1eT ⊗W−1e

W−1eTC−1W−1e
= W−1eT ⊗W−1e (4)

This is correct for the tri-diagonal components, and is added to the sample covariance.
The known structure of covariances is enforced by zeroing relevant off-diagonal terms.
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3 Experiments
Our first set of data corresponds to left-hand images (40 samples, 56 landmarks) of 4 indi-
vidual hands with various angles between fingers [1]. The second set corresponds to face
images (200 samples, 68 landmarks) taken from video frames of talking faces of 3 individu-
als [2]. Finally we test the stability of our method using 4 sets of repeat mark-up data (200
samples per set, 15 landmarks) from fly wings [3]. We choose the minimum number of linear
components which gives a ratio χ2/DoF (degrees of freedom) about unity (3 for fly wings,
9 for hands, and 11 for faces).

Figure 1: Aligned points using Procrustes (left) and our method (middle); error bars (scaled by 20)
estimated using our method (right).

Figure 2: Aligned points using Procrustes (left) and our method (middle); error bars (scaled by 20)
estimated using our method (right).

We show the results in Figs. 1-3. Here sub-figures on the left column (except for Fig.
3) correspond to the aligned data using Procrustes, while sub-figures on the middle column
correspond to those using our method. Further, sub-figures on the right column show the
error bars computed using the eigen vectors and values of the 2x2 covariance matrices. Error
bars for each landmark show the extent of an elliptical (non-isotropic) distribution around
the corresponding point in the mean shape showing why we can not assume isotropic mea-
surement distributions. It is clear from Fig. 1 that compared to Procrustes our method results
in tighter groupings. The largest variances correspond to the landmark points which are not
well constrained or unstable to some extent. They are either defined mathematically (based
on two neighbouring landmarks) or pseudo landmarks with high variations in one direction.
Most points on the sides of fingers have their largest variation in the directions tangent to
the boundary curves. From the error bars in Fig. 2, it is clear that points at symmetrical
locations on face data have similar variances, with those on the symmetry line being almost
vertical. Similarly in Fig. 3, the error bars are oriented in the directions we expect based
on the structures observed on fly wings. The values of standard deviations estimated vary
between half a pixel and a few pixels (4.4 for fly wings, 8.7 for hands, and 4.0 for faces).

Finally, we investigate the stability of our method. There are four datasets available from
left and right wings (L and R) of 200 female flies (L1, L2, R1 and R2) [3]. We perform
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a simple χ2 test based upon the construction of corrected covariances on one data set and
then used for the calculation of χ2 for a second set. We set the statistical test for significant
difference on the basis of an allowable range of χ2/DoF corresponding to ±4 S.D., i.e.
[0.72, 1.28] for 200 samples. The corresponding plot in Fig. 3 confirms the stability of
our method, as almost all χ2/DoF values fall in the range expected. Further χ2 tests (not
shown here) with different numbers of data samples and combinations of datasets indicate
the appropriateness of the assumed linear model for the fixed number of components.

Figure 3: The χ2/DoF ratios (left) when our method is applied to 3 sets of repeat fly wing data (L2,
R1, R2) using fixed covariances (right; scaled by 30) estimated earlier using L1 set (middle).

4 Conclusions
In order to remove the theoretical difficulties associated with conventional approaches to
morphometric shape analysis [8], we have implemented a method which takes appropriate
account of measurement and landmark localisation stability to obtain a new form of analysis
which is consistent with a Likelihood based definition of the alignment and model building
tasks. Our results indicate that measurement covariances can be reliably estimated in our data
even for small sample sizes, contradicting the common view that this should be impossible.
This may be the result of using a corrected estimate rather than the conventional sample
covariance.
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