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Abstract

In this paper, we propose a new algorithm to estimate diffeomorphic organ atlases
out of 3D medical images. More precisely, we explore the feasibility of Kärcher means
by using large deformations by diffeomorphisms (LDDMM). This framework preserves
organs topology and has interesting properties to quantitatively describe their anatomical
variability. We also use a new registration algorithm based on an optimal control method
to satisfy the geodesicity of the deformations at any step of the optimisation process.
Initial tangent vectors to the shapes, which are used to compute the Kärcher mean, are
therefore estimated accurately. Our methodology is tested on different groups of 3D
images representing organs with a large anatomical variability.

1 Introduction
In the field of Computational Anatomy, the Riemannian point of view on shape spaces has
provided efficient tools to perform of powerful statistical methods [3, 4]. The driving mo-
tivation of this work is to quantify, on real 3D images, the anatomical variability of bi-
ological shape populations, with a particular attention to the topology preservation of the
organs. We therefore study a topology preserving method for averaging biological shapes.
For biomedical data like 3D cerebral images for instance, preserving the structures topol-
ogy is a key challenge when registering or averaging images. Diffeomorphic techniques are
then of high interest since they can encode large deformations while preserving the shape
topology. Defining an average shape in a diffeomorphic framework has been addressed in
several works, using deterministic [1] or Bayesian approaches [9]. Mixed methods using in-
tensity voxel averaging and diffeomorphic registration have also been developed in [6]. The
averaging method of [6] does not however preserve the shape topology, since it mixes two
averaging strategies, which are the Kärcher mean [3, 7], i.e. intrinsic mean on Riemannian
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manifold, and an extrinsic mean as explained in [3]. In this work, we study the strategy of
[4, 11] to compute the Kärcher mean on images using the framework of large deformations
by diffeomorphisms (LDDMM) [2, 5, 8]. Compared with [4, 11], the novelty of our study
is that we use this strategy on segmented 3D medical images requiring large deformations.
We also use a new geodesic shooting algorithm which ensures geodesic transformations at
each registration iteration and only at convergence like the standard LDDMM algorithm of
[2]. Since the convergence is often truncated to keep the computational burden reasonable,
this strategy is more suitable than [2] to compute Kärcher means.

2 Optimal control for geodesic shooting
We consider two scalar images I and J defined on a domain Ω. Their registration consists
in the minimization of the functional E (u) .= 1

2
∫ 1

0 ‖ut‖2
V dt + ‖I ◦ φ−1

0,1 − J‖2
L2 , where u ∈

L2([0,1],V ) is a time-dependent velocity field and the space V is usually a Reproducing
Kernel Hilbert Space of smooth vector fields defined on Ω. The deformation φ0,1 is generated
by the ODE d

ds φt,s = vs ◦φt,s, where φt,t = Id. The minimization of the functional E can be
carried over the geodesic flow, which leads to the minimization of

S (P0) =
λ
2
〈∇I0P0,K ?∇I0P0〉L2 +

1
2
‖I1− J‖2

L2 , (1)

subject to the shooting system




∂t It +∇It · vt = 0 ,

∂tPt +∇ · (Ptvt) = 0 ,

vt +K ?∇ItPt = 0 ,

(2)

with initial condition P0 for the initial momentum. In order to compute the gradient of (1),
we follow an optimal control approach: We introduce a time-dependent Lagrange multiplier
to constrain the paths to be geodesics. The gradient of S is given by: ∇P0S =−P̂t +λ∇It ·
K ? (P0∇I0) where P̂0 is given by the solution of the following PDE solved backward in time:





∂t Ît +∇ · (vt Ît)+∇ · (Pt v̂t) = 0 ,

∂t P̂t + vt ·∇P̂t −∇It · v̂t = 0 ,

v̂t +K ? (Ît∇It −Pt∇P̂t) = 0 ,

(3)

subject to the initial conditions Î1 = J− I1, P̂1 = 0 and Pt , It are the solution of the shooting
system (2) for the initial conditions I0,P0. Existence of the geodesic flow (2) and the solutions
to the adjoint equations (3) can be proven, provided that the source and target images are
sufficiently smooth, namely H2. The algorithm to compute the gradient is divided into two
steps: First, solving the shooting system (2) forward from the initial conditions I0,P0; second,
solving backward the adjoint equations (3).

3 Kärcher mean
We use the methodology of [3, 11] to define the average of a group of images having the
same topology. Given a group of imaged shapes I1, . . . , In and a Riemannian metric d on the
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images, an average can be defined as a minimizer of

M (I) =
1

2n

n

∑
k=1

d(I, Ik)2 . (4)

Remark that the uniqueness is not guaranteed in general. However, in finite dimensions it
can be proven that if the group of data lies in a sufficiently small neighborhood, there exists
a unique minimizer to (4). Since the matching between the registered images is not exact,
we also approximate (4) by M (I)≈ 1

2n ∑n
k=1 d(I, Ik

1)2, where Ik
1 is the result of the shooting

equations for the initial condition P0 = Pk
0 and Pk

0 is a minimizer of the matching functional
(1) for J = Ik. In this case, the squared distance is given 〈P0,K ?P0〉L2 and the gradient of M
is given by

∇M (I) =−1
n

n

∑
k=1

K ?∇IPk
0 , (5)

where Pk
0 is the initial momentum matching I on Ik via the shooting system (2). In particular,

at an average shape Imean, the gradient of M vanishes. In this situation, the gradient is
given by (5). The intrinsic mean is given by a gradient descent procedure. We first initialize
T 0 = I1, ε > 0 and α > 0. We then repreat until convergence (1) Register T i on each Ik

for k ∈ [1,n] with geodesic shooting and extract Pk
0 the corresponding initial momentum. (2)

Compute Pmean = α
n ∑n

k=1 Pk
0 . (3) Compute I1 from (3) with initial conditions I0 = T i and

P0 = Pmean and update T i+1 = I1. The convergence of this algorithm can be assessed via the
norm of the momentum Pmean.

4 Results

4.1 Experimental data and parameters
We test here the ability of our algorithm to estimate average shapes for different groups of
3D imaged organs: (1) Eight segmented hippocampal images randomly selected out of the
healthy controls of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. (2) eight
3D MR brain scans acquired, with a spatial resolution of 0.85mm, on several preterm infants
between 29 and 31 weeks of gestational age. Probabilistic segmentation of the brain gray
matter were performed on each subject using [10]. (3) eight other 3D MR brain scans pre-
treated with the same protocol, but acquired on preterm infants between 37 and 39 weeks
of gestational age. As shown in Fig. 1, these three image groups have different levels of
complexity. We denote in all tests Rn, n ∈ [1, · · · ,N] the reference images and An

i the average
image estimate after i iterations, where An

0 = Rn. We finally define the kernels K by using the
multi-kernel technique of [12] incorporate a multi-scale information in the the metrics. For
the brains, the kernel K is defined as the sum of two isotropic Gaussian kernels of standard
deviation 25mm and 1.5mm. When registering the hippocampuses, we however use a simple
Gaussian kernel K with a standard deviation of 1mm.

4.2 Convergence for different initial guesses
We now validate our methodology by measuring the influence of the initial guess. For a set
of reference shapes and an initial guess, the algorithm converges to an optimal average shape.
However, there is no uniqueness of the optimised shape for different initial guesses. We then

57



4 VIALARD, RISSER, HOLM, RUECKERT: DIFFEOMORPHIC ATLAS ESTIMATION

Figure 1: Isosurface of typical segmented 3D MR images from which the average shapes
are estimated. (From left to right) Isosurface of a hippocampus and inner face of cortical
surfaces out of two pre-term baby acquired at 30 and 38 weeks of gestational age.

measure here the similarity of the average shape estimates using different initial guesses.
In each distinguished reference image dataset Rn, n ∈ [1, · · · ,N], we pick up 3 different
initial guesses and perform average shape estimations. In Fig. 2, we show the evolution
of the 3D images of 30 weeks old cortexes in a 2D slice during the 3 first iterations. In
order to quantify the similarity of the different images, we also measure S(A1

i , · · · ,A3
i ) =

1
8 ∑3

m=1 ∑3
p=1 SSD(Am

i ,Ap
i ), where SSD(., .) is the sum of squared differences between two

images. If S is null, then the average estimates are all the same and the higher this value, the
more different are the images. Results are given in Fig. 2 .
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Figure 2: (Left and centre) Average image estimates Am

i , m ∈ {1, · · · ,3} after i =0, 1, 2 and
3 iterations, where m represents the identifier of the initial guess. Here the the evolution of the
3D shapes of 30 weeks old cortexes are shown in a 2D slice. (Right) Normalised similarity of
the average estimates Am

i for different initial guesses m in function of the iteration number i.
Similarities S(A1

i , · · · ,A3
i ) are shown for the hippocampuses (continuous line), the 30 weeks

brains (semi dashed line) and the 38 weeks brains (dashed line).

In all the considered cases, the average estimates are increasingly similar. Interestingly,
the influence of the initial guess is very weak after only one iteration for the hippocampuses
and a few iterations for the 30 weeks old brains as shown Fig. 2. The convergence is however
slower for the more complex 38 years old brain. We can indeed observe in Fig. 2 that while
about 85% of the differences are lost in one iteration for the hippocampuses and two itera-
tions for the 30 weeks old brains, five iterations are needed for the 38 weeks old brains for a
similar result. This number of iterations remains however limited regarding the differences
in the initial guesses. The proposed methodology therefore appears efficient to estimate av-
erage shapes but requires an increasingly number of iterations according to the complexity
of the reference shapes.
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5 Conclusion
In this work, we have successfully explored the Kärcher mean strategy of [4, 11] in a dif-
feomorphic setting, to estimate average shapes on 3D medical images requiring large de-
formations. To this end, our main contribution is to use a new geodesic shooting technique
within the LDDMM framework. The averaging strategy therefore preserves the shape topol-
ogy even for organs having a large variability and it does not require intensity averaging. We
have also shown that the algorithm computes good estimates of the averaged shapes in very
few iterations for shapes requiring small deformations and a limited number of iterations for
more complex shapes. The immediate perspective of this work is to estimate temporal atlases
of the early cortical growth. Other potential directions consist in performing descriptive and
inferential statistics on 3D and 3+t shape populations.
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